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As a novel class of endogenous non-coding RNAs discovered in recent years, circular
RNAs (circRNAs) are highly conserved and stable covalently closed ring structures with no
5′-end cap or 3′-end poly(A) tail. CircRNAs are formed by reverse splicing, mainly by
means of a noose structure or intron complementary pairing. Exosomes are tiny discoid
vesicles with a diameter of 40-100 nm that are secreted by cells under physiological and
pathological conditions. Exosomes play an important role in cell-cell communication by
carrying DNA, microRNAs, mRNAs, proteins and circRNAs. In this review, we summarize
the biological functions of circRNAs and exosomes, and further reveal the potential roles of
exosomal circRNAs in different diseases, providing a scientific basis for the diagnosis,
treatment, and prognosis of a wide variety of diseases.
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INTRODUCTION

Non-coding RNAs (ncRNAs) are a class of endogenous RNAs that do not encode proteins,
including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs),
which are involved in post-transcriptional regulation (1). miRNAs are 18 -22 nucleotides small
ncRNAs that modulate the translation of more than 60% of all protein-coding mRNAs in the cell,
providing an intermediate regulatory step between gene transcription and translation (2). In
contrast with miRNAs, lncRNA segments are longer in sequences, typically more than 200
nucleotides. LncRNAs have similar functions to miRNAs and can regulate gene expressions, such
as protein translation and post-transcriptional silencing. Moreover, lncRNAs inhibit the translation
of cis and trans genes through histone modifications or disrupting the miRNA regulation (3).
CircRNAs were originally considered to be by-products of aberrant splicing or intermediate
products of intron lariats that have escaped degradation (4). With the rapid development of
various accurate detection technologies, it was found that circRNAs are a kind of ncRNAs molecule
composed of hundreds or even thousands of nucleotides, which can directly connect to the 5′- and
3′-ends of linear RNAs, as an intermediate product of the RNA processing reaction. CircRNAs can
also be produced by “reverse splicing.” The downstream 5′ splice site (splice donor) is connected to
the upstream 3′ splice site (splice receptor), which are found in prokaryotes, eukaryotes, and viruses
(5). According to their sequence, circRNAs are divided into three categories: (1) intronic circRNAs
(ciRNAs) are composed only of introns and are located mainly in the nucleus (6); (2) exonic
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circRNAs are produced by the Epstein–Barr virus from the
BART gene region and are distributed in the cytoplasm and
nucleus (7); and (3) exon–intron circRNAs (EIciRNAs) retain
introns between the exons, are located mainly in the nucleus, like
circRNAs, and can enhance the expression of parent genes in cis
(8). Recently, a special type of circRNAs has been identified,
called tRNA intronic circular RNAs, which is spliced from
endogenous tRNAs under the action of RtcB ligase and the
tRNA splicing endonuclease complex (9). CircRNAs have
various biological functions and play vital roles in the
occurrence, development, invasion, diagnosis, and prognosis of
tumors (10–14), and are also important contributors to the
development of cardiovascular (15), neurological (16),
orthopedic (17), and other diseases.

Exosomes are one of the three main subtypes of extracellular
vesicles (EVs) (18), which have attracted considerable attention in
clinical research. They are nanoscale round or oval capsule vesicles
that are released from cells after the contact and fusion of multiple
vesicles with the cell membrane. They were first discovered by
Wolf (19) in 1967, who observed vesicle structures he called
“platelet dust” that were secreted by cells in vitro, with a size of
40–100 nm. In 1983, Pan and Johnstone identified membranous
vesicles in the culture medium of reticulocytes and named them
exosomes (20). Since then, exosomes have been shown to carry
nucleic acids, proteins, lipids, and other biological molecules as
important mediators of intercellular communication and its
regulation. Their role in the occurrence, development,
metastasis, invasion, and drug resistance of tumors has been
studied in depth (21), and the content and functions of
exosomes are constantly being supplemented and revised.
FUNCTION OF circRNAs

MiRNA Sponges
CircRNAs are competitive endogenous RNA molecules with
abundant miRNA binding sites, which are also called miRNA
response elements, that can competitively bind to miRNAs to
remove their inhibitory effects on downstream target genes,
thereby affecting intracellular signal transduction pathways and
the expression of target genes (22). The role of circRNAs as
miRNA sponges is the classic model of their function. For
example, Hansen et al. identified the circular RNA sponge for
miRNA (miR)-7 (ciRS-7) (23), also known as miRNA sponge
cerebellar degeneration-related protein 1 antisense, which
negatively regulates miR-7 expression. In addition, more than
70 miR-7 binding sites have been found on ciRS-7 (24), which is
highly expressed in HEK293 cells and can bind up to 20,000
miR-7 molecules in each cell. Other studies have confirmed that
the downregulation of circRNA-PVT1 inhibits the expression of
sirtuin 7 by upregulating the expression of miR-3666, and finally
inhibits the proliferation and metastasis of hepatocellular
carcinoma cells (25). Moreover, circRNAs not only act as
miRNA sponges in humans but also in parasites such as
nematodes (26). Some circRNAs with miRNA sponge function
have been found in plants such as Arabidopsis (27), wheat (28),
and citrus (29).
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Regulation of Gene Transcription
CiRNAs and EIciRNAs competitively regulate the transcription
of parental genes through linear splicing. CiRNAs can act as
active regulators of RNA polymerase (Pol) II to regulate the
transcription of parental genes (30). EIciRNAs can interact with
U1 small nuclear RNA (snRNP) to form the EIciRNA-U1 snRNP
complex, which then interacts with the transcriptional complex
of RNA Pol II to affect parental gene expression (8, 31). In
addition, non-coding intron transcripts, such as ci-ankrd52, act
as positive regulators of RNA Pol II transcription, have cis-
regulatory effects on their parental coding genes, and are
associated with a mechanism for the extension of RNA Pol II
(6). Subsequently, a study in 2020 showed that circ-DAB1
upregulates the expression of recombination signal-binding
protein for immunoglobulin kappa J region (RBPJ), which
leads to the increased binding of RBPJ to the DAB adaptor
protein 1 (DAB1) promoter, thereby activating the transcription
of the parental gene, DAB1 (32).

Interaction With Proteins
CircRNAs can also act as sponges of proteins and combine with
RNA-binding proteins (RBPs) to form RNA-protein complexes
that affect protein expression (33). For example, the RNA splicing
factor MBL is an RBP that binds to the second exon of its parent
gene and promotes its cyclization to form circ-MBL in drosophila
(31). At the same time, there are multiple sites on circ-MBL that
bind to MBL protein, which reduces the effective concentration of
MBL (31). CircRNAs can also interact with specific target proteins
and participate in cell proliferation, differentiation, and apoptosis
(34). For example, circ-Foxo3, cyclin-dependent kinase inhibitor 1
(p21), and cyclin-dependent kinase 2 (CDK2) form the ternary
complex circ-Foxo3-p21-CDK2, which inhibits the function of
CDK2 and blocks the cell cycle. In addition, directly silencing
endogenous circ-Foxo3 promotes cell proliferation (35). Another
report shows that the circ-ANRIL can bind to PES1 protein,
thereby preventing pre-rRNA binding and exonuclease-mediated
rRNA maturation. Consequently, circANRIL impairs ribosome
biogenesis, leading to activation of p53 and a subsequent increase
in apoptosis and decrease in proliferative rate (36). Because
proteins have many functions, the other effects of circRNAs
binding to proteins need to be studied in more depth.

Participation in Translation
Initially, circRNAs were considered as non-coding RNA
molecules, but in recent years, many studies have shown that
circRNAs have roles in protein translation (37–40), which
disproved a long-believed concept. It was originally thought that
eukaryotic ribosomes could initiate translation from circRNAs
only if the circRNAs contained an internal ribosome entry site
(IRES) (41). For example, circ-PINT can be translated via its IRES
into the PINT87aa polypeptide, which contains 87 amino acids.
PINT87aa binds to the polymerase-associated factor complex gene
and inhibits the development of malignant glioma (42). The IRES
domain of circRNAs was subsequently predicted to be a binding
site for many RBPs, including HUR and PTB, which modulate the
translation of IRES element-driven proteins (43). As research
continues to advance, it has been discovered that circRNAs
April 2022 | Volume 12 | Article 848341
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without IRES components can be translated into multiple
functional proteins. For example, N6-methyladenosine (m6A)
not only affects mRNA translation under heat shock stress
conditions (44) but also regulates the translation of circRNAs.
The presumed mechanism is m6A modification by the METTL3/
METTL14-WTAP protein complex, the regulation of m6A de-
modification by FTO, and the site containing the m6A
modification ultimately initiates protein translation by recruiting
YTHDF3 and thus eIF4G2 (45), which fills a gap in the study of
the chemical modifications of circRNAs. In addition, it was
discovered that circRNAs can use overlapping codons to
translate proteins, which is a unique method of translation (46).
For example, circ-AKT3 uses overlapping codons to generate a
new functional protein, AKT3-174aa. This protein affects the
phosphorylation of AKT2/3 molecules by binding to p-PDK1,
and then negatively regulates the PI3K/AKT signaling pathway,
inhibiting the occurrence and development of brain tumors (47).
This unique translation process has significance for the study of
new functions of circRNAs (Figure 1).
CircRNAs AND EXOSOMES

Mechanism by Which circRNAs
Enter Exosomes
In 2015, it was first reported that circRNAs are enriched in
exosomes and have good stability (48). The association of
circRNAs with exosomes, followed by genome-wide analysis of
RNA-sequencing data, showed that the abundance of circRNAs
in exosomes and the circular–linear splicing rate is increased by
at least 2- to 6-fold compared with their levels in producer cells,
suggesting that circRNAs are actively incorporated into
exosomes. Furthermore, there are more than 1,000 different
circRNA candidates in human serum exosomes (49). Dou et al.
used three colon cancer cell lines to show that circRNAs are more
abundant in exosomes than in cells. In addition, different
mutations of KRAS (proto-oncogene) were shown to have
different effects on the exosomal content of circRNAs. These
findings indicate that a large number of circRNAs are present in
exosomes and that KRAS mutations affect their abundance (50).

Although the presence of circRNAs in exosomes has been
confirmed, the mechanism by which circRNAs enter exosomes
remains unclear. It has been found that circRNAs are selectively
packaged into EVs, such as exosomes and microvesicles, but it is
more pronounced in exosomes. circRNAs sorting into exosomes
may be regulated by the following mechanisms: (1) lncRNAs
competitively regulate circRNAs sorting into exosomes.
Barbagallo C et al. found that knockdown of lncRNA UCA1 in
serum exosomes could inhibit mitogen activated protein kinase
(MAPK) signaling pathway, resulting in up regulation of circHIPK3
expression, suggesting that the competitive mechanism of lncRNA
UCA1may regulate the sorting of circHIPK3 (51). (2) circRNAs act
as miRNA sponges. It’s reported that exosomal circCDR1as acted as
a sponge for miR-7. When miR-7 was ectopically expressed in liver
cancer cells, the expression level of circCDR1as in exosomes was
significantly down-regulated, while the expression of circCDR1as in
Frontiers in Oncology | www.frontiersin.org 3
cells was increased (48). (3) RBPs recognize RNA with specific
binding sequences and regulate the sorting of exosomal circRNAs.
DKs-8 cells secreted exosomes enrich RBPs, which were involved in
regulating the sorting process of circRNAs by binding with
circFAT1 (50). (4) Exosomes preferentially release smaller
circRNAs. Cells secrete exosomes circRNAs and release them to
the extracellular environment may be related to the size of
circRNAs. Preußer C et al. found that the average size of
circRNAs that were not secreted from cells was 459 nts (52),
while the average size of circRNAs released by exosomes was 435
nts, suggesting that size appears to be an important determinant for
selective vesicle export of circRNAs (Figure 2). Nevertheless, the
exact mechanism regarding the sorting and release of circRNAs is
still largely unknown and awaits further study.

Clearance Mechanism or Information
Exchange Channel?
CircRNAs are highly stable, evolutionarily conserved, and have
no 3′- and 5′-ends (53). They also have built-in resistance to the
major enzymes responsible for mRNA degradation, and thus
may accumulate in cells. Lasda and Parker (54) analyzed the
relative number of circRNAs and linear RNAs in EVs (including
exosomes and microvesicles) in HeLa, 239T, and U-2OS cell
lines. They found that circRNAs were more abundant compared
with linear RNAs. A large number of circRNAs can be packaged
into EVs, which bind to EVs and co-precipitate for their removal
from cells. In addition, reducing the accumulation of circRNAs
induced by reverse splicing may allow them to be exported
preferentially from cells. This may be a mechanism for clearing
accumulated circRNAs from cells. Furthermore, the authors
suspected that there are other mechanisms for the removal or
degradation of circRNAs, including transport mechanisms of
other vesicles or endonuclease cleavage. Recently, a new process
for RNA degradation mediated by m6A has been identified that
can be applied to mRNAs and circRNAs. The m6A-recognition
protein YTHDF2 binds to target molecules and recruits HRSP12.
CircRNAs can be bound to and be degraded through the
YTHDF2-HRSP12-mediated RNase P/MRP complex (55).

Exosomes or microvesicles can be taken up by other cells.
They stimulate target cells directly through receptor-mediated
interactions, and also transfer biologically active molecules such
as membrane receptors, proteins, and mRNAs from source cells
to target cells. Exosomes or microvesicles participate in
communication between cells under physiological and
pathological conditions (56). Therefore, Lasda and Parker
believed that, in some cases, circRNAs may be packaged into
EVs for cell-to-cell communication. Another study also
suggested that the mechanism for the selective release of
circRNAs is a way to transfer information from donor cells to
recipient cells (52). However, the elimination mechanism and the
signal communication pathway need to be explored further
and confirmed.

Study of Exosomal circRNAs in Tumors
Cancer is a global public health problem that poses a serious
threat to human life and physical health, resulting in significant
April 2022 | Volume 12 | Article 848341
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social and economic burdens. According to a report by
GLOBOCAN, in 2020, the number of new cancer cases
worldwide reached 19.3 million, and approximately 10 million
people died from cancer. In addition, breast cancer has replaced
lung cancer as the most common cancer worldwide, and it is
estimated that by 2040, the global cancer burden will be 28.4
million cases, an increase of 47% compared to 2020 (57).
Exosomal circRNAs play an important role in a wide range of
pathological processes, especially in a variety of tumors,
including occurrence, development, invasion, and other
processes, and might make a significant contribution to the
diagnosis and prognosis of tumors (58). Table 1 summarizes
some of the functions and clinical significance of exosomal
circRNAs in a range of different tumors.

Regulae Cell Proliferation
As dysproliferation is one of the important factors in tumor
transformation, the regulation mechanism of the cell cycle has
received increasing attention (111). In recent years, an increasing
number of exosomal circRNAs have been revealed to regulate
Frontiers in Oncology | www.frontiersin.org 4
cell proliferation in various cancers. Ding C et al. found that the
level of circ-MEMO1 in serum of patients with non-small cell
lung cancer (NSCLC) was higher than that in healthy people
(59). Knockout of circ-MEMO1 inhibited NSCLC cell
proliferation and blocked cell cycle in G0/G1 phase, while up-
regulated circ-MEMO1 expression promoted cell proliferation,
cell cycle progression and glycolysis metabolism and inhibited
cell apoptosis. The possible mechanism might be exosomal circ-
MEMO1 up-regulated KRAS expression in NSCLC cells by
competitively binding miR-101-3p. Another study showed that
exosomal circRASSF2 could promote the progression of
laryngeal squamous cell carcinoma (LSCC). Compared with
the control group, the expression of circRASSF2 in tumor
tissues and serum exosomes were significantly up-regulated,
and the down-regulation of exosomal circRASSF2 through the
miRNA-302b-3p/IGF-1R axis could significantly suppress cell
proliferation (60). Yin K et al. found that CircMMP1 was
abnormally up-regulated in glioma tissues and serum
exosomes compared with corresponding counterparts, and
CircMMP1 promoted the proliferation and motility and
FIGURE 1 | Main functions of circRNAs. (A) CircRNAs can adsorb miRNAs to activate signaling pathways. (B) EIciRNA and U1 snRNP form a complex that
interacts with the RNA Pol II complex to regulate gene transcription. (C) Circ-ANRIL binds to PES1 protein to increase the number of cell nucleoli and pre-rRNA
accumulation, thereby promoting apoptosis. (D) CircRNAs can be translated into protein through an IRES.
April 2022 | Volume 12 | Article 848341
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impeded the apoptosis of glioma cells by enhanced high mobility
group box 3 (HMGB3) level through sponging miR-433 (61).
Exosomal circDB was up-regulated in hepatocellular carcinoma
(HCC) patients with a high body fat rate. Exosomal circDB
secreted by adipocytes could regulate deubiquitination of HCC
by inhibiting miR-34a and activating USP7/Cyclin A2 signaling
pathway, which promoted cell growth and reduced DNA damage
(62). Lai Z et al. reported that CircFBLIM1 was highly expressed
in HCC serum exosomes and HCC cells (63). Their further
findings verified that exosomal circFBLIM1 contributed to the
progression and glycolysis of HCC by sponging miR-338 and
upregulating LRP6 expression. Chen W et al. show that
circ0051443 expression was significantly lower in the plasma
exosomes and tissues from patients with HCC than healthy
controls (64). Exosomes containing circ-0051443 were secreted
from normal cells, with exosomal circ-0051443 transported from
normal cells to HCC cells. Exogenous circ-0051443 bound to
miR-331-3p competitively and reduced the expression of Bcl2
Frontiers in Oncology | www.frontiersin.org 5
Antagonist/Killer 1 (BAK1), a crucial cell death regulator,
thereby suppressing the malignant biological behaviors by
promoting cell apoptosis and arresting the cell cycle.

Regulate Invasion and Metastasis
Exosomes can mediate molecular communication and material
transfer between primary tumor sites and distant metastasis
sites. By regulating a series of cell activities including epithelial
mesenchymal transition (EMT) and angiogenesis, exosomes
play crucial roles in tumor cell metastasis and invasion
(112, 113). In colorectal cancer (CRC), circIFT80 accelerated
the tumor progression by entering exosomes promoting CRC
cell growth, migration, and invasion through mir-1236-3p/
HOXB7 axis (68). circFMN2 was highly expressed in serum
exosomes of patients with CRC and negatively correlated with
the level of miRNA-1182. circFMN2 could increase the
expression of hTERT by binding with miR-1182, which
significantly promoted the proliferation and migration of
April 2022 | Volume 12 | Article 84834
FIGURE 2 | The sorting and secretion mechanisms of circRNA in exosomes (A) lncRNAs competitively regulate circRNAs sorting into exosomes. (B) circRNAs act
as miRNA sponges. (C) RBPs recognize RNA with specific binding sequences and regulate the sorting of exosomal circRNAs. (D) Exosomes preferentially release
smaller circRNAs.
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TABLE 1 | Function and clinical significance of exosomal circRNAs in tumors.

Function Exosomal
circRNA

Tumor type Expression Mechanisms Functional or clinical applications Reference

Regulate cell
proliferation

circ-MEMO1 NSCLC Upregulated MiR-101-3p/KRAS Accelerate proliferation, cell cycle progression, and
glycolytic metabolism and inhibit apoptosis

(59)

circRASSF2 LSCC Upregulated miR-302b-3p/IGF-1R Promote proliferation (60)
circ-MMP1 Glioma Upregulated miR-433/HMGB3 Promote the proliferation and movement of glioma

cells and inhibits apoptosis
(61)

circ-DB HCC Upregulated miR-34a/USP 7/
CyclinA 2

Promote cell growth and inhibits DNA damage (62)

circ-FBLIM1 HCC Upregulated miR-338/LRP6 Promote the progression and glycolysis (63)
circ-0051443 HCC Downregulated MiR-331/BAK1 Promote cell apoptosis and arrest the cell cycle (64)
circ_0000199 OSCC Upregulated miR-145-5p/miR-

29b-3p
Promote proliferation and inhibits apoptosis (65)

circ_400068 RCC Upregulated miR-210-5p/SOCS1 Promoted the proliferation and inhibited the
apoptosis of healthy kidney cells

(66)

circ-G042080 MM Upregulated hsa-miR-4268/TLR4 Induces autophagic death of cardiomyocytes (67)
Regulate invasion
and metastasis

circIFT80 CRC Upregulated miRNA-1236-3p/
HOXB7

Promote proliferation, migration and invasion (68)

circFMN2 CRC Upregulated miR-1182/hTERT Promote proliferation and migration (69)
circ-ABCC1 CRC Upregulated b-catenin/Wnt

pathway
Promote cell stemness, sphere formation and
metastasis

(70)

circ-PACRGL CRC Upregulated miR-142-3p/miR-
506-3p-TGF-b1

Promotes cell proliferation, migration, and invasion (71)

circFNDC3B CRC Downregulated VEGFR Inhibits angiogenesis and cancer progression (72)
circFNDC3B PTC Upregulated miR-1178/TLR4 Promote cell proliferation, migration, and invasion (73)
ciRS-133 CRC Upregulated miR-133a/GEF-H1/

RhoA
Promote tumor metastasis (74)

circANTXR1 HCC Upregulated miR-532-5p/XRCC5 Promote proliferation and metastasis (75)
circRNA Cdr1as HCC Upregulated miR-1270/AFP Enhance proliferation and migration (76)
circ-100338 HCC Upregulated interact with NOVA2 Promote angiogenesis and metastasis (77)
circ-PTGR1 HCC Upregulated miR449a/EMT Promote migration and invasion (78)
circ-0072088 HCC Upregulated miR-375/MMP-16 Promote invasion and Migration (79)
circ-0004277 HCC Upregulated inhibit ZO-1 Promote EMT progression (80)
circ-IARS PDAC Upregulated miR-122/RhoA/ZO-1 Promote tumor invasion and metastasis (81)
circ-PDE8A PDAC Upregulated miR-338/MACC1/

MET
Promote proliferation and invasion (82)

circ-PRMT5 UCB Upregulated miR-30c/SNAIL1/E-
cadherin

Promote growth and metastasis (83)

circ-NRIP1 GC Upregulated miR-149-5p/AKT1/
mTOR

Promotes tumor metastasis (84)

circ-RanGAP1 GC Upregulated miR-877-3p/VEGFA Promote invasion and metastasis (85)
circSHKBP1 GC Upregulated miR-582-3p/HUR/

VEGF
Promote proliferation, migration, invasion and
angiogenesis

(86)

circSATB2 NSCLC Upregulated miR-326/FSCN1 Promotes proliferation, migration and invasion (87)
FECR1 SCLC Upregulated miR584/ROCK1 Promote tumor metastasis (88)
circSETDB1 LUAD Upregulated miR-7/Sp1/E-

cadherin
Promote proliferation, migration, invasion (89)

circPUM1 ovarian cancer Upregulated miR-615-5p/miR-
6753-5p/NF-Kb/
MMP2

Promote proliferation, migration and invasion (90)

circWHSC1 ovarian cancer Upregulated miR-145/miR-1182 Promote proliferation and metastasis (91)
circ_0000284 cholangiocarcinoma Upregulated miR-637/LY6E Enhance migration, invasion and proliferation (92)
circ_0044516 PC Upregulated miR-29a-3p Promote proliferation and metastasis (93)

Regulate
treatment
resistance

has_circ_0002130 NSCLC Upregulated miR-498/GLUT1/
HK2/LDHA

Contribute to Osimertinib-resistant (94)

hsa_circ_0014235 NSCLC Upregulated miR-520a-5p/CDK4 Promotes cisplatin resistance in cells and
malignant growth

(95)

circRNA_102481 NSCLC Upregulated miR-30a-5p/ROR1 contribute to EGFR-TKIs resistance (96)
circUHRF1 HCC Upregulated miR-449c-5p/TIM-3 promote immune escape and PD1 immunotherapy

resistance
(97)

circRNA-SORE HCC Upregulated YBS1 contribute to sorafenib resistance (98)
circTMEM181 HCC Upregulated miR-488-3p/CD39 Contributes to immunosuppression and anti-PD1

resistance
(99)

(Continued)
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CRC cells, suggesting that exosomal circFMN2 play an
important role in promoting the growth of colorectal cancer
(69). Exosomes from CD133+ CRC cells carrying circ-ABCC1
could activate the Wnt/b-catenin pathway to mediate cell
stemness and metastasis in CRC (70). Shang A et al. also
demonstrated that CRC-derived exosomes promote CRC
proliferation, migration, and invasion (71). Their further
research confirmed that circPACRGL was significantly up-
regulated in CRC cells with tumor-derived exosomes
addition. And CRC-derived exosomal circPACRGL regulated
differentiation of N1-N2 neutrophils and promoted CRC
proliferation, migration, and invasion via miR-142-3p/miR-
506-3p-TGF-b1 axis. Zeng W et al. found that the expression
of circFNDC3B was significantly decreased in CRC tissues,
CRC cell lines and exosomes. circFNDC3B-enriched exosomes
inhibited angiogenesis and CRC progression (72). This study
also demonstrated that circFNDC3B-enriched exosomes could
repress angiogenesis and CRC progression by decreasing
VEGFR expression. Interestingly, another research showed
that circFNDC3B was highly expressed in extracted serum
exosomes derived from papillary thyroid cancer (PTC)
patients, and the expression levels of circFNDC3B and Mir-
1178 have significantly negatively correlated (73). Their
further research demonstrated that circFNDC3B inhibited
PTC cell proliferation, migration, and invasion and
promoted cell apoptosis through the miR-1178/TLR4
pathway. In addition to making cancer cells more invasive,
exosomal circRNAs can also promote the invasion of cancer
cells by changing the tumor microenvironment. Huang C et al.
found that exosome-mediated the intercellular transmission of
circANTXR1 in HCC cells (75). Overexpressed exosomal
circANTXR1 could depress miR-532-5p expression and
promote XRCC5 mRNA and protein expression, promoting
the proliferation, migration and invasion of HCCLM3 cells.
Another research suggested that exosomal circRNA Cdr1as
from HCC cells enhanced circRNA Cdr1as expression and
accelerated proliferative and migratory abilities to surround
Frontiers in Oncology | www.frontiersin.org 7
normal cells (76). It’s reported that exosomal circRNA-100338
was up-regulated in a highly metastatic HCC cell line. The
metastatic ability of HCC cells could be enhanced by
transferring exosomal circRNA-100338 to recipient human
umbilical vein endothelial cells (HUVECs) and also
promoted cell proliferation, angiogenesis, permeability, and
vasculogenic mimicry (VM) formation ability and tumor
metastasis (77).

Regulate Treatment Resistance
Nowadays, the combination of radiotherapy and chemotherapy
after surgical resection is the main clinical treatment of
malignant tumors. Although the initial efficacy is remarkable,
with the emergence of chemoresistance, it has become a huge
obstacle to the prognosis. Studies have confirmed that epigenetic
variation, oncogene activation, anti-oncogene inactivation,
tumor heterogeneity and apoptosis dysregulation are the main
causes of tumor drug resistance (114). Current studies have
shown that circRNAs can play crucial roles in mediating tumor
chemoresistance (115), and exosomes, as essential mediators of
communication between tumor cells or between tumor cells and
stromal cells, can play a role in the transmission of
chemoresistance through the transfer of circRNA (86). At
present, the study of circRNA-mediated tumor treatment
resistance through exosome delivery is at the forefront of
academic research and has important scientific significance.

In serum exosomes of osimertinib-resistance NSCLC patients,
Ma J et al. found that the expression of hsa_circ_0002130 was up-
regulated, while knockdown of hsa_circ_0002130 significantly
inhibited cell proliferation, glycolysis, and promoted cell
apoptosis in osimertinib-resistant NSCLC, thereby inhibiting
tumor growth (94). The mechanism was to regulate the
expression of glucose transporter 1 (GLUT1), hexokinase-2
(HK2) and lactate dehydrogenase A (LDHA) by sponging miR-
498, which promoted osimertinib-resistant NSCLC cells to
respond to osimertinib-resistance. Hence, hsa_circ_0002130
could act as a new therapeutic target for osimertinib-resistant
TABLE 1 | Continued

Function Exosomal
circRNA

Tumor type Expression Mechanisms Functional or clinical applications Reference

ciRS-122 CRC Upregulated miR-122/PKM2 Promote glycolysis and Oxaliplatin resistance (100)
hsa_circ_0000338 CRC Upregulated – Increase FOLFOX sensitivity (101)
circ-Foxp1 Ovarian cancer Upregulated miR-22/miR-150-3p Promotes cell proliferation and cisplatin resistance (102)
circRNA Cdr1as Ovarian cancer Downregulated miR-1270/SCAI Inhibit proliferation and promote cisplatin-induced

cell apoptosis
(103)

circ-PVT1 GC Upregulated miR-30a-5p/YAP1 Enhance drug resistance to Cisplatin (104)
circ_0032821 GC Upregulated miR-515-5p/SOX9 Enhances resistance to Oxaliplatin (105)
circNFIX Glioma Upregulated miR-132/ABCG2 Enhance drug resistance to Temozolomide (106)
circ-HIPK3 Glioma Upregulated miR-421/ZIC5 Enhance drug resistance to Temozolomide (107)
circATP8B4 Glioma Upregulated miR−766 Promote cell radioresistance (108)
hsa_circ_103801 Osteosarcoma Upregulated – Enhance drug resistance to Cisplatin (109)
circ_UBE2D2 Breast Cancer Upregulated miR-200a-3p Improves drug resistance of breast cancer to

tamoxifen
(110)
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NSCLC, non small cell lung cancer; LSCC, laryngeal squamous cell carcinoma; HCC, hepatocellular carcinoma; OSCC, oral squamous cell carcinoma; RCC, renal cell carcinoma; MM,
multiple myeloma; CRC, colorectal cancer; PTC, papillary thyroid carcinoma; PDAC, pancreatic ductal adenocarcinoma; UCB, urothelial carcinoma of the bladder; GC, gastric cancer;
SCLC, small cell lung cancer; LUAD, lung adenocarcinoma; PC, prostate cancer.
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NSCLC. HCC-derived exosomal circUHRF1 expression was
elevated compared with healthy control and was associated with
poor clinical prognosis and natural killer (NK) cells dysfunction.
Additionally, exosomal circUHRF1 could inhibit IFN-g and
TNF-a secretion in NK cells by upregulating the expression of
T cell immunoglobulin and mucin domain 3 (TIM-3) via
degradation of miR-449c-5p, thereby promoting HCC immune
avoidance and anti-PD1 immunotherapy resistance (97). Wang X
et al. demonstrated that ciRS-122 could be transferred from
oxaliplatin-resistant CRC cell exosomes to sensitive cells, which
increased the expression of the M2 isoform of pyruvate kinase
(PKM2) by suppressing miR-122, then promoting glycolysis and
drug resistance (100). In addition, si-ciRS-122 could block the
ciRS-122/miR-122/PKM2 axis at the post-transcriptional level and
reverse the resistance of CRC cells to oxaliplatin. In epithelial
ovarian cancer (EOC) patients, the expression of exosomal
circFoxp1 in cisplatin (DDP)-resistant patients was significantly
higher than that in DDP-sensitive patients. Overexpressed
exosomal circFoxp1 could enhance the survival and proliferation
of EOC cells and promote the resistance of EOC cells to DDP,
which could be an independent predictor of survival outcome and
DDP resistance in EOC patients. The mechanism might be that
the expression of CCAAT enhancer binding protein gamma
(CEBPG) and formin like 3 (FMNL3) are positively regulated by
miR-22 and miR-150-3p (102). Furthermore, Zhao M et al. found
that circATP8B4 from radioresistant U251 extracellular vesicles
might be transferred to normal glioma U251 cells and act as an
miR−766 sponge to promote cell radioresistance (108). The above
studies suggest that a variety of exosomal circRNAs are closely
related to treatment resistance and may become a new target for
tumor therapy.
Effects of Exosomal circRNAs in
Other Diseases
Exosomal circRNAs not only play a role in a variety of biological
processes in tumors but also have an impact on themechanisms of a
variety of other diseases (116). For instance, 5,095 circRNAs were
identified in cerebrospinal fluid-derived exosomes from patients
with immune-mediated demyelinating disease. Among them, the
expression of 26 circRNAs was found to be significantly different in
cerebrospinal fluid exosomes. Further study showed that
hsa_circ_0087862 and hsa_circ_0012077 could act as molecular
markers for the diagnosis of immune-mediated demyelinating
disease and could also indicate cellular metabolism and disease
progression (117). Secondly, circrNA-EP400, significantly increased
in M2 macrophage exosomes, was reported to inhibit miR-15b-5p
expression and increase the expression of fibroblast growth factor
(FGF)-1/7/9, thereby promoting fibrosis, proliferation, and
migration of fibroblasts and tenocytes (118). This study provides a
new therapy for tendon injury. In polycystic ovary syndrome, the
expression level of exosomal circLDLR decreased significantly. As
an important mediator, circLDLR could directly bind to miR-129,
inhibit the expression of CYP19A1 in KGN cells, and reduce the
secretion of estradiol (119). Exosomal circ-Ehmt1 regulates retinal
microvascular dysfunction through the NFIA/NLRP3 signaling
pathway by inhibiting the formation of NLRP3 inflammasomes in
Frontiers in Oncology | www.frontiersin.org 8
endothelial cells to protect endothelial cells from high glucose-
induced damage, which could be a therapeutic target for diabetic
retinopathy (120). Besides, some differentially expressed exosomal
circRNAs with miRNA-binding sites in umbilical cord blood are
essential for the progression of gestational diabetes and fetal growth
and development (121). Exosomal circ_0000253 is upregulated in
nucleus pulposus cells (NPCs) during intervertebral disc
degeneration, and competitively adsorbs miRNA-141-5p and
downregulates SIRT1 expression to promote the apoptosis of
NPCs and inhibit the proliferation, blocking circRNA_0000253 as
a potential treatment for IDD (122). Notably, exosomal circRNAs
have also been demonstrated to have a role in the pathogenesis of
Corona Virus Disease 2019 (COVID-19). Studies have shown that
differentially expressed circRNAs and long non-coding RNAs in
exosomes may be involved in regulating host cell immunity and
inflammation, substance and energy metabolism, cell cycle, and
apoptosis (123). All of these studies provide a new direction for the
diagnosis and treatment of various diseases. Table 2 summarizes
some of the functions and clinical significance of exosomal
circRNAs in other diseases.
Exosomal circRNAs Are Involved in
Physiological Processes
Exosomal circRNAs not only participate in pathological
processes but also play key roles in some physiological
processes. For example, hsa_circ_0075932 has a low basal
expression level in dermal keratinocytes, but its overexpression
in these cells has no deleterious effect. However, if it is
significantly expressed in adipose tissue, it directly combines
with PUM2 to activate the AuroraA/NF-kB pathway, thereby
promoting cell inflammation and apoptosis (135). In addition,
Zhao et al. conducted experiments in mice, showing that
exosomal circRNAs may participate in neuron growth and
repair, nervous system development, and nerve signal
transmission through glutamatergic synapses and cGMP-PKG
signaling pathways (136). Therefore, it is necessary to further
study exosomal circRNAs, which might help us better
understand some important physiological processes.
SUMMARY AND PROSPECT

Exosomes and circRNAs are both hot research topics. In this
review, several important functions of circular RNA are
summarized in detail. For example, circRNAs can act as
miRNA sponges to affect gene expression, interact with Pol II
to regulate the transcription of parental genes, act as a protein
sponge to affect protein expression, and participate in protein
translation through multiple pathways. Moreover, experiments
have shown that circRNAs can enter exosomes. Although its
regulatory mechanism is not completely clear, exosomal
circRNAs play an important role in pathological processes
such as tumors, nerves, cardiovascular diseases, as well as
physiological processes such as inflammation and cell
apoptosis. Exosomes are rich in lipid components such as
cholesterol, neuramide, and sphingolipids, which are not easily
April 2022 | Volume 12 | Article 848341
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degraded by proteases and ribonucleases, so circRNAs are stable
in exosomes and can perform their functions. In addition,
exosomes are found widely in various body fluids, such as
blood, tears, saliva, sputum, semen, urine, and breast milk
(137, 138). Therefore, liquid biopsies can be performed; it is
convenient and simple for clinicians to take specimens and it is
not traumatic for patients. Therefore, the study of exosomal
circRNAs will provide a biological basis for the identification of
new markers for early diagnosis, targeted therapy, and
prognostic evaluation of various diseases in the future.

Even though significant breakthroughs have been made in the
study of exosomes and circRNAs, there are still many unanswered
questions. First, what conditions affect the interactions of circRNAs
with other molecules, and what other types of modifications other
than m6A in circRNAs are involved in protein translation? Second,
are there differences between exosomes in cells and those in
plasma, and do these differences affect the expression of
circRNAs? Third, what is the specific mechanism by which
circRNAs enter exosomes, and how are they cleared or involved
in cell-to-cell communications? Fourth, blood, urine, sputum, and
other liquids also contain many other impurities, including protein
complexes and nucleic acid lysates, which interfere with the
extraction of exosomes. Therefore, there are still many difficulties
Frontiers in Oncology | www.frontiersin.org 9
and challenges in the clinical application of exosomal circRNAs,
and thus continuous in-depth research and exploration are needed.
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