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Abstract. This paper is closely related to the originally formulated
3D statistical model-based iterative reconstruction algorithm for spiral
cone-beam x-ray tomography. The concept proposed here is based on
a continuous-to-continuous data model, and the reconstruction problem
is formulated as a shift invariant system. This algorithm significantly
improves the quality of the subsequently reconstructed images, so allow-
ing a reduction in the x-ray dose absorbed by a patient. This form of
reconstruction problem permits a reduction in the computational com-
plexity in comparison with other model-based iterative approaches. Com-
puter simulations have shown that the reconstruction method presented
here outperforms standard FDK methods with regard to the image qual-
ity obtained and can be competitive in terms of time of calculation.
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1 Introduction

Recently, the most significant problem in medical CT has been the development
of image reconstruction methods which would enable the reduction of the impact
of measurement noise on the quality of tomography images and thus decrease
the dose of X-ray radiation absorbed by patients during examinations. Some of
the most interesting research directions in this area are statistical reconstruc-
tion methods, especially those belonging to the MBIR (Model-Based Iterative
Reconstruction) approach [1–3], where a probabilistic model of the measure-
ment signals is taken into account. The objective in those solutions was devised
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according to a discrete-to-discrete (D-D) data model. Unfortunately, those meth-
ods have some very serious drawbacks from the theoretical and practical point of
view: for instance, if the image resolution is set to be I× I pixels, the calculation
complexity of the problem is proportional to I4, the statistical reconstruction
procedure based on this methodology necessitates simultaneous calculations for
all the voxels in the range of the reconstructed 3D image, the size of the forward
model matrix A is huge, and this makes it often necessary to calculate them in
every iteration of the reconstruction algorithm. In this case, the reconstruction
problem is extremely ill-conditioned, and it is necessary to introduce an a pri-
ori term (often referred to in the literature as a regularization term) into the
objective, and this leads to the use of the MAP model. The problems connected
with the use of a methodology based on the D-D data model can be reduced
by using a strategy of reconstructed image processing based on a continuous-to-
continuous (C-C) data model. In previous papers we have shown how to formu-
late reconstruction problems consistent with the ML methodology for parallel
scanner geometry [4], and finally for the spiral cone-beam scanner [5,6]. In this
paper, we show how to interpret our original statistical reconstruction method
as an approach belonging to the C-C mode. We applied very popular and con-
venient reconstruction strategy, which resemles the FDK-type algorithms, and
we present a conception of the direct use of spiral cone-beam projections to a
statistical reconstruction algorithm based on the C-C data model.

2 Statistical Reconstruction Algorithm

Our reconstruction method is based on the well-known maximum-likelihood
(ML) estimation [8]. In most cases, the objective in those solutions is devised
according to a discrete-to-discrete (D-D) data model. We propose here an opti-
mization formula which is consistent with the C-C data model, in the following
form:

μmin = arg min
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where μ̃ (x, y) is an image obtained by way of a back-projection operation,
obtained theoretically in the following way:
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wherein ph
(
β, αh, zk

)
are measurements carried out using a spiral cone-beam

scanner, Rfd is the SDD (Source-to-Detector Distance), and the coefficients
hΔi,Δj can be precalculated according to the following relation:
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hΔx,Δy =

2π∫

0

int (Δx cos α + Δy sin α) dα, (3)

and int (Δs) is a linear interpolation function.
The necessary measurements are performed in a standard helical cone-beam

scanner. The mesurement system consists of an x-ray tube and a rigidly coupled
screen with a multi-row matrix of detectors. This assembly rotates around the
z-axis (the principal axis of the system) and at the same time, the patient table
moves into the gantry. Therefore, the moving projection system traces a spiral
path around the z-axis. Each ray emitted by the tube at a particular angle
of rotation and reaching any of the radiation detectors can be identified by(
β, αh, ż

)
, as follows: β – the angle between a particular ray in the beam and

the axis of symmetry of the moving projection system; αh – the angle at which
the projection is made, i.e. the angle between the axis of symmetry of the rotated
projection system and the y-axis; ż – the z-coordinate relative to the current
position of the moving projection system.

In a real spiral cone-beam scanner, the reconstruction algorithm can only
make use of projections obtained at certain angles and measured only at par-
ticular points on the screen. Let us assume that the beam of x-rays reaches the
individual detector rows k = 1, 2, . . . ,K, where K is a number of detectors in
each row of the array. In every row, selected rays strike the detectors, each of
which is described by the index η = − (H − 1) /2, . . . , 0, . . . , (H − 1) /2, where
H is a number of detectors in each channel of the array. Detectors are placed
on the screen separated by a distance Δz in each row, and by an angular dis-
tance Δη in each channel. Of course, only a limited number of mesurements
are performed, each of which is described by the index θ = 0, . . . ,Θ − 1, where
Θ − 1 is the total number of projections made during the examination. Every
projection is carried out after rotation by Δθ. We can sum up above conditions
by saying that the reconstruction algorithm has available to it the projection
values ph

(
βη, αh

θ , żk

)
, in the ranges: η = − (H − 1) /2, . . . , 0, . . . , (H − 1) /2;

θ = 0, . . . ,Θ − 1; k = 1, 2, . . . ,K.
According to the originally formulated by us iterative approach to the recon-

struction problem, decribed by Eqs. (1)–(3), it is possible to present a practical
model-based statistical method of image reconstruction, as follows:
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and μ̃ (i, j) is an image obtained by way of a back-projection operation, in the
following way:

μ̃ (xi, yj) = Δαh
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It is necessary to use an interpolation to evaluate projections at points βij based
on the measured projections ph

(
βη, αh

θ , żk

)
. We can obtain an approximations

of these projections as follows:
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where intβ (Δβ) and intz (Δz) are the interpolation functions, i.e. in the simplest
case, linear interpolations:
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and
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The coefficients hΔi,Δj are determined according to the following formula:

hΔi,Δj =
1

Δs2 Δα

Ψ−1∑
ψ=0

int (Δi cos ψΔα + Δj sinψΔα) , (9)

wherein int (Δs) is an interpolation function used in the back-projection opera-
tion, and Δs = Rf ∗ tan Δβ .

The presence of a shift-invariant system in the optimization problem (4)
implies that this system is much better conditioned than the least squares prob-
lems present in the referential approach [9]. The conception presented above is
a full 3D iterative reconstruction algorithm for spiral cone-beam scanner geom-
etry. This algorithm is based on the one of the principal reconstruction methods
devised for the cone-beam spiral scanner, i.e. the generalized FDK algorithm.
The statistical reconstruction method proposed by us consists of two steps,
namely: a back-projection operation described by relations (5)–(8) and an iter-
ative reconstruction procedure according to formula (4). Figure 1 depicts this
algorithm after discretization and implementation of FFT which significantly
accelerates the calculations (the iterative reconstruction procedure is patented
in the United States [10]).

3 Experimental Results

In our experiments, we have used projections obtained from a Somatom Defini-
tion AS+ (helical mode) scanner with the following parameters: reference tube
potential 120kVp and quality reference effective 200mAs, Rfd = 1085.6 mm,
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Fig. 1. Statistical reconstruction algorithm for spiral cone-beam scanner.

Fig. 2. Reconstructed images obtained at 50% x-ray dose reduction, using: (a) the
statistical approach presented in this paper obtained after 10000 iterations (b) the
standard FDK algorithm.
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Fig. 3. Reconstructed images obtained at 87% x-ray dose reduction, using: (a) the
statistical approach presented in this paper obtained after 10000 iterations (b) the
standard FDK algorithm.

Rf = 595mm, number of views per rotation Ψ = 1152, number of pixels in
detector panel 736, detector dimensions were 1.09mm×1.28mm. However, these
projections were performed using two flying focal spots but only measurements
carried out which coincided with the detector’s center were used. This means
that only every second measurement (theoretically, a 50% reduction of the dose)
was useful for the reconstruction algorithm proposed by us. During the experi-
ments, the size of the processed image was fixed at 512 × 512 pixels. A discrete
representation of the matrix hΔx,Δy was established before the reconstruction
process was started, and these coefficients were fixed (transformed into the fre-
quency domain) for the whole iterative reconstruction procedure. The image
obtained after the back-projection operation was then subjected to a process of
reconstruction (optimization) using an iterative procedure. A specially prepared
result of an FBP reconstruction algorithm was chosen as the starting point of
this procedure. It is worth noting that our reconstruction procedure was per-
formed without any regularization regarding the objective function from (1).
The iterative reconstruction procedure was implemented for a computer with 10
cores, i.e. with an Intel i9-7900X BOX/3800MHz processor (the iterative recon-
struction procedure was implemented at assembler level), and using a GPU type
nVidia Titan V. According to an assessment of the quality of the obtained images
by a radiologist, 8000 iterations are enough to provide an acceptable image. The
same results were achieved for both hardware implementations after 7.44 s and
7.73 s, for the CPU and GPU implementations, respectively. One can compare
the results obtained by assessing the views of the reconstructed images in Figs. 2a
and 3a, where the statistical approach presented in this paper was used (image
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obtained after 10000 iterations), and in Figs. 2b and 3b, where the standard FDK
algorithm was applied (with linear interpolation function and Shepp-Logan ker-
nel). Figures 2 and 3 show reconstructed images obtained at 50% x-ray dose
reduction, and at 87% x-ray dose reduction, respectively.

4 Conclusion

A statistical iterative reconstruction algorithm which can be used in practice for
helical cone-beam scanners has been shown above. We have conducted computer
simulations, which proved that our reconstruction method is very fast, above all
thanks to the use of FFT algorithms and efficient programming techniques, and
it gives satisfactory results regarding the quality of the obtained images at a sig-
nificantly reduced dose of x-rays absorbed by the patient. If the image resolution
is assumed to be I × I pixels, the complexity of the approach implemented here
is proportional to I2 log2 I, and with the referential approach it is of the level
of I4 ×number of cross− sections. One can note that the iterative reconstruc-
tion procedure was performed without introducing any additional regularization
term, using only an early stopping regularization strategy. It should be under-
lined that the price of the hardware used is relatively low (about 5000 USD in
both cases) compared with the cost of the equipment necessary in the case of
the referential solution.
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