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Background: The risk of SARS-CoV-2 infection among health care workers (HCWs) is a
concern, but studies that conclusively determine whether HCWs are over-represented
remain limited. Furthermore, methods used to confirm past infection vary and the
immunological response after mild COVID-19 is still not well defined.

Method: 314 HCWs were recruited from a Swedish Infectious Diseases clinic caring for
COVID-19 patients. IgG antibodies were measured using two commercial assays (Abbot
Architect nucleocapsid (N)-assay and YHLO iFlash-1800 N and spike (S)-assays) at five
time-points, from March 2020 to January 2021, covering two pandemic waves.
Seroprevalence was assessed in matched blood donors at three time-points. More
extensive analyses were performed in 190 HCWs in September/October 2020, including
two additional IgG-assays (DiaSorin LiaisonXL S1/S2 and Abbot Architect receptor-
binding domain (RBD)-assays), neutralizing antibodies (NAbs), and CD4+ T-cell
reactivity using an in-house developed in vitro whole-blood assay based on flow
cytometric detection of activated cells after stimulation with Spike S1-subunit or Spike,
Membrane and Nucleocapsid (SMN) overlapping peptide pools.

Findings: Seroprevalence was higher among HCWs compared to sex and age-matched
blood donors at all time-points. Seropositivity increased from 6.4% to 16.3% among
HCWs between May 2020 and January 2021, compared to 3.6% to 11.9% among blood
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donors. We found significant correlations and high levels of agreement between NAbs and
all four commercial IgG-assays. At 200-300 days post PCR-verified infection, there was a
wide variation in sensitivity between the commercial IgG-assays, ranging from <30% in
the N-assay to >90% in the RBD-assay. There was only moderate agreement between
NAbs and CD4+ T-cell reactivity to S1 or SMN. Pre-existing CD4+ T-cell reactivity was
present in similar proportions among HCWwho subsequently became infected and those
that did not.

Conclusions: HCWs in COVID-19 patient care in Sweden have been infected with
SARS-CoV-2 at a higher rate compared to blood donors. We demonstrate substantial
variation between different IgG-assays and propose that multiple serological targets
should be used to verify past infection. Our data suggest that CD4+ T-cell reactivity is
not a suitable measure of past infection and does not reliably indicate protection from
infection in naive individuals.
Keywords: SARS-CoV-2, health care workers, antibodies, neutralizing antibodies, CD4+ T cells
INTRODUCTION

One and a half years have passed since the World Health
Organization (WHO) declared Severe Acute Respiratory
Syndrome 2019 Coronavirus 2 (SARS-CoV-2), which causes
the clinical disease Coronavirus Disease 2019 (COVID-19), a
pandemic. The risk of SARS-CoV-2 infection among health care
workers (HCWs) has been a concern due to experiences from
infections with two previous coronaviruses: HCWs constituted
over 21% of individuals infected with Severe Acute Respiratory
Syndrome (SARS) in 2002–2003 (1), and up to 29% with Middle
East Respiratory Syndrome (MERS) in 2014 (2). Several studies
have shown high levels of SARS-CoV-2 infection among HCWs,
and a number have compared seropositivity in HCWs and the
general population (3–7). However, few studies have adequate
comparisons with sex and age-matched healthy controls,
using the same antibody assays and during the same
time periods.

Seroconversion is considered an important measure of past
infection on a group level but may be unreliable for the
individual. The most common target proteins in commercial
antibody assays are the nucleocapsid (N), a structure within the
viral particle, and the spike (S), a glycoprotein on the viral surface
involved in the binding to the host cell via the receptor binding
domain (RBD) (8). IgM antibodies, indicative of an acute virus
infection, are not reliably detected in serum of patients during
and/or after SARS-CoV-2 infection, and is therefore not
considered a suitable measure of acute or past infection (9).
While secretory-IgA is important in the mucosal immune
response in SARS-CoV-2 infection (9, 10), serum-IgA is
mainly derived from the bone marrow and thus not considered
a surrogate measurement of secretory-IgA responses (11). The
longevity of serum-IgA post infection varies between different
studies: seroreversion has been observed within 3 months (9, 12),
though other studies have shown that IgA may remain detectable
over 6 months and up to a year post infection (13–18). Serum-
IgA appears earlier than serum-IgG, but has been observed to be
org 2
less long-lasting than serum-IgG post infection (9, 12, 15, 19).
Serum-IgG is considered the clinical standard serological assay
for detection of past infection and has been shown present up to
13 months post infection (19). However, as the sensitivity and
specificity of different IgG-assays targeting the different viral
structures vary, seroconversion in commercial IgG assays may be
difficult to interpret in the absence of PCR testing and in
asymptomatic individuals. Moreover, the potential protective
role of pre-existing cross-reactive antibodies specific for the
endemic coronaviruses remains to be better explored (16,
20–22).

While the commercial IgG-assays used in this study measure
antibody binding to specific viral proteins, neutralizing antibody
(NAb) assays measure the functional ability of the total antibody
repertoire to neutralize the virus regardless of antibody class.
Even though a correlate of protection for COVID-19 is not fully
determined, NAbs are likely highly important for efficient
protection against reinfection (23, 24). Further, some studies
suggest that NAbs may be detected in all patients with mild and
asymptomatic COVID-19, even in the early convalescent phase
(25, 26).

It has been hypothesized that T-cell immunity may confer a
more long-lasting immunity than circulating serum antibodies.
In patients infected by the closely related coronavirus SARS, IgG
antibodies were undetectable in approximately half of the
patients within three years (27), while memory T cells reactive
to the SARS N-protein were detectable up to 17 years after
infection (28). Both CD4+ and CD8+ SARS-CoV-2-reactive T
cells have been observed in patients post COVID-19 (26, 29–33).
In line with previous studies of SARS patients, reactive T cells
have been observed in twice as many subjects of unknown SARS-
CoV-2 infection status as compared to IgG antibodies (29).
However, CD4+ and CD8+ SARS-CoV-2-reactive T cells have
also been observed in pre-pandemic samples, indicating cross-
reactivity with endemic coronaviruses (29, 32). The ability of
such pre-existing corona-reactive T cells to protect against
SARS-CoV-2 infection remains to be determined.
November 2021 | Volume 12 | Article 750448
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The aim of this study was to investigate the prevalence of
SARS-CoV-2 infection among HCWs compared to age and sex-
matched blood donors, using several parallel commercial IgG-
assays at multiple sampling time-points, from early in the
pandemic in Sweden until vaccine introduction 10 months
later. Further, we aimed to analyze the development of
neutralizing antibodies and virus-reactive CD4+ T-cell
responses in HCWs, and to examine correlations between
neutralizing antibodies and different commercial IgG-assays as
well as to CD4+ T-cell responses. We also sought to estimate the
protective capacity of pre-existing CD4+ T-cells reactive against
SARS-CoV-2.
MATERIALS AND METHODS

Participants and Study Procedures
All HCWs (doctors, nurses, nurse assistants and administrative
staff) at the Department of Infectious Diseases, Sahlgrenska
University Hospital, Gothenburg, Sweden were eligible for
participation and inclusion took place between March 17th

2020 and January 29th 2021. The number of employees at the
clinic varied between 283-298 at the different time points
(temporary staff not included). HCWs who changed workplace
during the study period were allowed to continue in the study
and new staff were offered to participate at the remaining
sampling time-points. Patients with COVID-19 were cared for
at the department during the whole study period. National
recommendations for infection control for the care of COVID-
19 patients, including personal protective equipment, were
followed. The study protocol was approved by the Swedish
Ethical Review Authority (Registration number 2020-01771)
and subjects were included after written informed consent.

Sweden experienced two pandemic waves during the study
period: the first wave was between mid-March until mid-June
2020 and the second from mid-October 2020 to February 2021,
when the study period ended. Blood samples were collected at
five time points (TP): 17th–25th of March 2020 (TP1, n = 110),
Frontiers in Immunology | www.frontiersin.org 3
11th–21th of May (TP2, n = 110) and 8th–18th of June 2020 (TP3,
n = 80), 21th of September–8th of October 2020 (TP4, n = 190),
and 12th–29th of January 2021 (TP5, n = 280) (Table 1). HCWs
were asked to fill out a questionnaire regarding COVID-19
associated symptoms and exposure to COVID-19 patients at
all sampling time-points. Serum samples in sex and age-matched
blood donors were analyzed at TP2 (n = 111), TP4 (n = 181), and
TP5 (n = 253).

No routine PCR-tests were performed in asymptomatic
subjects, but all HCWs were obligated to undergo PCR-testing
for SARS-CoV-2 if they had any symptoms commonly
associated with COVID-19, such as dry cough, body
temperature > 37.5°C, ageusia, or general malaise. In
individuals with symptoms, a negative PCR-test taken 12–72
hours after symptom onset ruled out an ongoing SARS-CoV-2
infection. Verified SARS-CoV-2 infection was defined as positive
PCR and/or NAbs, and/or IgG positivity in ≥ 3 commercial IgG-
assays. Asymptomatic SARS-CoV-2 infection was defined as
detectable seroconversion in the absence of reported symptoms
with a positive PCR test.

Real-Time Polymerase Chain Reaction
(RT-PCR) Assay
Nucleic acid was extracted from pooled nasopharyngeal and
throat swabs in a MagNA Pure 96 instrument using the Total
Nucleic Acid isolation kit (Roche). RT-PCR targeting the RdRP
region was performed in a QuantStudio 6 instrument (Applied
Biosystems, Foster City, CA) as previously described (34). Cycle
threshold (Ct) values < 38 were regarded as positive.

SARS-CoV-2 Analyses at the Different
Time-Points
SARS-CoV-2-specific antibodies were analyzed in serum
samples using several commercially available antibody binding
assays (based on N, S or RBD antigens), and an in-house
virus neutralization assay at the different time-points: TP1-TP3
(N-assay and N+S-assay), TP4 (N-assay, N+S-assay, S1/S2-
assay, RBD-assay and NAbs) and TP5 (N-assay, N+S-assay
TABLE 1 | Characteristics of participants at every sampling time-point and results from the serological assays and PCR-testing.

HCWs HCWs HCWs HCWs HCWs BD BD BD
Mar TP1 May TP2 June TP3 Oct TP4 Jan TP5 May TP2 Sep TP4 Jan TP5
(n = 110) (n = 110) (n = 80) (n = 190) (n = 280) (n = 111) (n = 181) (n = 253)

No. (%) of subjects
Sex
Female 82/110 (74.5) 82/110 (74.5) 68/80 (85.0) 147/190 (78.4) 226/280 (80.7) 83/111 (74.8) 142/181 (78.5) 204/253 (80.6)
Male 28/110 (25.5) 28/110 (25.5) 12/80 (15.0) 43/190 (22.6) 54/280 (19.3) 28/111 (25.2) 39/181 (21.5) 49/253 (19.4)
Age (years)
Mean (SD) 40.7 (12.9) 40.7 (12.9) 44.7 (13.9) 42.6 (13.2) 50.5 (13.3) 39.7 (12) 42.8 (13.4) 43.5 (13.3)
Range 20–69 20–69 22–76 20–76 22–79 20–69 21–74 23–75
Positive IgG antibodies
N+S-assay 0/110 (0.0) 7/110 (6.4) 9/80 (11.3) 31/190 (16.3) 82/280 (29.3) 4/111 (3.6) 9/181 (5.0) 30/253 (11.9)
N-assay 1/110 (0.09) 8/110 (7.2) 9/80 (11.3) 25/190 (13.2) 63/280 (22.5) 3/111 (2.7) 6/181 (3.3) 25/253 (9.9)
S1/S2-assay 35/190 (18.4) 13/181 (7.2)
RBD-assay 39/190 (20.5) 105/280 (37.5) 48/253 (19.0)
PCR positivity 0/110 (0.0) 10/110 (9.1) 8/80 (10.0) 31/190 (16.3) 85/280 (30.4)
November 20
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and RBD-assay). Serum samples from the blood donors were
analyzed at TP2 (N-assay and N+S-assay), TP4 (N-assay, N+S-
assay and S1/S2-assay) and at TP5 (N-assay, N+S-assay, and
RBD-assay). SARS-CoV-2 specific CD4+ T cells were analyzed in
all HCWs at TP4.

Commercial SARS-CoV-2 Antibody Assays
N-assay: Architect N is a semi-quantitative chemiluminescent
microparticle immunoassay (Abbott Laboratories, USA),
measuring IgG binding to SARS-CoV-2 N-protein. IgG index
(S/CO) ≥ 1.4 was defined as positive.

N+S-assay: iFlash 1800 is a quantitative chemiluminescent
immunoassay (YHLO, China), measuring IgG binding to both
SARS-CoV-2 S and N-proteins. IgG concentrations ≥ 10 AU/ml
were defined as positive.

S1/S2-assay: LiaisonXL (DiaSorin, Italy) is a quantitative
chemiluminescence immunoassay measuring IgG binding to
the S1/S2 subunits. IgG concentrations ≥ 15 AU/ml were
defined as positive.

RBD-assay: Architect S (Abbott Laboratories, USA) is a
quantitative chemiluminescent microparticle immunoassay
measuring IgG binding to the RBD of the S-protein. IgG
concentrations ≥ 7.1 binding antibody unit (BAU)/ml were
defined as positive.

SARS-CoV-2 Neutralizing Antibody Assay
After inactivation of complement in serum for 30 minutes at
56°C, NAbs were determined by incubating 25mL of 2-fold
dilutions (1/2–1/256) of each serum in fetal-calf serum free
DMEM with 25 mL of 100TCID50 of SARS-CoV-2 (DE strain,
isolated from sample collected February 25, 2020) in duplicate
for two hours at 37°C. Thereafter the serum/virus mixture was
added to confluent Vero cells (ATCC CCL-81) in 96-well
microtiter plates with 175 mL DMEM with 2% inactivated fetal
calf serum and incubated at 37°C in at 5%CO2. Ten-fold serial
dilutions of the virus, 10–1,000 TCID50, were added in duplicate
to separate wells as an infection control. The plates were
examined after 72 hours, using an inverted microscope, and
complete cytopathic effect (CPE) was determined. The presence
of any CPE of the cells was then recorded in the wells and the
titer of the sera was calculated as previously described (35). Sera
with antibody titers >4 were considered neutralizing, confirming
the presence of antibodies with capacity to block infection. Sera
(n = 17) from patients and blood donors from before December
2019 were used as negative controls and no neutralization was
detected in any of these samples.

SARS-CoV-2-Specific CD4+ T-Cell Responses
T-cell analysis was performed using an in-house in vitro assay
based on peptide stimulation of cells in whole blood and
evaluation of the expression of the activation markers CD25
and OX40 (CD134) on the cell surface of CD4+ T cell or CD69
and CD137 on CD8+ T cells by flow cytometry, modified from a
previously described protocol (36, 37). Briefly, 250µl whole blood
was diluted 1:1 with RPMI alone or containing a peptide pool
based on the S1-domain of the SARS-CoV-2 S protein (130-127-
Frontiers in Immunology | www.frontiersin.org 4
041) or a mixture of SMN peptide pools covering the S1 domain,
S C-terminal (130-126-700), Membrane (130-126-702) and N
(130-126-698) proteins (all from Miltenyi Biotech, Bergisch
Gladbach, Germany). The final concentration of peptides was
0.3 nmol/ml per peptide pool. All samples were also stimulated
with phytohemagglutinin (PHA) as a positive control (final
concentration 10 µg/ml). After mixing, cells were incubated for
48 h at 37°C in 5% CO2. After the incubation, 250 µl of the
supernatants were removed, samples were fixed through the
addition of 50 µl TransFix (Cytomark, Buckingham, UK) and
cells kept at +4°C until flow cytometric staining was performed
by adding anti-CD3-V450 (#560365), anti-CD4-BV605
(#562658), anti-CD8-BV510 (#563919), anti-CD25-PE
(#555432), anti-CD134-PECy7 (#563663), anti-CD69-FITC
(#555530) and anti-CD137-APC (#550890) antibodies to the
pre-fixed cells (all antibodies from BD Biosciences, Franklin
Lake, NJ). Red blood cells were lysed using ammonium
chloride in an automated BD FACS Lyse Wash Assistant
program and analyzed on a FACSLyric flow cytometer (both
from BD Biosciences). FMO controls were run regularly using
PHA-stimulated cells to ensure that correct gates were used to
detect cells co-expressing CD25 and OX40 or CD69 and CD137.
Values for the percentage of cells reactive against S1 and SMN
peptide pools was calculated by subtracting values for non-
stimulated cells from values when cells were incubated with
the respective peptide pool.

Statistical Analysis
Differences between groups were analyzed with Fisher’s exact test.
Agreements were analyzed using kappa analysis and associations
using Spearman’s correlation analysis. ROC analyzes were used to
evaluate the performance of the assays. P < 0.05 was considered
statistically significant. Statistical analyses were performed using
GraphPad Prism 8 (GraphPad Software, Inc).
RESULTS

Participants
A total of 314 HCWs were recruited. Of these, 113 participated at
one sampling time-point, 26 at two, 79 at three and 96 at four
time-points (Supplementary Figure 1). TP3 was arranged as an
extra time-point for additional HCWs who had not entered the
study at TP1 or TP2, thus no HCW participated at all five time-
points. At TP4, 190 HCWs participated, and the most extensive
analyses were performed, including NAbs and T-cell reactivity.
At the last sampling time-point (TP5), 280 HCWs participated,
including 166 of the 190 HCWs at TP4. A total of 778 PCR tests
(mean 2.5 per subject, range 0–10) were analyzed during the
entire study period. Serum samples collected from PCR-positive
subjects outside of the sampling time-points were also included,
resulting in a total of 882 samples (mean 2.8 per subject, range
1–8) analyzed during the study period. The majority of the
HCWs were female (255/314, 81.2%), with an age span of 20–79
years (mean 42.6).
November 2021 | Volume 12 | Article 750448
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SARS-CoV-2-Specific IgG Antibodies in
HCWs and Blood Donors
The proportion of IgG-positive HCWs increased from 0.0% in
March 2020 (TP1), to 6.4% in May (TP2), 11.3% in June (TP3),
16.3% in September/October (TP4), and 29.3% in January 2021
(TP5), as measured with the N+S-assay (Table 1 and Figure 1).
For the matched blood donors, the proportion of IgG-positive
individuals was consistently lower compared to HCWs at all
three time-points: 3.6% at TP2, 5.0% at TP4, and 11.9% at TP5
(Table 1 and Figure 1). Similar results were found using the S1/
S2-assay at TP4 and the RBD-assay at TP5. The differences in
proportions of IgG-positive HCWs and blood donors was
statistically significant at both TP4 (p < 0.001) and TP5
(p < 0.0001).

HCWs With Verified COVID-19
Verified COVID-19 was defined as a positive PCR-test and/or
NAbs, or IgG positivity in ≥ 3 commercial IgG-assays. The
percentage of HCWs that had a positive PCR-test increased from
0.0% at TP1 to 16.3% at TP4. Positive PCR-tests were performed
on average 142 days (range 88–203) prior to the analysis at TP4.
By TP5, 10 months from study start and in conjunction with the
start of COVID-19 vaccination, 30.4% (85/280) had tested PCR-
positive (Table 1).

NAbs were analyzed in HCWs at TP4, at which point 18.4%
(35/190) had a neutralizing titer. Four study subjects with
verified COVID-19 at TP4 had not developed NAbs. One
asymptomatic subject lacking both a positive PCR and NAbs
was positive in three out of four commercial IgG-assays at TP4,
hence defined as verified infection. This resulted in 20.5% (39/
190) of study subjects defined as having had verified COVID-19
at TP4. Of these 39 subjects, 21 were positive in all 5 antibody
assays including NAbs, while 13 were positive in all antibody
assays, PCR and CD4+ T cell reactivity. There were no substantial
differences in sex and age in HCWs with or without verified
infection (Table 2).
Frontiers in Immunology | www.frontiersin.org 5
Of the 31 study subjects with a positive PCR-test at TP4, all
had experienced mild symptoms. The remaining eight
individuals (20.5%) with verified COVID-19 lacked a positive
PCR-test and were considered to have had an asymptomatic
infection. Of the asymptomatic subjects, 87.5% (7/8) were
positive in NAbs compared to 90% (28/31) of those with PCR-
positive verified infection.

SARS-CoV-2-Specific IgG Antibodies in
HCWs With and Without Verified Infection
Among the 39 study subjects defined with verified COVID-19 by
TP4, 61.5% were positive in the N-assay and 79.5% in the N+S-
assay, based on suggested clinical thresholds. Additionally, 74.4%
were positive in the S1/S2-assay and 92.3% in the RBD-assay at
TP4 (Table 2 and Figure 2). ROC analyses of the five antibody
assays resulted in area under the curve (AUC) ranging from 0.96-
0.99 (Figure 3). Thirty-five of the subjects with verified COVID-
19 at TP4 had NAbs. Of these, 23 (65.7%) were positive in the N-
assay, 29 (82.9%) in the N+S-assay, 29 (82.9%) in the S1/S2-
assay, and 35 (100%) in the RBD-assay. The agreement between
NAbs and the four commercial IgG-assays ranged from almost
perfect to substantial, with kappa indexes ranging from 0.93 in
the RBD-assay, 0.85 in the N+S-assay, 0.81 in the S1/S2-assay
and 0.75 in the N-assay. Furthermore, in HCWs with verified
COVID-19, correlations between NAbs and IgG levels as
measured in all four commercial IgG-assays were statistically
significant (Figure 4).

Of the four NAb-negative subjects with verified infection, three
were PCR-positive but lacked detectable IgG in three to four of the
four commercial IgG-assays (Patients 1-2, 4 Table 3), while the
fourth asymptomatic subject was positive in three of the commercial
IgG-assays (Patient 3, Table 3). For the three PCR-positive subjects
without NAbs, mean 154 days (range 107-180) had passed after the
PCR-verified infection, compared to mean 140 days (range 88–203)
in subjects with NAbs. Previous blood samples from all three
subjects were analyzed for prior detectable NAbs, at days 27, 71
and 71 days after PCR-positivity, respectively. NAbs were detectable
in one of these three subjects (Patient 4, Table 3) in a blood sample
27 days after PCR-positivity.

Two subjects with verified infection lacked IgG in both the N
and N+S-assay, despite repeated serum samples being analyzed
(Supplementary Figure 2). Both had multiple positive PCR tests
with lowest CT values of 16 and 20, respectively. One had NAbs
and was IgG-positive in the RBD-assay, while the second was
negative in all serological assays (Patients 2 and 5, Table 3). Of
the remaining 29 PCR-positive subjects by TP4 and/or TP5, an
additional five had lost positivity in the N and N+S assay at this
time point. There were no apparent differences in antibody
kinetics among these subjects when studied over time post
PCR-positivity (Supplementary Figure 2).

Among the HCWs with no verified infection, none were positive
in the N+S-assay, 0.7% were positive in the N-assay, 2.0% in the
RBD-assay, and 3.3% in the S1/S2-assay (Table 2 and Figure 2).

Of the 151 HCWs with no verified infection at TP4, 131 also
participated at TP5. Of these, 27 tested PCR-positive between
TP4 and TP5, of which one had tested positive in the RBD-assay
alone at TP4. Additionally, one HCW with no verified infection
FIGURE 1 | IgG positivity in the N+S assay in health care workers and blood
donors over time. Proportion of IgG-positive health care workers (white
circles) and blood donors (red triangles), as measured with the N+S-assay, at
each sampling time-point (TP) from March 2020 to January 2021.
November 2021 | Volume 12 | Article 750448
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but who was positive in both the RBD-assay and the S1/S2-assays
at TP4, developed a 13-times higher IgG concentration in the
RBD-assay and became strongly positive in the N and the N+S-
assay at TP5, thus likely had asymptomatic SARS-CoV-2
infection after TP4.
Frontiers in Immunology | www.frontiersin.org 6
Antibody Persistence in Commercial
IgG-Assays
The duration of IgG-positivity was determined with the N and
N+S-assays as these were used at all five time-points. Of the 39
subjects with verified infection at TP4 (88–203 days post PCR
FIGURE 2 | SARS-CoV-2 specific antibodies measured by different assays in health care workers with and without verified COVID-19. Health care workers with
(pink circles) and without (blue squares) verified COVID-19. Concentrations of IgG measured by different commercial IgG-assays and by virus neutralization at time-
point 4. Medians indicated by horizontal lines. The upper dashed lines indicate the cut-off for positivity, and the lower dotted lines indicate the lowest detectable
concentration/index.
TABLE 2 | Characteristics of health care workers with and without verified SARS-CoV-2 infection at time-point 4 (21th of September–8th of October 2020) and
specificity and sensitivity of all SARS-CoV-2 specific assays in time-point 4 (commercial IgG-assays, neutralizing antibodies and CD4+ specific T cells).

All health care workers Verified SARS-CoV-2a No SARS-CoV-2a

(n = 190) (n = 39) (n = 151)

Characteristics No. (%) of subjects
Sex
Female 147/190 (77.4) 34/39 (87.2) 113/151 (74.8)
Male 43/190 (22.6) 5/39 (12.8) 38/152 (25.2)

Age (years)
Mean (SD) 42.9 (13.3) 38.9 (12.6) 43.5 (13.2)
Range 20–76 24–66 20–76

Occupation
Physician 45/190 (23.7) 3/39 (7.7) 42/152 (27.8)
Nurse 93/190 (48.9) 22/39 (56.4) 71/152 (47.0)
Assistant Nurse 32/190 (16.8) 13/39 (33.3) 19/151 (12.6)
Administrative staff 16/190 (8.4) 1/39 (2.6) 15/151 (9.9)
Otherb 4/190 (2.1) 0/39 (0) 4/151 (2.6)

SARS-CoV-2 PCR
Positive 31/190 (16.3) 31/38 (81.6) 0/105 (0.0)
Negative 112/190 (58.9) 7/38 (18.4) 105/105 (69.5)
Not performed 47/190 (24.7) 1/39 (2.6) 46/151 (30.5)

SARS-CoV-2 Serology
Neutralizing antibodies

Positive 35/190 (18.4) 35/39 (89.7) 0/151 (0.0)
Negative 155/190 (81.5) 4/39 (10.3) 151/151 (100)

N-assay
Positive 25/190 (13.2) 24/39 (61.5) 1/151 (0.7)
Negative 165/190 (86.8) 15/39 (38.5) 150/151 (99.3)

S1/S2-assay
Positive 34/190 (17.9) 29/39 (74.4) 5/151 (3.3)
Negative 156/190 (82.1) 10/39 (25.6) 146/151 (96.6)

RBD-assay
Positive 39/190 (20.5) 36/39 (92.3) 3/151 (2.0)
Negative 151/90 (79.5) 3/39 (7.7) 148/151 (98.0)

N+S-assay
Positive 31/190 (16.3) 31/39 (79.5) 0/151 (0.0)
Negative 159/190 (83.7) 8/39 (20.5) 151/151 (100)
November 2021 | Volume
aVerified infection with either positive SARS-CoV-2 PCR (CT value < 38), positive neutralizing titer (> 4) and/or IgG-positivity in ≥ 3 commercial IgG-assays.
bLaboratory personnel, social worker, it-manager.
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positivity in the 31 symptomatic subjects), 37/39 (94.9%) had at
some time-point detectable antibodies in the N and N+S-assays.
Thirty-five of these 39 subjects also participated at TP5,
approximately 100 days later. N-specific IgG decreased during
this time: 62.9% (22/35) were positive in the N-assay at TP4 and
28.6% (10/35) at TP5. In the combined N+S-assay, the
proportion with a positive test fell from 80.0% (28/35) at TP4
to 62.9% (22/35) at TP5. S-specific IgG was more durable and the
proportion HCWs positive in the RBD-assay was stable: 91.4%
(32/35) at TP4 and 94.3% (33/35) at TP5, as one subject who was
negative in the RBD-assay 175 days post PCR positivity was
weakly positive 291 days post PCR positivity.

SARS-CoV-2-Reactive CD4+ T-Cell
Responses in HCWs With and Without
Verified COVID-19
The presence of T cells reactive against SARS-CoV-2 was tested
using an assay modified from Zaunders et al. that measures the
proportion of CD4+ and CD8+ T cells that express the activation
markers CD25 and OX40 or CD69 and CD137, respectively,
after in vitro stimulation (36, 37). The assay was used to analyze
Frontiers in Immunology | www.frontiersin.org 7
samples from 188 of the 190 HCWs at TP4. When ROC curves
were constructed for CD4+ T cell data, the AUC was over 0.9 for
both peptide pools (0.91 and 0.90, respectively, Figure 5). As
expected, there were substantial agreements between S1 and
SMN reactivity (kappa 0.7). Furthermore, there was a
significant correlation between S1 and SMN CD4+-reactivity
among those HCWs with verified infection at TP4 (p < 0.0001,
r = 0.81; Figure 6). When CD8+ T cell data were considered, the
AUC of the ROC curves were 0.582 for S1 and 0.657 for SMN;
further CD8+ T cell data analysis was therefore not performed.

Cutoff values giving both 95% specificity and sensitivity for
the CD4+ T-cell analysis could not be attained. The maximal
value for Youden’s J statistics was reached with cutoffs of ≥ 0.25%
positive CD4+ cells for S1 (Youden index 72,97) and ≥ 0.9% for
SMN (Youden index 70,64). For these cutoffs, a sensitivity of
89.7% and specificity of 83.2% was obtained for S1, and a
sensitivity of 82.1% and specificity of 88.6% was obtained for
SMN. Using these cutoffs, 35 (S1) or 32 (SMN) of the 39 subjects
with confirmed infection were positive, while 25 (S1) or 17
(SMN) of 149 subjects without confirmed infection were
positive. In total, 67/188 (36%) had positive reactivity in at
least one of the two assays. Of those with verified infection,
90% (35/39) had positive S1 or SMN reactivity compared to only
21% (32/149) of those without verified infection.

Of the subjects with NAbs, 31/35 (89%) had positive reactivity
against S1 or SMN while 29/35 (83%) had positive reactivity
against both peptide pools. There were no significant correlations
between levels of NAbs and CD4+-reactivity against either S1 or
SMN (Figure 7). All four subjects with verified infection who
lacked NAbs had positive CD4+-reactivity against at least one of
the peptide pools (Patients 1-4, Table 3).

Analysis of Infection Rate During Second
Pandemic Wave
The extensive immune analyses performed at TP4 preceded a
second wave of infections, enabling estimations of the protective
ability of pre-existing immune responses. None of the 35 subjects
with verified infection at TP4 who participated at TP5 suffered a
reinfection. Of the 129 HCWs with no verified infection at TP4
who participated at TP5, 27 demonstrated CD4+-reactivity
against either S1 or SMN at TP4, based on the thresholds
calculated based on Youden’s J statistics. Of these, 26% (7/27)
FIGURE 4 | Correlations between levels of neutralizing antibodies (NAbs) and levels of SARS-CoV-2 specific IgG measured at time-point 4 by commercial assays
among health care workers with verified infection. Dotted lines indicate the cut-off for positivity in each commercial IgG-assay.
FIGURE 3 | ROC curves presenting results from different commercial IgG-
assays and neutralizing antibody titers (NT) in health care workers with and
without verified infection at time-point 4. Identity line (diagonal).
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subsequently tested PCR-positive for SARS-CoV-2 between TP4
and TP5: 6/27 showed reactivity against S1, 3/27 against SMN
and 2/27 against both S1 and SMN. In comparison, 20% (20/102)
of HCWs lacking detectable CD4+-reactivity against either S1 or
SMN at TP4 became infected, resulting in an odds ratio of 1.4
(95% confidence interval 0.6-3.6, p = 0.59) for HCWs with
CD4+-reactivity compared to HCWs lacking CD4+-reactivity
becoming infected.
DISCUSSION

This longitudinal study spans from the very beginning of the
COVID-19 pandemic, less than three weeks after the first
confirmed case in Gothenburg, until the start of vaccinations of
HCWs 10 months later. During this time, seroprevalence among
HCWs increased from 0% in March 2020 to over 30% in January
2021. The proportion of seropositive HCWs was almost twice that
Frontiers in Immunology | www.frontiersin.org 8
of age and sex-matched blood donors in May 2020, and close to
triple the number in January 2021. Seroprevalence estimates in
HCWs have varied widely in different studies (38), which likely
reflect the geographical and temporal differences in disease burden
during data collection. Studies contemporaneously comparing
seroprevalence in HCWs and the general population have
largely shown that HCWs have suffered a higher incidence of
COVID-19 (4, 6, 39, 40).

There are many reasons why HCWs run a higher risk of SARS-
CoV-2 infection. Although Sweden has not implemented a strict
lockdown, all citizens have been encouraged to work from home
when possible. As this is not feasible for HCWs, they have an
increased risk of exposure which is not only related to patient care.
Another Swedish study, investigating seroprevalence among
university employees, found that HCWs working in COVID-19-
units had three times higher seroprevalence compared to non-
health care employees (18% vs 6%) (5). Surprisingly, no significant
difference in seroprevalence was observed between HCWs in non-
COVID-19-units and non-health care university employees,
demonstrating that the risk of infection is indeed higher when
working directly with COVID-19 patients, which is in line with
other studies (7, 39). In the present study, approximately 90% of
the HCWs had contact with COVID-19 patients during the study
period (Table 2). Additional parameters have been more highly
associated with SARS-CoV-2 infection among HCWs than caring
for COVID-19 patients in some studies, such as age, exposure via
house-hold contacts and household size (5, 38, 41–43).

It has been suggested that as many as 40–45% of all COVID-
19-infections are asymptomatic (44, 45). In our study, which
carefully followed a group of hospital employees of relatively low
age, only 21% of those with verified infection were defined as
asymptomatic, suggesting that a total lack of symptoms is lower
than these previous estimates. As all HCWs were required to be
PCR-tested when they had any symptoms suggestive of COVID-
19, we were able to serologically identify asymptomatic cases,
reducing the risk of recall bias which is a possible confounder
when using self-reported data. Furthermore, since multiple
assays were used to analyze antibodies in all HCWs, we were
FIGURE 5 | ROC curves presenting results from CD4+ T cell assays in health
care workers with and without verified infection. Identity line (diagonal).
TABLE 3 | Health care workers defined with verified* COVID-19 yet without detectable neutralizing antibodies (NAbs) and/or IgG in the N and N+S-assay at time-point
4 (21th of September–8th of October 2020).

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Sex Female Female Female Female Female
Age (years) 25 28 58 62 44
Days post pos PCR 175 180 PCR neg 107 203
Former IgG response in N+S-assay + – + + –

NAbsa – – – (-) +

SARS-CoV-2 IgG
N-assay – – + – –

N+S-assay – – + + –

S1/S2-assay – – – – –

RBD-assay – – + – +
CD4+ S1 + + + + +
CD4+ SMN + – + + +
November
 2021 | Volume 12 | Artic
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able to identify asymptomatic subjects with high accuracy. Of the
eight asymptomatic subjects with verified infection, only one
lacked NAbs. Thus, NAbs were positive in most (88%)
asymptomatic study subjects, equivalent to the proportion of
NAb-positive subjects with PCR-confirmed infection (90%).
This is in line with previous studies of HCWs with mild and
asymptomatic SARS-CoV-2 infection, with around 90% testing
positive in NAbs > 100 days post IgG or PCR-confirmed
infection (14, 30, 46).

Seow et al. showed neutralizing titers approaching baseline
within 80 days post symptom onset in 4/31 HCWs with mild or
asymptomatic COVID-19 (47). When analyzing NAbs in blood
samples from the earlier convalescent phase in the 3/31 PCR-
positive subjects lacking NAbs at TP4 in our study, one was
indeed found to have been NAb-positive 27 days after positive
9

PCR-test. Therefore, it is possible that the two other subjects also
had NAbs that could have been detected if blood samples had
been collected and analyzed earlier after infection from these
individuals. Moreover, these three subjects were also negative in
three to four of the four commercial IgG-assays. However,
evidence of T cell-reactivity was apparent in all three subjects,
as well as in the third and asymptomatic subject who lacked
NAbs. At the last sampling time-point, approximately 100 days
later and after start of the second wave, we could confirm that
none of these three had been re-infected, nor any of the other
subjects with previous verified infection.

Anti-S IgG-assays have been proposed to be superior to anti-
N IgG-assays for detecting mild COVID-19 in the late
convalescent phase. For example, Havervall et al. found that
only 68% of previous IgG-positive study subjects were positive in
an N-assay after four months follow-up, while 98% were still
positive in an S-assay (46). We followed the IgG response in
separate IgG-assays in HCWs post asymptomatic and mild
COVID-19 up to 300 days after positive PCR test. Positivity in
the N-assay was indeed markedly lower in the later phases, with
less than two thirds of HCWs being positive 88–203 days post
PCR-positivity at TP4, and less than one third around 206–323
days post PCR-positivity among these same study subjects at
TP5. In comparison, positivity in the combined N+S-assay was
80% at TP4 and almost 63% at TP5, and over 90% tested positive
in the RBD-assay at both these time-points.

RBD-specific antibodies have been described as having the
best correlation with NAbs (48), which is in line with our
findings that the RBD-assay, as well as the S1/S2-assay,
correlated best to NAbs. However, while 100% of subjects with
NAbs were also positive in the RBD-assay, less than 90% of the
RBD-positive study subjects were positive in NAbs. Importantly,
2/4 subjects who were weakly RBD-positive, yet NAb-negative at
TP4, most likely became infected after TP4 (one became PCR-
positive and the other seroconverted in all assays analyzed at
TP5). Many studies have suggested that neutralization capacity
can be accurately measured by RBD-IgG binding assays, but our
results demonstrate the risks of relying on proxy measures of
antibody neutralization.
FIGURE 7 | Correlations between CD4+ T-cell reactivity against S1 and SMN peptide pools and neutralizing antibody titers in health care workers with verified COVID-19.
FIGURE 6 | Correlation between CD4+ T-cell reactivity against S1 and SMN
peptide pools. Correlations between proportions of OX40+CD25+ cells among
all CD4+ T cells after stimulation with the two different peptide pools at time-
point 4 in health care workers with verified COVID-19.
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T-cell reactivity can also be determined by different methods,
making comparisons between studies relatively difficult. In this
study, we stimulated whole blood samples with overlapping
peptides from the S1 part of the S protein or a mixture of
overlapping peptides from the S1, S, C-terminal, M and N
proteins and analyzed the in vitro induced expression of the
activation markers CD25 and OX40 on CD4+ helper T cells as a
reflection of antigen-specific cell activation. This method
captures a majority of antigen-specific CD4+ T cells,
independently of their expression of cytokines or other effector
molecules, thereby enabling highly sensitive detection of antigen-
specific T cells with potentially heterogenous effector functions
(36). However, these markers are only suitable for detection of
activated CD4+ T cells but not CD8+ reactivity. We attempted to
measure CD8+ reactivity by instead using CD69 and CD137 as
activation markers, which did not give sufficiently good
separation between infected and non-infected individuals. This
may not only reflect a lower sensitivity of the assay, but also that
CD8+ responses appear to specifically target epitopes outside of
the peptide pools used here, most notably within non-structural
proteins derived from the ORF1ab part of the virus (49–52).

While CD8+ T cells recognize and kill host cells already infected
by virus, CD4+ T cells influence other cells and are required for the
germinal center reaction that is necessary for production of high-
quality, protective antibodies and memory B cells. For the cut-offs
defined here, more than 90% of subjects with verified infection had
CD4+ reactivity to SARS-CoV-2 peptide pools S1 and/or SMN at
TP4. However, this was determined in a group of rather young
individuals, all of which hadmild or even asymptomatic disease. It is
possible that individuals that have had more severe disease will
develop higher reactivity, but also that the young age of the study
participants influenced the strength of the immune response.
Nevertheless, the proportion of subjects with verified infection
that developed CD4+ T-cell responses is in line with previous
studies showing that most COVID-19 patients develop such
responses (26, 29, 30). In the present study, the agreements
between NAbs and CD4+ T-cell reactivity to S1 and SMN were
modest, and we saw no significant correlations between the levels of
NAbs and frequencies of T cells reacting with S1 or SMN. Previous
studies have also shown discordant results between NAbs and CD4+

T-cell responses depending on peptid pool used (30), while in this
study, only 11% of those with NAbs did not have CD4+ T-cell
reactivity to either S1 or to SMN.

Over a third of all HCWs showed any T-cell reactivity at TP4,
including 21% (32/149) of those without any verified infection.
Importantly, 26% of subjects with pre-existing CD4+ T-cell
reactivity went on to develop PCR-verified infection by TP5,
compared to 20% of subjects without pre-existing CD4+ T-cell
reactivity. Several other studies have found pre-existing CD4+

T-cell reactivity against peptides from SARS-CoV-2 in the
absence of previous infection, and it has been hypothesized
that these may confer some protection (51, 53–55).

There is a paucity of studies measuring pre-existing CD4+ T
cell immunity in a cohort of non-infected individuals and then
following their infection rate over time (56). Although the
sample size is small, our data suggest that detectable CD4+
Frontiers in Immunology | www.frontiersin.org 10
T-cell reactivity is a less suitable measure of past infection than
S-specific antibody levels and further, does not reliably indicate
protection from infection.

This study has several limitations. Not all HCWs participated at
all sampling time-points and the assays differed between the time-
points, with NAbs and T-cell reactivity analyzed at only one time-
point. Mucosal samples were not available, making it possible that
asymptomatic subjectswhomayhaveonlydevelopedsecretory-IgA
were misclassified as uninfected. IgM and IgA seroconversion was
not analyzed, thus the full serological response to infection was not
presented. CD8+-reactivity was not detected using the selected
assay, thus the full T-cell mediated immune responses were not
measured. The age and sex-distribution of our cohort, while
representative of HCWs, is not representative of the general
population. Similarly, the blood donor comparison group may
not ideally represent the general population.

Conclusions
HCWs working with COVID-19 patients in Sweden have been
infected with SARS-CoV-2 to a larger extent compared to
matched blood donors, from the beginning of the pandemic
until the introduction of COVID-19 vaccinations. We
demonstrate the difficulty in interpreting results from single
IgG-assays and hence the benefits of using multiple serological
targets to be able to verify past infection. We show that NAbs are
still detectable in most patients more than three months after
mild COVID-19, with high levels of NAbs still detected after 200
days post infection which correlate strongly with results from
commercial IgG-assays targeting both the N and the S-proteins.
Lastly, pre-existing CD4+ T-cell reactivity was present in similar
proportions in subjects who subsequently became infected in the
pandemic’s second wave as those that did not, suggesting that the
presence of such cells in the absence of NAbs is not a reliable
indicator of protection in previously non-infected individuals.
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