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Abstract: Objective: Ringer’s lactate may improve early systemic inflammation during critical
illnesses like severe acute pancreatitis, which are associated with hypocalcemia. Ringer’s lactate is
buffered and contains lactate and calcium. We, thus analyzed extracellular calcium or lactate’s effects
on the mechanisms, intermediary markers, and organ failure in models mimicking human disease
with nonesterified fatty acid (NEFA) elevation. Methods: Meta-analyses and experimental studies
were performed. Experimentally, extracellular calcium and lactate were compared in their interaction
with linoleic acid (LA; a NEFA increased in human severe pancreatitis), and its subsequent effects
on mitochondrial depolarization and cytosolic calcium signaling resulting in cell injury. In vivo,
the effect of LA was studied on organ failure, along with the effect of calcium or lactate (pH 7.4) on
severe acute pancreatitis-associated organ failure. A meta-analysis of human randomized control
trials comparing Ringer’s lactate to normal saline was done, focusing on necrosis and organ failure.
Results: Calcium reacted ionically with LA and reduced lipotoxic necrosis. In vivo, LA induced
organ failure and hypocalcemia. During severe pancreatitis, calcium supplementation in saline pH
7.4, unlike lactate, prevented hypocalcemia, increased NEFA saponification, reduced circulating
NEFA and C-reactive protein, reduced pancreatic necrosis adjacent to fat necrosis, and normalized
shock (carotid pulse distension) and blood urea nitrogen elevation on day 1. This, however, did not
prevent the later increase in serum NEFA which caused delayed organ failure. Meta-analysis
showed Ringer’s lactate reduced necrosis, but not organ failure, compared with normal saline.
Conclusion: Hypocalcemia occurs due to excess NEFA binding calcium during a critical illness.
Ringer’s lactate’s early benefits in systemic inflammation are by the calcium it provides reacting
ionically with NEFA. This, however, does not prevent later organ failure from sustained NEFA
generation. Future studies comparing calcium supplemented saline resuscitation to Ringer’s lactate
may provide insights to this pathophysiology.

Keywords: pancreatitis; organ failure; Ringer’s lactate; inflammation; CRP; calcium; lipolysis;
saponification; isothermal titration calorimetry; mitochondrial depolarization

1. Introduction

Critical illnesses such as severe acute pancreatitis can cause organ failure [1,2]. These are
commonly associated with hypocalcemia [3,4], which is also a part of Ranson’s [5] and Glasgow
criteria [6] for predicting severe pancreatitis. Ringer’s lactate (RL) is buffered and contains calcium
and lactate. Clinical studies show RL infusion during pancreatitis allows early improvement in
systemic inflammatory response syndrome (SIRS) and C-reactive protein (CRP) when compared with
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saline infusion [7–9], but not survival [10]. RL’s benefits have been mechanistically attributed to
lactate inhibiting macrophage activation [7] or negatively regulating toll-like receptor 4(TLR4) in a
G protein-coupled receptor 81(GPR81)-dependent manner [11]. The cell and animal models used
previously, however, do not clinically mimic a severe disease with associated organ failure.

Interestingly, previous studies have shown that RL infusion in humans does not influence serum
lactate concentrations alone or in comparison to saline [12,13], bringing into question a direct role of
lactate in mediating the benefits of RL. Lactate infusion reduces the drop in serum bicarbonate [8] and
may protect from acidosis. Recently, a Cochran database study of evidence concluded that buffered
solutions do not provide any benefit over 0.9% saline in reducing in hospital mortality among critically
ill patients with a high degree of certainty [14]. Collectively, these suggest that the benefits of RL
are noted in early severe pancreatitis and may be from a mechanism other than its being buffered or
containing lactate.

Fatty acids are elevated during critical illnesses [15–19] such as severe acute pancreatitis in
humans [20,21] and rodents [22–25], but not during mild disease [22,23]. Previous studies have shown
hypocalcemia to result from fatty acid administration [26] and calcium to be present in the (peri)
pancreatic fat necrosis associated with pancreatitis [24], consistent with saponification [24,27,28]. It is
therefore plausible that the benefits noted with RL could be because of the 3 mEq. calcium it contains.
We thus investigated whether the extracellular calcium supplementation is beneficial during severe
pancreatitis associated with organ failure, mimicking severe human disease, and compared its efficacy
to lactate. We also compared extracellular calcium’s benefits in neutralizing fatty acid signaling
and to the pathophysiology of hypocalcemia. These findings were analyzed in the context of a new
meta-analysis of the three randomized trials comparing RL to normal saline which focused on organ
failure, ICU requirements, and also to a previous meta-analysis [10] that focused on CRP and SIRS and
mortality. Interestingly, we note that the extracellular calcium (CaE) has a mechanistically distinct role,
independent of lactate or pH, in reducing lipotoxic necrosis and transiently improving SIRS in severe
pancreatitis, similar to what is observed in the clinical studies.

2. Methods

All studies were approved by the Institutional Animal Care and Use Committee at the Mayo Clinic.

2.1. In Vitro Studies

Isothermal Titration Calorimetry (ITC): The interaction of calcium or lactate with linoleic acid
was carried out on a Nano ITC (TA Instruments-Waters LLC, New Castle, DE, USA) instrument using
Nano ITCRun Software v3.5.6. The experimental setup was equipped with a computer-controlled
micro-syringe injection device. A total of 25 aliquots of freshly prepared, degassed calcium chloride or
sodium lactate (1 mM in 10 mM HEPES [4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid], pH 7.4;
1.7 µL per injection) were injected from a rotating syringe of speed 350 rpm into the ITC sample chamber
containing freshly prepared, degassed Linoleic acid (1 mM in 10 mM HEPES, pH 7.4) equilibrated at 37
◦C. The interval between two injections was 200 s. Similarly, calcium chloride injection into HEPES
buffer, HEPES buffer into linoleic acid, and HEPES into HEPES were run as controls. A representative
thermogram from three independent experiments is shown in Figure 1.

The thermodynamic parameters (Kd, n, ∆H, and ∆S) for calcium–linoleic acid, calcium-lactic acid,
or lactate–linoleic acid were calculated from NanoAnalyze Software v3.10.0 (TA Instruments-Waters
LLC, New Castle, DE, USA). Parameters were represented as Mean ± SD (standard deviation).
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Figure 1. A–C: Isothermal titration calorimetry showing Linoleic acid (LA) reacts with calcium but not 
lactate. (A) Thermogram showing heat rate of injection of calcium chloride (10 µM/injection) into 1 mM 
Linoleic acid (LA). Both were dissolved in 10 mM HEPES (pH 7.4) (B) Enthalpograms of injection of 
sodium lactate (Na-lactate, red line on top) or calcium chloride (CaCl2; green line below) into linoleic acid. 
The various thermodynamic variables (Mean ± SD (standard deviation)) from three different experiments 
are mentioned in the table adjacent to the thermogram. (C) Thermogram showing heat rate of injection of 
sodium lactate (top, red line; 10 µM/injection) and other control experimental conditions below this (black 
lines). D–G:Effects of intraperitoneal administration of linoleic acid (LA, 0.1% body weight) to CD-1 mice 
on their serum calcium (D), carotid pulse distension (pulse dist.) (E), rectal temperature (F), and blood 
urea nitrogen (Sr. BUN) (G). The vitals were measured at 40 h, and blood parameters at necropsy.* 
indicates a p-value of <0.05 on Mann-Whitney test. 

3.3. Physiologically Relevant Extracellular Calcium (CaE), Unlike Lactate, Reduces NEFA Toxicity 

Since LA is a NEFA increased in the sera [20,21] and pancreatic necrosis collections [22,24,35] 
during severe pancreatitis, burns [19] and critical illness [15], we studied the effect of extracellular 
calcium (CaE) on LA-induced cell injury [24,31]. We first tested the time dependence of incubating 
CaE with LA on LA-induced LDH leakage. Preincubating a 20× stock of LA (2 mM) and calcium (20 
mM) before addition to acinar cells (final LA; 100 µM and calcium being 1 mM) time-dependently 
reduced LA-induced injury (Figure 2A). We then tested different pathologically and therapeutically 
relevant concentrations of CaE on LA-induced injury. A CaE of 2 mM significantly reduced 
LA-induced LDH leakage vs. lower CaE concentrations (Figure 2B). Substitution of HEPES buffer 
for Ringer’s lactate did not change the net LDH leakage induced by LA (47 ± 6%) compared with 
HEPES buffer (42 ± 2%), and substitution of 10 mM lactate in place of pyruvate did not reduce the 
100 µM LA-induced LDH leakage compared with control HEPES buffer containing glucose alone 
(Figure 2C). The 2 mM concentration of CaE used is equivalent to 8 mg/dL calcium, and is thus 
clinically relevant [5]. Please note that buffers traditionally used for acinar studies [29], like ours, 

Figure 1. (A–C): Isothermal titration calorimetry showing Linoleic acid (LA) reacts with calcium but
not lactate. (A) Thermogram showing heat rate of injection of calcium chloride (10 µM/injection)
into 1 mM Linoleic acid (LA). Both were dissolved in 10 mM HEPES (pH 7.4) (B) Enthalpograms of
injection of sodium lactate (Na-lactate, red line on top) or calcium chloride (CaCl2; green line below)
into linoleic acid. The various thermodynamic variables (Mean ± SD (standard deviation)) from three
different experiments are mentioned in the table adjacent to the thermogram. (C) Thermogram showing
heat rate of injection of sodium lactate (top, red line; 10 µM/injection) and other control experimental
conditions below this (black lines). (D–G): Effects of intraperitoneal administration of linoleic acid
(LA, 0.1% body weight) to CD-1 mice on their serum calcium (D), carotid pulse distension (pulse dist.)
(E), rectal temperature (F), and blood urea nitrogen (Sr. BUN) (G). The vitals were measured at 40 h,
and blood parameters at necropsy.* indicates a p-value of <0.05 on Mann-Whitney test.

2.2. Primary Acinar Cell Preparation

16 week old male CD-1 mice were euthanized by CO2 asphyxiation with secondary euthanasia by
cervical dislocation. Whole pancreata were removed, trimmed of excess fat, and placed in oxygenated
HEPES buffer [29] (10 mmol/L HEPES at pH 7.4, 130 mmol/L NaCl, 5 mmol/L KCl, 1 mmol/L MgCl2,
1 mmol/L CaCl2, 10 mmol/L glucose, 10 mmol/L sodium pyruvate, and 0.1% bovine serum albumin)
on ice. Pancreata were insufflated with collagenase solution, minced, and incubated in collagenase at
37 ◦C with shaking (120 RPM) for 40 min [29]. Digested tissue was triturated with a 10 mL serological
pipette, filtered sequentially through a 180 micron steel mesh and a 70 micron cell strainer to obtain
acinar cells. Cells were washed twice by low-speed centrifugation with fresh, oxygenated HEPES
0.01% albumin without collagenase, and suspended in this buffer for use. Cell viability was verified
>95% by trypan blue exclusion prior to experimentation.
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2.3. Lactate dehydrogenase (LDH) Release Assays

Primary acinar cells were seeded in a 12-well plate using a wide-bore 1 mL
micropipette tip in HEPES buffer with the indicated concentrations of calcium, BAPTA-AM
[1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis(acetoxymethyl ester); 50 µM],
dantrolene (100 µM), thapsigargin (1 µM), or EGTA (ethylene glycol-bis(β-aminoethyl
ether)-N,N,N′,N′-tetraacetic acid; 1 mM), or were seeded in Ringer’s lactate buffer pH 7.4 as described
in the results. Ringer’s lactate has pH ≈ 6.8 (6.0–7.5), which was adjusted to 7.4 by adding NaOH
(1 N) using a pH meter before use. Cells were treated with 100 µM final concentration linoleic acid
(LA) sonicated into HEPES buffer or 100 nM final concentration caerulein and incubated at 37 ◦C with
shaking at 40 RPM. Indicated time-point supernatants and 1% Triton X-100 total cell lysates (taken
as 100%) were collected for LDH analysis with the LDH Cytotoxicity Assay PLUS kit (Roche, Basel,
Switzerland) according to manufacturer’s protocol and read on a FlexStation 3 Multi-Mode Microplate
Reader (Molecular Devices, San Jose, CA, USA).

2.4. Fura-2/JC-1 Spectrophotometry

Fura-2 AM and JC-1 at 5 µg/mL final concentration in 0.5% dimethyl sulfoxide were sonicated
into HEPES buffer to obtain a working staining solution. Live acinar cell preparations were washed
and resuspended in staining solution and incubated at 37 ◦C with slow rotation protected from light.
Cells were gravity-settled and washed twice with fresh HEPES buffer. Stained cells were suspended
in a UV/VIS-transparent cuvette containing a stir bar and placed in a F2100 Hitachi Fluorescence
Spectrophotometer (Hitachi, Tokyo, Japan). Fura-2 ratio (340/380 nm excitation, 510 nm emission)
and JC-1 ratio (510 nm excitation, 530/590 nm emission) were collected every 15 s with stirring and
temperature control as previously described [25].

2.5. In Vivo Experimental Models and Parameters

2.5.1. Linoleic Acid Administration

Linoleic acid (LA) was administered intraperitoneally at 0.1% body weight to adult CD-1 mice
(30–40 g) as described previously [25]. These were monitored for vitals daily before and after LA
administration as described below. These were followed till 72 h after, or until moribund, whichever
came first, at which time they were euthanized as described below.

2.5.2. Acute Pancreatitis Model

11–12 week old, 54 ± 2 g, ob/ob [B6.Cg-Lepob/J; Jax Stock #00632, Jackson Laboratory (Bar Harbor,
ME, USA)] mice were used for Caerulein (CER)-induced acute pancreatitis study, as described
previously [23]. We had four groups (8–10 animals per group). These were control, CER, CER +

calcium chloride, and CER + sodium lactate. A baseline blood sample was first collected from the tail
vein, and vitals were measured. Pancreatitis was then induced by planting a primed Micro-Osmotic
pump (Alzet, DURECT Corporation, Cupertino, CA, USA) to deliver CER (50 mcg/kg/h; Bachem AG,
Bubendorf, Switzerland) over 3 days. After 6–8 h of Alzet placement, a tail vain blood sample was
collected to confirm >3-fold elevation of lipase over baseline. After that, calcium chloride (10 mM,
1 mL/dose, 3 times/day) or sodium lactate (30 mM, 1 mL/dose, 3 times/day) in saline, pH 7.4, were given
intraperitoneally for 3 days (55 mL/kg/day) to the respective group of mice. The saline pH was ≈ 6.2 at
baseline, and was adjusted to 7.4 using NaOH (1 N) and a pH meter. Animals were followed for up to
5 days or until they were moribund, whichever came first, at which time they were euthanized in a
carbon dioxide chamber before harvesting blood and tissues.
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2.5.3. Monitoring

Effects of acute pancreatitis (AP)r LA administration on carotid pulse distention (measured in
micrometers) were assessed with a collar sensor using the MouseOx oximeter (Starr Life Science,
Pittsburgh, PA, USA) before induction of AP and daily thereafter. Mice were followed for up to 5 days
for survival or were sacrificed earlier if fulfilling criteria for euthanasia (e.g., if moribund). Blood,
pancreas, kidney, and lung tissues were harvested to study various parameters of pancreatitis.

2.6. Histology, Special Stains, and Immunohistochemical Studies

Pancreas, kidney, and lung tissues were fixed with 10% neutral buffered formalin (Fisher Scientific)
and embedded in paraffin and sectioned. Whole pancreas paraffin section (5 microns) slides stained by
hematoxylin and eosin (H&E) were used to quantify pancreas necrosis and peri-fat acinar necrosis
(PFAN), that is, necrosed acinar area adjacent to fat necrosis as described previously [24,27], and slides
stained by Von Kossa using a kit (Fisher Scientific, Hampton, NH, USA) to quantify fat necrosis and
saponification as per recommended protocol.

2.7. Biochemical Assays

The biochemical assays (amylase, lipase, BUN [blood urea nitrogen], Calcium; Pointe Scientific,
Canton, MI, USA) and colorimetric total free fatty acids using Non-Esterified Fatty Acid kit (FUJIFILM
Wako Diagnostics, Mountain View, CA, USA) were done as per the manufacturer protocol and described
previously [22–25,30]. Serum CRP level was measured by using Mouse C-Reactive Protein/CRP
Quantikine ELISA Kit (R&D Systems, Minneapolis, MN, USA) as per manufacturer’s protocol.

2.8. Cytokine/Chemokine Assays

Serum Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels were assayed with a
MILLIPLEX MAP Mouse Metabolic Magnetic Bead Panel (Millipore, Burlington, MA, USA) according
to manufacturer’s recommendations on a Luminex 200 System (Life Technologies, Carlsbad, CA, USA)
and analyzed using the xPONENT software as described previously [22–25,30].

2.9. Experiment Statistics

In vitro study data is from three or more separately done experiments, and in vivo data from
8–10 mice per experiment. Availability of tissue or sample (e.g., post mortem loss, volume remaining
after other assays, space in a multi-well plate) dictated the number finally included in the analysis,
with a goal to have at least seven randomly selected samples. Independent variables for in vivo and
in vitro studies are shown as bar graphs or box plots, respectively, reported as mean ± SD. Line graphs
± SD were used for continuous variables. Significance levels were evaluated at p < 0.05. Data for
multiple groups were compared by one-way ANOVA versus controls for that time point, and values
significantly different from controls were shown as (*) unless otherwise mentioned specifically in the
legend. When comparing two groups, a t-test or Mann–Whitney test was used, depending on the
normality of distribution. Graphing was done using GraphPad Prism (version 8.0.0 for Windows,
GraphPad Software, San Diego, CA, USA, www.graphpad.com).

2.10. Meta-Analysis

We conducted a comprehensive literature search and found that Iqbal et al. [10]. had recently
published a systematic review and meta-analysis on the subject. We reviewed their data and found that
while mortality was assessed as an outcome, no analysis was conducted to assess other outcomes such
as pancreatic necrosis, intensive care unit (ICU) admission, and organ failure. We therefore extracted
these data from the included papers and calculated overall odds ratio (OR) based on events/total ratios
using the random effects model. Only randomized controlled trials were included in our analysis.
Publication bias was assessed for using the Egger test. Statistical analysis was performed using the

www.graphpad.com
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Comprehensive Meta-Analysis (CMA) software version 3.3.070 (Biostat; Englewood, NJ, USA). p-value
<0.05 was considered significant.

3. Results

3.1. Calcium Binds Long-Chain Fatty Acids in an Energetically Favorable Manner

We first compared the energetics of fatty acid binding to lactate or calcium by isothermal titration
calorimetry (ITC) in 10 mM HEPES (pH 7.4, at 37 ◦C). For this, each injection introduced 10 micromoles
of calcium chloride (from a 1 mM stock in the burette) into 1 mM linoleic acid (LA). Linoleic acid was
chosen since it is representative of the unsaturated fatty acids enriched in fat necrosis [22,24] and the
sera of patients with severe pancreatitis [20], which, unlike saturated fatty acids, induce necrotic cell
death [22,24,31]. The reaction was done in an adiabatically sealed calorimeter, and the heat transfer
associated with the reaction was measured. As shown in Figure 1A, the interaction between calcium
and LA was exothermic with large deflections initially. The enthalpy change (∆H) of this interaction
was about −20 KJ/mol (Figure 1B table, green line) and had a stoichiometry of about one Ca2+ for eight
molecules of LA. In contrast, the injection of 10 micromoles sodium lactate into LA (redline, Figure 1B,C)
had no increase in heat transfer over controls (black thermograms in Figure 1C). Similarly, injection of
calcium into lactate was not different from to controls (data not shown). Thus, unlike lactate-LA,
there was an electrostatic interaction between Ca and LA. We went on to study the biological relevance
of this interaction.

3.2. NEFA Like Linoleic Acid Cause Hypocalcemia and Organ Failure

We next tested whether hypocalcemia may be relevant to the pathogenesis of NEFA-induced
organ failure. Both oleic acid [32–34] and linoleic acid [25,30] can cause organ failure, as may happen
in severe pancreatitis [22,25]. We thus analyzed the relevant parameters after administration of
linoleic acid (0.1% body weight) in a cohort of mice we have previously studied [25]. The carotid
pulse distention (pulse Dist.; Figure 1E; a large drop in which signifies shock) and rectal temperature
(Figure 1F) were measured at 40 h, and the serum parameters were measured at the time of necropsy
(46 ± 3 h). As can be seen, linoleic acid (LA) caused hypocalcemia (Figure 1D), associated with shock
(Figure 1E), hypothermia (Figure 1F), and blood urea nitrogen elevation (BUN Figure 1G) consistent
with multi-system organ failure. Thus, the Ca–NEFA interaction we note on ITC is biologically relevant,
and results in hypocalcemia via binding LA, along with causing organ failure.

We next studied the mechanistic role of this interaction in pancreatitis by comparing extracellular
calcium to lactate in reducing cell injury induced by a pancreatitis initiator (i.e., caerulein) versus that
due to LA, which worsens pancreatitis via organ failure. The studies were first done in vitro and then
in vivo. Major part of the in vitro studies was done in pancreatic acini, since these are susceptible to
lipotoxic cell death [24,25] and acini also have receptors for caerulein, resulting in cell injury with high
caerulein (≥1nM) doses.

3.3. Physiologically Relevant Extracellular Calcium (CaE), Unlike Lactate, Reduces NEFA Toxicity

Since LA is a NEFA increased in the sera [20,21] and pancreatic necrosis collections [22,24,35]
during severe pancreatitis, burns [19] and critical illness [15], we studied the effect of extracellular
calcium (CaE) on LA-induced cell injury [24,31]. We first tested the time dependence of incubating CaE
with LA on LA-induced LDH leakage. Preincubating a 20× stock of LA (2 mM) and calcium (20 mM)
before addition to acinar cells (final LA; 100 µM and calcium being 1 mM) time-dependently reduced
LA-induced injury (Figure 2A). We then tested different pathologically and therapeutically relevant
concentrations of CaE on LA-induced injury. A CaE of 2 mM significantly reduced LA-induced LDH
leakage vs. lower CaE concentrations (Figure 2B). Substitution of HEPES buffer for Ringer’s lactate did
not change the net LDH leakage induced by LA (47 ± 6%) compared with HEPES buffer (42 ± 2%), and
substitution of 10 mM lactate in place of pyruvate did not reduce the 100 µM LA-induced LDH leakage
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compared with control HEPES buffer containing glucose alone (Figure 2C). The 2 mM concentration of
CaE used is equivalent to 8 mg/dL calcium, and is thus clinically relevant [5]. Please note that buffers
traditionally used for acinar studies [29], like ours, contain anions like pyruvate (10 mM). Retaining this
concentration of pyruvate was however necessary to allow comparison with an equimolar concentration
of sodium lactate (Figure 2C).
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Figure 2. Extracellular calcium reduces LA-induced acinar cell injury in vitro. (A) Time course of the
effect of different durations of preincubating LA with calcium at 37 ◦C prior to exposure to primary
pancreatic acini, showing its impact on LDH release into the medium of the acini. (B) Extracellular
calcium dose-dependently reduces 100 µM LA-induced acinar LDH release over 4 h (red bars) without
affecting control cell viability (blue bars). (C) Supplementation with 10 mM sodium lactate had no
effect on either baseline cell viability or 100 µM LA-induced acinar cell injury. Effect of different doses
of extracellular calcium (0 mM red line, 1 mM green line, 2 mM purple line) on 100 µM LA-induced
intracellular calcium elevation (D) and mitochondrial depolarization (E). (F) Chelation of extracellular
calcium (1 mM) with EGTA (1 mM) to nominally absent levels increased LA-induced acinar cell injury
(dotted red line) at 2 and 4 h. (G): Extracellular calcium dose-dependently reduces 100 µM LA-induced
LDH release from HEK293 cells over 4 h (red bars) without affecting control cell viability (blue bars).
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Cytosolic calcium (Cai) and mitochondrial depolarization (ψm) were then studied using Fura-2
AM- and JC-1-loaded acini and exposing them to 100 µM LA, as described previously [25,31],
and comparing the effects of 0 mM (red), 1 mM (green), and 2 mM (purple) CaEs (Figure 2D,E).
The increase in Cai over baseline by LA (added at 2 min) is shown. The LA-induced Cai at 1 mM
was reduced significantly by 20–30% at 2 mM. The LA-induced ψm at 1 mM CaE was significantly
lower than of 0 mM CaE, and was further reduced by 2 mM CaE between 400 and 600 s. This was
consistent with chelation of CaE using ethylene glycol-bis (β-aminoethyl ether)-N,N,N′,N′-tetraacetic
acid (EGTA; 1 mM) increasing LA-induced LDH leakage (Figure 2F). EGTA has previously been shown
to increase LA-induced Cai [24]. These findings that CaE reduces lipotoxic injury were confirmed in
the kidney cell line HEK293 (Figure 2G), which has been previously used to model renal injury in
severe pancreatitis [36]. CaE dose-dependently neutralized the toxicity of LA (Figure 2G) in these,
similar to pancreatic acini (Figure 2B). We next went on to study if CaE’s protective effect was unique
to lipotoxic injury.

3.4. Physiologically Relevant Extracellular Calcium Concentrations Do Not Affect Caerulein-Induced Injury

We first compared the effects of increasing the CaE from 1 to 2 mM on cell injury induced by
supraphysiologic (100 nM) caerulein in vitro. This simulates a milieu of pancreatitis for pancreatic
acini. The 100 nM Caerulein-induced increase in Cai (Figure 3A) and LDH leakage (Figure 3C)
was unaffected by increasing CaE from 1 to 2 mM. We could not detect any change in ψm over
baseline induced by caerulein (Figure 3B). In contrast to CaE, chelation of intracellular calcium with
1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis-acetoxymethyl ester (BAPTA-AM;
50 µM) or antagonizing ryanodine receptors with dantrolene prevented caerulein-induced acinar injury
(Figure 3D), as shown previously [37].
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Figure 3. Effect of altering calcium on caerulein-induced (A–D), and changing Cai on LA-induced
(E–H) acinar cell injury. (A) Extracellular calcium (1, 2 mM) had no effect on intracellular calcium peak
and plateau levels induced by 100 nM caerulein and (B) did not modulate the lack of mitochondrial
depolarization with caerulein treatment. (C) Extracellular calcium did not reduce caerulein-induced
acinar cell injury, while (D) intracellular calcium chelation with BAPTA-AM (50 µM) or ryanodine
receptor antagonization with dantrolene (100 µM) caused caerulein-induced injury to be nonsignificant
versus control. (E) BAPTA-AM (50µM), (F) Dantrolene (100µM), and (G) thapsigargin (1µM) all reduced
intracellular calcium elevation after 100 µM LA treatment, while BAPTA-AM (E’) partially limiting
mitochondrial depolarization Dantrolene (F’) and thapsigargin (G’) had no effect on mitochondrial
depolarization. (H): Despite effects on calcium elevation, BAPTA-AM, Dantrolene, and Thapsigargin
did not significantly affect LA-induced injury in acinar cells, as measured by LDH release.
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3.5. Antagonizing Intracellular Calcium Increase Has Little or No Effect on La-Induced Acinar Injury

Since antagonizing Cai increase prevented 100 nM caerulein-induced acinar injury, we went on to
study whether this was relevant to LA-induced injury. For these studies, the acini were preincubated
with BAPTA-AM (50 µM), Dantrolene (50 µM), or Thapsigargin (1 µM) for 10 min before the addition
of LA. All three agents significantly reduced the Cai increase induced by LA (Figure 3E–G) by a
large extent. BAPTA-AM had a small effect on the LA-induced ψm (Figure 3E’–G’), while the other
agents had no effect. Interestingly none of the agents reduced LA-induced LDH leakage over 4 h
significantly (Figure 3H). It is to be noted that the small protective effect of BAPTA-AM shown
previously [24] did not reach statistical significance in the current study. Therefore, overall, unlike the
100 nM caerulein-induced injury mediated by the increase in Cai, that induced by LA in acini is largely
independent of this increase of Cai. Overall, these studies show that CaE protects by by electrostatically
interacting with LA, reducing its signaling in acini and consequent injury.

3.6. Therapeutic Extracellular Supplementation Binds Fatty Acids Generated During Severe AP

We next compared the in vivo efficacy of lactate and calcium during pancreatitis associated with
organ failure, thus replicating severe pancreatitis in humans. The caerulein model in ob/ob mice (average
54.2 ± 1.5 gm), which causes organ failure in mice [23], was chosen. Caerulein (50 mcg/kg/h; CER) was
delivered for 72 h as described in methods. We confirmed pancreatitis induction by verifying serum
lipase (Figure 4A) to be 4–5 times above the control values 6 h after initiating pancreatitis. After this,
we started Q8 hourly intraperitoneal administration of 1 mL of either 10 mM calcium chloride or 30 mM
sodium lactate, both of which were in normal saline pH 7.4. The volume of these (55 mL/kg/24 h) is
in the range used for IV fluid resuscitation in humans during severe pancreatitis [38,39]. This was
designed as a survival study to retain its relevance to severe human pancreatitis, in which organ failure
can occur late in the disease.

Administration of calcium, but not lactate, caused calcium deposition in the necrosed visceral fat
of mice with pancreatitis given calcium (Figure 4B, CER + calcium, black arrows). Calcium soaps and
noncovalent forms of calcium have been noted in pancreatic fat necrosis for over a hundred years [28,40].
On quantitative morphometry, calcium treatment reduced peri-fat acinar necrosis (PFAN), which is
the necrosed acinar area adjacent to fat necrosis (3.0% ± 1.5% vs. 6.5% ± 2.2% in the lactate-treated
group, p < 0.004; Figure 4C). Lactate itself did not influence the PFAN vs. caerulein alone (6.2% ±
0.9%), as previously shown [23]. Morphologically, calcium soaps were seen as von-Kossa-positive
areas in the fat that stained intensely black for calcium in the animals given calcium (CER + Calcium,
Figure 4D) during pancreatitis compared with those given lactate (CER + lactate, Figure 4D). Calcium or
its salts stain black on von-Kossa staining. In adipose tissue, this signifies saponification, that is,
covalent binding of calcium to the NEFA [41] generated by lipolysis of adipose triglyceride [24,27].
This saponification is not washed out by the organic solvents used in processing tissue for histology [42].
In mice administered calcium, this binding with calcium was seen as a clear black line adjacent to
the fat necrosis (black arrows in CER + Calcium, in Figure 4D) which limited the PFAN. Such a
demarcation was not seen in the lactate-treated group (Cer + lactate, Figure 4D von-Kossa), where we
noted an extension of the PFAN deeper into the pancreatic parenchyma (black polygon in H&E of CER
+ Lactate, Figure 4D). Despite PFAN reduction in the calcium-treated group, there was no reduction
in overall necrosis (13.0% ± 4.5% vs. 9.9% ± 2.7% p = 0.12), perhaps due to improved survival in
the calcium-treated group (Figure 5A) causing a longer exposure to caerulein, as noted in the next
section. This prolonged caerulein exposure caused acinar ductal metaplasia [43] in the calcium-treated
group, seen as large luminal areas surrounded by flattened cells (asterisks in H&E of CER + calcium
group, Figure 4D). This lack of reduced overall necrosis (despite the improvement in PFAN) in the
calcium-treated group is consistent with CaE not affecting responses to supraphysiologic caerulein
in vitro (Figure 3A,C). We next went on to analyze the effect of CaE on organ failure and pancreatitis
severity parameters.
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Figure 4. Comparison of the therapeutic calcium and lactate on fat necrosis during severe experimental
pancreatitis: (A) serum lipase levels as measured under basal (Bas) conditions before induction of
pancreatitis and after 6 h of pancreatitis (6 H), following which either Sodium lactate or Calcium
chloride were given intraperitoneally, as described in the methods section. (B) Gross appearance of the
peritoneal cavity at necropsy of mice with caerulein pancreatitis alone (CER), caerulein pancreatitis
treated with sodium lactate (CER + lactate), or caerulein pancreatitis treated with calcium chloride
(CER + calcium). Note the much larger extent of white- colored saponification of fat necrosis in the
calcium-treated group (black arrows). (C) Box plots comparing the extent of peri-fat acinar necrosis (%
PFAN) measured as a percentage of total pancreatic parenchymal area in the CER + lactate (CER +

Lac)- and CER + calclium (CER + Ca)-treated groups. * indicates a p < 0.05. (D) Histologic images
of the pancreas and adjacent fat necrosis stained with hematoxylin and eosin (H&E), and von-Kossa
for calcium, in the CER + lactate and CER + calcium groups. To the right are zoomed-in images of
the inset boxes highlighting the peri-fat acinar necrosis adjacent to the fat necrosis. The scale bar is
200 µm. Fat necrosis resulting in binding of calcium to the NEFA generated is seen as the pinkish stain
in adipose tissue on H&E. Note the higher intensity of this in the CER + calcium group using both types
of staining, especially von-Kossa, which extends into the parenchyma as a sharply demarcated line
(black arrows). The peri-fat acinar necrosis is seen as loss of acinar cell outline and diffuse pale pinkish
appearance of acini replacing the normal intensely pink zymogen and blue-colored basal cytoplasm.
In the CER + calcium group, which survive longer, the prolonged caerulein stimulation results in acinar
ductal metaplasia-like appearance with large central lumens replacing the zymogen (shown as *).

3.7. Therapeutic Extracellular Calcium Supplementation Prevents Hypocalcemia, and Transiently Reduces the
Increase in Serum Non-Esterified Fatty Acids and Organ Failure

Caerulein AP resulted in a median survival of 48 h (black line, Figure 5A). This was significantly
improved to 80 h in the calcium-treated group (green line), unlike the lactate-treated group (median
survival 30 h, red line). Severe pancreatitis induced hypocalcemia similar to Ranson’s [5] and Glasgow
criteria [6] (red line, Figure 5B). This was prevented in the group administered calcium. There was a
large increase in serum nonesterified fatty acids (NEFA) on the second day of pancreatitis, which was
significantly reduced in the calcium-treated group (shown as * in Figure 5C). This is consistent with
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CaE-binding NEFA generated in the peritoneal cavity during fat necrosis (Figure 4B,D). NEFA levels,
however, subsequently increased over baseline (shown as # in Figure 5C), which is consistent with
progression of fat necrosis over the 3 day course of pancreatitis, and the weak electrostatic interaction
between calcium and NEFA, only a small part of which are covalently bound [28]. Similar to human
studies [8,9], there was a significant increase in serum CRP noted on day 1, which was prevented by
calcium (Figure 5D). Both renal injury (Figure 5E) and shock (Figure 5F) were significantly prevented
till day 2 by calcium treatment. However, consistent with the later increase in NEFA, both of these
worsened over the subsequent days. There was neither early nor late improvement in the serum
IL-6 or TNF-α increase by any intervention (Figure 5G,H). Overall, these results show that calcium
supplementation alone can replicate the early benefits noted with Ringer’s Lactate administration in
clinical trials of AP.
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Figure 5. Effect of no treatment (black), calcium (green), or lactate treatment (red) on parameters
of systemic injury and inflammation: (A) Kaplan–Meyer survival curve of the various groups with
pancreatitis * indicates a p < 0.05 in the CER + calcium (CER + Ca2+)-treated group vs. other groups.
(B) serum calcium and (C) Serum NEFA, as measured at each day of pancreatitis. * indicates a p < 0.05 in
the CER + calcium treated groups vs. other groups on ANOVA. # indicates a significant difference from
baseline (day 0). (D) Blood C-reactive protein (CRP) after 24 h of pancreatitis. * indicates a significant
increase in the group on ANOVA vs. control mice without pancreatitis. (E) Blood urea nitrogen (BUN)
and (F) Carotid artery pulse distention (pulse dist.), as measured on each day of pancreatitis. * indicates
a p < 0.05 in the cer + calcium-treated groups vs. other groups on ANOVA. Interleukin 6 (IL-6) (G) and
tumor necrosis factor (TNF-α) (H) blood levels, one day after pancreatitis initiation (each title followed
by 24), and on the post-mortem blood samples. * indicates a significant increase on ANOVA for that
time point vs. control.

3.8. Meta-Analysis of RCTs Comparing Normal Saline (Ns) Show a Reduction In Pancreatic Necrosis, but No
Improvement in Long-Term Outcomes

The previous meta-analysis by Iqbal et al. [10] showed no improvement in mortality with RL vs.
NS. Based on the three randomized controlled trials comparing the use of RL to NS in acute pancreatitis



J. Clin. Med. 2020, 9, 263 12 of 18

(Figure 6), we found that pancreatic necrosis was significantly reduced in the RL group with an Odd’s
ration of 0.28 (CI = 95%, 0.09–0.92) (Figure 6B). ICU admission rate was not statistically different
between the two groups. Three studies assessed the incidence of organ failure (OF). Choosakul et al.
reported early OF within 48 h of treatment. A study by dDe Madaria et al. reported persistent OF,
and Wu et al. reported organ failure without specification of timing. Overall, OF was not statistically
different between the groups. Interestingly, the saline treatment arms had a higher number of patients
(22 ± 2 vs. 20 ± 2, p = 0.0377) and a higher proportion of males (64 ± 10% vs. 46 ± 5%, p = 0.049) vs. the
RL arms when accounted for in all trials (Figure 6A). This is important since some studies have shown
males to be at a higher risk of severe acute pancreatitis [44–47], which may have contributed to the
improved trends noted with RL. The meta-analysis’s findings of reduced pancreatic necrosis with RL
correlate with the protection provided by extracellular calcium from fatty acid-induced acinar necrosis
in vitro (Figure 2) and peri-fat acinar necrosis in vivo (Figure 4C,D). This pathophysiology is further
supported by fat necrosis being a part of approximately 95% cases of pancreatic necrosis [48], and fat
necrosis preceding pancreatic necrosis during human severe pancreatitis, based on observations [49]
made during the era of early surgical intervention.
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Figure 6. Meta-analysis of three randomized controlled trials comparing Ringer’s lactate to normal
saline. (A) Study characteristics of those included in the meta-analysis. RL: Ringer’s lactate. NS:
Normal Saline. AP: Acute pancreatitis. AVG: Average. SD: Standard deviation. NS: Not significant.
(B) Outcomes of acute pancreatitis after hydration with Ringer’s lactate vs. normal saline. AP: Acute
pancreatitis. RL: Ringer’s lactate NS: Normal Saline.
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4. Discussion

Ringer’s lactate is widely used for resuscitative therapy during critical illnesses such as severe
acute pancreatitis. Such illnesses are commonly associated with acute hypocalcemia [3–6]. In this
study, we note that this hypocalcemia occurs due to NEFA like linoleic acid interacting with calcium
(Figure 1). We note this as an ionic interaction, and previous studies have shown that a small part of
this calcium is saponified [28,40], which we observe as von-Kossa-positive areas on histology (Figure 4).
The extracellular calcium (CaE) provided by Ringer’s lactate thus reduces lipotoxic injury and improves
early severity. These conclusions are based on mechanistic in vitro and in vivo studies comparing
the effects of pH-adjusted solutions of lactate or calcium administered during severe pancreatitis.
Calcium improved peri-fat acinar necrosis, BUN, CRP, and shock (Figure 5D–F) early on in the disease.
This is similar to the improvements in SIRS, CRP, and pancreatic necrosis noted with Ringer’s lactate in
two meta-analysis (ours and by Iqbal et al. [10]). Thus, the benefits noted with Ringer’s lactate [7–10]
in patients with severe pancreatitis are likely due to the calcium it contains, which binds NEFA like LA
with an ionic interaction and also covalently; the relative contributions of which remain unknown.

While we note improved organ failure and survival at the 48 h time point in the calcium-treated
group (Figure 5A,E,F), the survival study design helped us realize that this was an early and transient
improvement, as is noted in human severe AP treated with RL [7–9]. The early improvement in CRP is
consistent with it being a protein released from the liver, and also by adipocytes [50,51], which generate
NEFA during pancreatitis [24,27]. Such increases in CRP may be uniquely regulated in mice by IL-1
and not IL-6 [52]. Interestingly, lipotoxic severe pancreatitis is associated with increased IL-1β levels
in both the necrotic collections and serum [24]. Thus, while the regulatory mechanisms affecting
CRP levels are complex, this early reduction parallels the previous clinical studies [7–10], and the
lower NEFA we note initially in the calcium-treated group. The early improvement in carotid pulse
distention (Figure 5F) signifies improved blood pressure, and is also consistent with improvement of
the SIRS, which was noted in patients given RL [7–10]. The reason underlying lack of improvement
in IL-6 and TNF-α (Figure 5G,H) remains unclear, and could be due to macrophage activation being
unaffected by calcium or lactate in vivo, despite lactate interfering with the TLR4-mediated effects [11],
including preventing NF-κB activation [7], in these cell in vitro. Overall, it seems that since the main
interaction of NEFA with calcium is ionic (Figure 1A–C), and covalent binding of calcium to NEFA is a
small part [28]; the continuous NEFA generation during severe pancreatitis overrides the protective
effects of calcium by day 3 (Figure 5), and the initial protection is not sustained.

The seminal study by Wu et al., which showed RL improves CRP and SIRS in AP,
hypothesized avoidance of saline-induced hypercholoremic acidosis to be the main mechanism
by which RL improves outcomes. This acidosis-based hypothesis was supported in their study by a
smaller drop in serum bicarbonate in the RL group, and an inverse relationship between the serum
bicarbonate levels and serum CRP. A higher bicarbonate in the RL group was also noted in the study by
de-Madaria et al. [7], though there was no significant difference in the CRP or blood pH in subjects who
received saline. In their study, saline and Ringer’s lactate caused a similar drop in pH of the culture
medium to which these were added [7]. Based on these, we chose the vehicle for calcium or lactate to
be saline with a final pH of 7.4, which is neither influenced by the ambient CO2, nor the respiratory or
metabolic status of the organism. This vehicle bypassed the problem of a bicarbonate-based buffer being
affected by respiratory, metabolic, or renal status during pancreatitis, and also that of a phosphate buffer
reacting with and neutralizing the administered calcium before it reacted with NEFA. Our approach of
using saline (pH 7.4) as a vehicle thus made the study agnostic to the pH in vivo, and is in agreement
with a recent meta-analysis covering studies with >20,000 critically ill patients, which concluded that
buffered solutions do not provide any survival benefit over normal saline [14].

The volume of saline or RL used in previous clinical trials when normalized to volume/kg/day
has been 24–30 mL/kg/day to as high as 72 mL/Kg/day [7–9]. We chose a rate in between these
values (55 mL/kg/day), since there is no consensus about the exact volume that should be used.
This would be ≈ 3.8 L for a 70 Kg person, who would typically have a plasma volume of 2.8–3.2 L
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(https://www.mdcalc.com/blood-volume-calculation). Therefore, the amount of calcium in RL (Ca
concentration 1.5 mM) could help in replacing calcium lost to binding with NEFA. For example,
this volume could restore a Sr. Ca of 5 mg/dL (1.3 mM) to ≈10 mg/dL (2.5 mM) in a day in the absence of
ongoing consumption by NEFA. The benefits of this are likely to be distinct from those of intravascular
volume replacement, which is recommended in clinical guidelines. The intraperitoneal route we chose
has pros and cons. The pros are (1) the agent is directly delivered to peritoneal fat necrosis to neutralize
the fatty acids at source. This is based on human studies showing fat necrosis to be an early event in
pancreatitis [49] and the mechanism of action we hypothesized in Figure 1. (2) This targeted delivery
is not dependent on ischemia/perfusion state of the peritoneal fat, which could be influenced by the
shock these mice develop (Figure 5F). (3) The delivery is effective in restoring serum calcium levels to
normal values (Figure 5B). The cons are (1) we do not use this route in humans. (2) The calcium bound
in saponification on the surface NEFA may block access of subsequent doses of calcium to the deeper
layers of fat necrosis and NEFA formation. This may perhaps explain the later rise of serum NEFA
(Day 3, 4 on Figure 5C), resulting in lack of sustained benefits from the administered calcium.

The designs of our in vitro and in vivo studies build on previous clinical studies showing
unsaturated NEFAs, such as linoleic acid, to be increased in critical illnesses [15–19], the sera [20,21],
and pancreatic collections [22,24,35] of patients with severe AP. In vitro, we note an energetically
favorable interaction between linoleic acid and calcium but not lactate. The 1:8 stoichiometry of
calcium and linoleic acid (Figure 1) suggests a weak noncovalent ionic interaction, which is supported
by longer incubation periods with calcium progressively increasing protection of cells from lipotoxic
injury (Figure 2A). This is also supported by an inverse relation between CaE concentrations and
lipotoxic cell injury (Figure 2B,D,E,G) in acinar and HEK293 cells representing two organs injured
in pancreatitis, that is, pancreas and kidney. Notably, calcium improved both BUN and peri-fat
acinar necrosis during severe pancreatitis. Conversely, chelating CaE worsened this injury (Figure 2F),
which is uninfluenced by the addition of lactate (Figure 2C). While we do not provide direct evidence
of calcium supplementation increasing ionized calcium in the serum, it is logical that this contributed
to the benefits of calcium supplementation, since the ionized pool of calcium reacts in the interaction
we note, resulting in the beneficial effects of CaE.

The protection CaE provides has two clinically relevant unique aspects: (1) this protection is
specifically from lipotoxicity, (2) the protection is not clearly linked to intracellular calcium (Cai) levels.
The first point is highlighted by physiologically relevant CaE concentrations influencing lipotoxic-
but not caerulein-induced injury (Figures 2 and 3A,C). In vivo this translates to extracellular calcium
not reducing acinar necrosis during caerulein pancreatitis despite reducing peri-fat acinar necrosis
(Figure 4C,D). This is likely because the improved survival prolongs the caerulein exposure and
resulting pancreatic necrosis, bringing the overall necrosis equivalent to the other groups, which have
a shorter survival. In humans, this scenario may parallel an impacted gallstone causing persistent
obstruction and cholangitis, resulting in sepsis from bacterial toxins, unresponsive to CaE or Ringer’s
lactate. The second point is that CaE reacts with and reduces biological responses to linoleic acid
(Figure 2D,E), including the increase in Cai (Figure 2D). However, inhibition of the linoleic acid-induced
Cai increase by BAPTA, dantrolene, and thapsigargin (Figure 3E–G) does not translate to reduced
cell injury (Figure 3H). This pattern is again unlike caerulein-induced injury, which is amelioratedby
BAPTA-AM and dantrolene (Figure 3D), which reduce Cai [53]. Interestingly, all three agents that
reduced linoleic acid-induced Cai had little or no effect on the ψm (Figure 3E’–G’), suggesting an
independence of these two phenomena. This also supports the benefits of targeting CaE over Cai in
reducing lipotoxic injury during human severe pancreatitis [21,27,54–56]. It is to be noted that calcium
concentrations >1 mM do not inhibit lipolysis [57]. Thus, the protective effect of calcium is independent
of it inhibiting lipolysis, and is mediated by its binding the NEFA generated from lipolysis.
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In summary, we note that NEFA may cause acute hypocalcemia in critical illnesses, and extracellular
calcium supplementation by Ringer’s lactate may contribute to the early clinical improvement in
systemic inflammatory response and C-reactive protein noted during severe acute pancreatitis.
This protection occurs via calcium reacting ionically with the fatty acids generated during pancreatitis,
andtheir saponification. In future studies, it may be beneficial to compare the serum calcium levels in
patients given calcium supplementation or Ringer’s lactate versus other solutions. Whether calcium
supplementation or Ringer’s lactate can realistically provide any more than a short-lived early
improvement in systemic inflammation and injury remains to be assessed in larger-scale human studies.
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