
1

Edited by: 
David E. MacHugh, 

University College Dublin, Ireland

Reviewed by: 
James Reecy, 

Iowa State University, 
United States  

Kieran G. Meade, 
The Irish Agriculture and Food 
Development Authority, Ireland

*Correspondence: 
 Christa Kühn  

kuehn@fbn-dummerstorf.de

Specialty section: 
This article was submitted to 

 Livestock Genomics, 
 a section of the journal 

 Frontiers in Genetics

Received: 25 June 2019
Accepted: 17 October 2019

Published: 22 November 2019

Citation: 
Nolte W, Weikard R, Brunner RM, 

Albrecht E, Hammon HM, 
Reverter A and Kühn C (2019) 

Biological Network Approach for 
the Identification of Regulatory Long 
Non-Coding RNAs Associated With 

Metabolic Efficiency in Cattle. 
 Front. Genet. 10:1130. 

 doi: 10.3389/fgene.2019.01130

Biological Network Approach for the 
Identification of Regulatory Long 
Non-Coding RNAs Associated With 
Metabolic Efficiency in Cattle
Wietje Nolte 1, Rosemarie Weikard 1, Ronald M. Brunner 1, Elke Albrecht 2, 
Harald M. Hammon 3, Antonio Reverter 4 and Christa Kühn 1,5*

1 Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany, 2 Institute of Muscle 
Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany, 3 Institute of Nutritional 
Physiology “Oskar Kellner,” Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany, 4 Commonwealth 
Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Queensland Bioscience Precinct, St Lucia, 
QLD, Australia, 5 Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany

Background: Genomic regions associated with divergent livestock feed efficiency have 
been found predominantly outside protein coding sequences. Long non-coding RNAs 
(lncRNA) can modulate chromatin accessibility, gene expression and act as important 
metabolic regulators in mammals. By integrating phenotypic, transcriptomic, and 
metabolomic data with quantitative trait locus data in prioritizing co-expression network 
analyses, we aimed to identify and functionally characterize lncRNAs with a potential key 
regulatory role in metabolic efficiency in cattle.

Materials and Methods: Crossbred animals (n = 48) of a Charolais x Holstein F2-population 
were allocated to groups of high or low metabolic efficiency based on residual feed intake in 
bulls, energy corrected milk in cows and intramuscular fat content in both genders. Tissue 
samples from jejunum, liver, skeletal muscle and rumen were subjected to global transcriptomic 
analysis via stranded total RNA sequencing (RNAseq) and blood plasma samples were used 
for profiling of 640 metabolites. To identify lncRNAs within the indicated tissues, a project-
specific transcriptome annotation was established. Subsequently, novel transcripts were 
categorized for potential lncRNA status, yielding a total of 7,646 predicted lncRNA transcripts 
belonging to 3,287 loci. A regulatory impact factor approach highlighted 92, 55, 35, and 
73 lncRNAs in jejunum, liver, muscle, and rumen, respectively. Their ensuing high regulatory 
impact factor scores indicated a potential regulatory key function in a gene set comprising loci 
displaying differential expression, tissue specificity and loci overlapping with quantitative trait 
locus regions for residual feed intake or milk production. These were subjected to a partial 
correlation and information theory analysis with the prioritized gene set.

Results and Conclusions: Independent, significant and group-specific correlations 
(|r| > 0.8) were used to build a network for the high and the low metabolic efficiency group 
resulting in 1,522 and 1,732 nodes, respectively. Eight lncRNAs displayed a particularly 
high connectivity (>100 nodes). Metabolites and genes from the partial correlation and 
information theory networks, which each correlated significantly with the respective 
lncRNA, were included in an enrichment analysis indicating distinct affected pathways 
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INTRODUCTION
In recent years the focus of livestock production and farming 
has shifted in developed countries towards a stronger emphasis 
on resource efficiency and sustainability (Thornton, 2010). In 
cattle, energy metabolism, nutrient conversion and efficient use 
of primary resources are of increasing economic and ecological 
importance to breeders and consumers. Genomic selection 
and the use of biomarkers greatly facilitate the improvement of 
complex phenotypes, e.g. feed efficiency, which remain cost- and 
time-consuming to measure (Kenny et al., 2018).

Some pivotal gene mutations are known in major livestock 
production traits, e.g. a meta-analysis on stature in cattle identified 
PLAG1 as a major regulator and pointed towards putative causal 
mutations (Bouwman et al., 2018). In pigs, the scavenger receptor 
cysteine-rich domain 5 in gene CD163, when not being translated, 
led to resistance to porcine reproductive and respiratory syndrome 
virus 1 infection (Burkard et al., 2018). Pigs that did not express 
the receptor protein were susceptible to the infection. For the 
region between LCORL and NCAPG, which has been associated 
with growth or feed efficiency in a number of species (cattle, horse, 
human), multiple mappings have narrowed down the region of 
interest but the causal mutation remains unknown (Widmann 
et al., 2015; Bouwman et al., 2018). A large part of the variation 
in traits like feed efficiency, growth and carcass traits remains still 
unexplained (Hardie et al., 2017; Medeiros de Oliveira Silva et al., 
2017; Seabury et al., 2017) and genome-wide association studies 
repeatedly pointed towards quantitative trait loci (QTL) outside 
protein-coding genes (Ibeagha-Awemu et al., 2016; Seabury et al., 
2017; Higgins et al., 2018).

Due to their gene expression regulatory potential, long non-
coding RNAs (lncRNAs) have emerged as potential key regulators 
for diverse biological processes, such as X-chromosomal 
inactivation and dosage compensation (Brown et al., 1992; 
Clemson et al., 1996), vernalization/ flowering in plants (Csorba 
et al., 2014), as well as human cancer biology as reviewed by 
Serviss et al. (2014).

Recently, lncRNAs have been suggested as therapeutic 
targets for diabetes and other metabolic diseases because of 
their involvement in lipid metabolism, adipogenesis and fat 
deposition (Chen et al., 2018a; Liu et al., 2018; Zeng et al., 2018). 
In mammals, lncRNAs were further identified as key regulators 
of energy metabolism and lipogenesis (Yang et al., 2016). In 
adipocytes, these genomic elements also play an integral part 
in the insulin-signaling pathway (Degirmenci et al., 2019). A 
central regulatory role of lncRNAs was furthermore observed 
in skeletal muscle in myogenesis and muscle cell differentiation: 

SYISL has been shown to regulate myoblast proliferation and 
fusion and acts in an inhibitory way in myogenic differentiation 
(Jin et al., 2018), Irm enhances myogenic differentiation 
during myogenesis through the binding to MEF2D (Sui et  al., 
2019), and lnc-mg overexpression has directly been linked 
to muscle hypertrophy in mice, whereas a knock-out led to 
dystrophy (Zhu et al., 2017). It is likely that lncRNAs contribute 
significantly to economically important production traits and 
divergent phenotypes in livestock as well. Since they show 
little sequence conservation across species and their expression 
appears to be mainly species specific and spatiotemporal 
(Ulitsky et al., 2011; Ulitsky and Bartel, 2013), knowledge 
transfer remains a challenging issue. The identification and 
functional characterization of lncRNAs needs to be performed 
for each species, and this fits into one of the major goals of the 
consortium for the Functional Annotation of Animal Genomes 
(FAANG, https://www.animalgenome.org/community/FAANG/)
that strives to identify and annotate functionally relevant elements 
in livestock genomes.

Another key feature of lncRNAs is their low expression level 
compared to protein-coding genes (Derrien et al., 2012), which 
makes their detection challenging. From transcription factors 
it is known, that little changes in abundance can however have 
tremendous consequences if these have high regulatory potential 
in terms of gene expression (Vaquerizas et al., 2009) and we 
postulated an analogous phenomenon for lncRNAs. For instance, 
the knockout of the lowly expressed lncRNA ßlinc in mice impaired 
the correct formation of pancreatic islets and severely changed the 
glucose homeostasis in adult animals (Arnes et al., 2016). A low and 
tightly regulated gene expression has implications for differential 
expression (DE) analyses, because little changes in expression are 
often not recognized as significant due to lack of power in standard 
experimental designs. Therefore, other approaches are necessary 
when aiming to identify and functionally annotate key regulatory 
lncRNAs. A tested and proven method in the screening for critical 
transcription factors from gene expression data, which are typically 
low in abundance but have high regulatory power as reviewed by 
Vaquerizas et al. (2009), is network co-expression analysis that 
incorporates the regulatory impact factor (RIF) metrics and a 
partial correlation and information theory (PCIT) (Reverter et al., 
2010; Perez-Montarelo et al., 2012). This approach has previously 
also led to the identification of regulatory elements associated 
with puberty (Canovas et al., 2014; Nguyen et al., 2018) and feed 
efficiency in cattle (Alexandre et al., 2019). We assumed that this 
rational network approach could also be used as a hypothetical 
generation tool for the systematic detection of lncRNAs with 
important regulatory potential.

for the eight lncRNAs. LncRNAs associated with metabolic efficiency were classified to 
be functionally involved in hepatic amino acid metabolism and protein synthesis and in 
calcium signaling and neuronal nitric oxide synthase signaling in skeletal muscle cells.

Keywords: Bos taurus, metabolic efficiency, co-expression network analysis, long non-coding RNA, Functional 
Annotation of Animal genomes
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In this study, we took advantage of a unique F2 cross-population 
of meat and dairy cattle breeds (Charolais x Holstein) (Kühn 
et al., 2002) that has been deeply phenotyped and genotyped.

Earlier studies have shown that in this cross population a gene 
variant of the NCAPG gene is associated with fetal and pubertal 
growth (Eberlein et al., 2009; Weikard et al., 2010). By integrating 
quantitative metabolite data with genotype information, this 
NCAPG genotype was found to be associated with plasma 
arginine levels (Weikard et al., 2010). A systems biology 
approach, which combined metabolome data, growth-associated 
phenotypic and genetic information, revealed a functional gene 
interaction network characterizing the intensive growth phase 
at the beginning of the pubertal growth interval (Widmann 
et al., 2013). Potential interaction partners of the NCAPG gene 
were predicted and the functional role of the NCAPG gene as 
a growth regulator linked to the arginine NO metabolism was 
concluded. A combined phenotype–metabolome–genome 
analysis was also used to identify genetic switches of associated 
molecular signaling pathways linked to variance in efficiency of 
feed conversion (Widmann et al., 2015).

This current study on the regulatory role of lncRNAs for 
metabolic efficiency was aimed to contribute to a more detailed 
elucidation of the molecular background of this complex 
physiological trait and help to characterize divergent metabolic 
types with respect to nutrient partitioning. Therefore, phenotypic 
information, transcriptomic data from four metabolically relevant 
tissues and QTL information were used to establish a prioritized 
gene set that was submitted to the combinational RIF metrics and 
subsequently to the PCIT algorithm for co-expression network 
creation. The integration of metabolomic profiles through 
correlation with transcriptomic data added valuable information 
for the interpretation of biological functions.

MATERIALs AND METhODs

Design of the study
For this study, we made use of 48 animals (24 bulls, 24 cows) of a 
F2-population [SEGFAM (Kühn et al., 2002)] from a Charolais × 
Holstein cross. The cross population was bred at the Leibniz 
Institute for Farm Animal Biology in Dummerstorf (Germany) 
and kept under standardized housing and feeding conditions as 
previously described (Eberlein et al., 2009; Weikard et al., 2010; 
Widmann et al., 2011). Males were slaughtered at 18 months 
of age and females were slaughtered after their second parity 

at 30 days postpartum. Based on residual feed intake (RFI) in 
bulls and energy corrected milk yield (ECMw) in cows as well as 
intramuscular fat content (IMF) of M. longissimus dorsi in both 
genders, animals were assigned to either of the two groups: high 
or low metabolic efficiency (Table 1). In this study we defined 
high metabolic efficiency in cattle as the preference to accrete or 
secrete protein while receiving the same diet as their inefficient 
conspecifics, which were characterized by a clear tendency to 
accrete fat instead of protein. In European production systems, 
those animals are most sustainable and economically efficient 
producers, which build up protein mass (muscle) with little fat 
content or, in case of females, secrete high amounts of milk.

Cows were categorized as highly efficient if their milk yield 
within the 7 days prior to slaughter was above 140 kg energy 
correct milk (ECMw) and the carcass fat content (CFC) was less 
than the average CFC of all cows plus one standard deviation. In 
contrast, cows were classified as lowly efficient if their milk yield 
within the last week was between 14 and 40 kg ECMw and the 
CFC was above the average CFC of all cows minus one standard 
deviation. For all cows, the calving interval had to be less than 
540 days, the maximum age was 1,510 days and they had to be 
free of pathological findings with metabolic implications noted 
after slaughter. Cows that were categorized as highly efficient 
(high ECMw) on average had a lower CFC (mean 17.1%, SD 
2.7%) and lowly efficient cows (low ECMw) had a higher CFC 
(mean 25.9%, SD 3.6%) than the mean of the population (21.8%, 
SD 5.3%, n = 242). In addition, highly efficient cows had a lower 
IMF (mean 4.16%, SD 1.60%) and the lowly efficient cows had 
a higher IMF (mean 6.46%, SD 2.53%) than the mean of the 
population (5.21%, SD 2.21%, n = 242).

The individual milk volume yield per cow was measured on 
a daily basis and the milk composition was determined once 
per week. The trait included in cow selection for this study 
corresponded to the weekly ECM determined for the 7 days 
before slaughter (ECMw). The formula presented by Kirchgeßner 
(1997) was modified accordingly for the one week interval (F% = 
milk fat percentage, P% = milk protein percentage):

 
ECM F P MY dw = + + × −0 37 0 21 0 95

3 1
7.   % .   % .

.  

cows, the ECMw was used as a substitute feature for feed efficiency, 
because the facilities did not allow for RFI measurement in cows 
during the time of the experiment.

TABLE 1 | Sample characteristics.

Metabolic 
efficiency 
group

Number of 
animals

sex RFI1 in last month 
of life (bulls)

ECM2
w (cows) IMF3 (both sexes) CFC4 (both sexes)

µ5 (sD6) µ (sD) µ (sD) µ (sD)

high 25 12 males 13 females -21.30 (4.44) 190.87 (22.02) 3.46 (1.30) 15.93 (3.16)
Low 23 12 males 11 females 20.83 (4.41) 30.97 (9.18) 5.51 (2.34) 22.93 (4.88)

1RFI, residual feed intake; 2ECMw, energy corrected milk 7 days before slaughter; 3IMF, intramuscular fat content (given in percent, measured in M. longissimus dorsi); 
4CFC, carcass fat content; 5µ, mean; 6SD, standard deviation.
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For bulls, the decisive factor for animal selection was RFI 
calculated for the last month prior to slaughter. The RFI equals 
the animals' energy intake while considering the average daily 
gain and metabolic mid-weight (average body weight of months 
of life 17 to 18 raised to the power of 0.75) (Archer et al., 1997).

Bulls with a low RFI (at least 1 standard deviation below 
average) were assigned to the high metabolic efficiency group 
and bulls with a high RFI (at least one standard deviation above 
average) were assigned to the low metabolic efficiency group. 
In their last month of life, all bulls had to have a positive daily 
weight gain and no less than the population average minus one 
standard deviation. Bulls that were categorized as highly efficient 
(negative RFI) on average had a lower CFC (mean 14.2%, SD 
3.0%) and lowly efficient bulls (positive RFI) had a higher CFC 
(mean 20.2%, SD 4.4%) than the population mean (mean 16.5%, 
SD 4.0%, n = 246). Analogously to cows, highly efficient bulls had 
a lower IMF (mean 1.71%, SD 1.00%) and the lowly efficient bulls 
had a higher IMF (mean 4.64%, SD 1.84%) than the population 
mean (mean 3.67%, SD 1.76%, n = 246).

Plasma Metabolic Profiles
Blood samples were collected from all individuals (n = 
48) at slaughter. Plasma samples were sent to Metabolon 
Inc. (Durham/NC, USA) for the establishment of holistic 
metabolite profiles that included 640 biochemical compounds 
and molecules. Metabolites with more than five animals with 
missing data were excluded. After this filtering step, 490 
metabolites remained and missing values were imputed with 
the minimum measurement, assuming that missing values were 
due to concentrations below the detection limit. Values were 
then scaled without centering for each metabolite in R (Core 
Team 2018) with the scale-function.

All experimental procedures were carried out according 
to the German animal care guidelines and were approved and 
supervised by the relevant authorities of the State Mecklenburg-
Vorpommern, Germany (State Office for Agriculture, Food 
Safety and Fishery; LALLF M-V/TSD/7221.3-2.1-010/03).

sampling, RNA Isolation, Library 
Preparation, and sequencing
Tissue samples were collected from jejunum mucosa, liver (Lobus 
caudatus), skeletal muscle (M. longissimus dorsi), and rumen 
(Saccus ventralis, papillary base) directly after slaughtering and 
dissection, shock frozen in liquid nitrogen and subsequently 
stored at -80°C.

For RNA extraction from muscle and rumen, frozen samples 
(100 mg) were treated with 1 ml TRIzol reagent (Invitrogen, 
Darmstadt, Germany) and subjected to the Precellys-24 
homogenizer (5,500 rpm, 2 × 15 s, lysing kit containing 1.4 mm 
ceramic beads). For RNA extraction from liver and jejunum, 
frozen tissue samples were grinded in liquid nitrogen and 30 
mg were used for further purification steps. No TRIzol was used 
for liver and jejunum samples. All samples were then subjected 
to an on-column-purification step with the NucleoSpin RNA II 
kit (Macherey & Nagel, Düren, Germany) including a DNase 
digestion to remove genomic DNA. In addition, the RNA was 

tested for remaining traces of DNA contamination and, in case of 
remaining DNA residues, further cleansed according to Weikard 
et al. (2012).

The RNA concentration and integrity were measured 
with a Qubit Fluorometer (Invitrogen, Germany) and a 2100 
Bioanalyzer Instrument (Agilent Technologies, Germany). 
Stranded, ribodepleted and indexed libraries were prepared from 
1 µg total RNA using the TruSeq Stranded Total RNA Ribo-Zero 
H/M/R Gold Kit (Illumina, San Diego, USA) and subjected to 
paired-end sequencing (2 × 100 bp) in a multiplexed design on a 
HiSeq 2500 Sequencing System (Illumina).

Alignment and Assembly
After quality control of raw sequencing reads with FastQC 
(Andrew, 2010), adapter and quality trimming were performed 
with Cutadapt v. 1.16 (Martin, 2011) and Quality Trim v. 1.6.0 
(Robinson, 2015), respectively. In Quality Trim the start of 
sequences was also trimmed (option -s) and the maximum 
number of N bases was set to 3, while the minimum base quality 
was set to 15. Reads were then mapped in a guided alignment 
with HISAT2 v.2.1.0 (Kim et al., 2015) to the bovine reference 
genome UMD.3.1 [Ensembl annotation release 92 (Frankish 
et al., 2017)]. After sorting and indexing of BAM files with 
samtools v.1.6 (Li et al., 2009), samples were individually 
assembled with Stringtie v.1.3.4d (Pertea et al., 2015) based 
on the reference genome and annotation used for alignment. 
Using the individually assembled samples (n = 204) from all 
four tissues and the bovine reference genome, we built a new 
merged annotation in Stringtie across tissues, while specifying 
for minimal transcript coverage across samples of 15 read 
alignments per exonic base. In addition to the 192 samples (48 
animals, four tissues) included in the subsequent steps for DE 
and network analyses, we also took benefit from rumen, liver 
and muscle samples of further four individuals from the same 
experimental herd. These samples were subjected to exactly the 
same processing steps as the 192. The new merged annotation 
was used for fragment counting with featureCounts (subread 
v.1.6.1) (Liao et al., 2014), while allowing for fractional counting 
and specifying for reverse strandedness.

Long Non-Coding RNA Prediction and 
Fragment Counting
LncRNAs were identified in-situ with FEELnc (Wucher et  al., 
2017), a bioinformatics tool for lncRNA prediction and 
annotation, using the merged transcript annotation and the 
bovine reference genome and annotation UMD3.1 release 
92. FEELnc excludes transcripts annotated as protein coding 
and subsequently keeps transcripts with a minimum length of 
200 nt and at least two exons and only monoexonic transcripts 
with antisense localization. Other monoexonic transcripts were 
excluded to reduce the number of false positives, which might 
arise from the mapping of repetitive sequences (Wucher et al., 
2017), DNA contamination (Haerty and Ponting, 2015) and 
in general transcriptional noise (Kern et al., 2018). For those 
transcripts matching the requirements, the coding potential of 
remaining transcripts was determined in shuffling mode.
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Fragment Count Normalization
For further pipeline steps, except for the DE analysis, fragments per 
kilobase million (FPKM) were calculated from the featureCounts 
derived fragment counts. Genes were filtered for a minimal 
average expression value of 0.2 FPKM in at least one of the four 
tissues and ribosomal and spliceosomal RNA genes were excluded 
(Metazoan signal recognition particle RNA, U6 spliceosomal 
RNA, small nucleolar RNA U6-53). For further analyses of FPKM 
values performed in this study, a log2-scale of the data was used 
(for log transformation a pseudo-count of 0.001 was added).

Prioritized gene List
Gene co-expression networks are a useful tool when trying to 
deduce the potential biological function of genes, novel loci and 
non-coding elements (van Dam et al., 2017), assuming the guilt-
by-association principle. In order to create meaningful networks 
that have a targeted focus on our phenotype (metabolic efficiency), 
we created a set of prioritized genes where genes had to belong 
to at least one of these four categories: differentially expressed 
(DE) genes in at least one of the four investigated tissues, tissue-
specific (TS) genes, genes harboring a QTL for milk production 
or RFI (QTL) according to the literature, and predicted lncRNAs. 
Small nucleolar RNAs (snoRNAs), ribosomal RNAs, spliceosomal 
RNAs, and Y-RNAs were excluded from the set.

Differential Expression Analysis
A DE analysis for the high and low metabolic efficiency group was 
performed within tissues and across sexes in R with the package 
DEseq2 (Love et al., 2014). Fragment counts from featureCounts 
were used as input and normalization was performed within 
DEseq2. To exclude very lowly expressed transcripts within a 
tissue, the minimal fragment count threshold was set to at least 
10 fragments for 10 out of 48 individuals. Ribosomal genes were 
excluded from the analysis and year of slaughter and sex were 
used as factors in the model. The significance threshold was set 
to q < 0.05 [Benjamini–Hochberg (BH) test].

Tissue Enriched Genes
The expression (log2-transformed FPKM) of a gene was defined as 
enriched in a particular tissue, if the abundance in the other three 
tissues was less than half the average across all tissues and above the 
average plus one standard deviation in the tissue at hand. Throughout 
the further course of this study, we refer to these genes as TS.

Genes Harboring a Quantitative Trait Locus
We extracted QTL for milk production traits (MY) and RFI in 
cattle from the Animal QTL database (Park et al., 2018) and then 
screened our dataset in Ensembl Biomart (http://asia.ensembl.
org/biomart/martview, accession date 28 March 2019) for genes 
that overlapped with these QTL regions. A physical overlap 
of the QTL and the gene is needed for a gene hit, while close 
neighborhood is not sufficient.

Regulatory Impact Factor Analysis
The RIF (Reverter et al., 2010) analysis makes use of two 
alternative metrics (RIF1 and RIF2) that attribute scores to 

potential key regulators. The strength of the score depends on 
the change in correlation between the regulator and its target in 
two groups or treatments, the level of DE of the target gene, and 
the general expression level of the target gene. We conducted RIF 
analyses within tissues and across metabolic efficiency groups to 
assess the regulatory capacity of lncRNAs in a set of prioritized 
genes (lncRNA, DE, TS, QTL harboring). Therefore, RIF metrics 
were calculated within each tissue for a prioritized gene set 
(including log2(FPKM) data) that comprised genes which were 
DE or TS in that tissue, harbored a QTL or were characterized 
as a lncRNA. Naturally, some of the QTL-genes might have zero 
expression in one or more of the tissues. To prevent erroneously 
high RIF scores stemming from low variation in gene expression, 
an additional filter for expression level was applied (on top of 
minimal average expression of 0.2 FPKM in at least one tissue). 
Only genes with abundance above tissue average were kept for 
the RIF analysis.

A high RIF1 score was assigned to lncRNAs that were 
consistently co-expressed with abundant target genes in both 
metabolic efficiency groups. A high RIF2 score was attributed 
to lncRNAs that displayed the most altered ability to predict 
the abundance of target genes between groups, meaning that a 
lncRNA exhibited strong correlation to a target on one condition 
but none or a reverse correlation in the other. RIF scores were 
standardized with a z-score. Key regulators (lncRNA) were 
considered of significant importance and were included in further 
analyses if they had an absolute RIF1 or RIF2 z-score of ≥1.96, 
meaning that these lncRNAs and their scores were outside the 
95% confidence interval, corresponding to a significance level of 
p = 0.05 in a t-test.

Partial Correlation and Information Theory
The PCIT (Reverter and Chan, 2008) tests for significant pairwise 
correlations between two elements while accounting for all 
possible three-way combinations in the dataset that include 
either of the pair elements. Importantly, the PCIT recognizes 
independent, significant correlations regardless of the strength of 
correlation. Within the high and low metabolic efficiency groups, 
the PCIT approach across all tissues was used to investigate for 
independent correlations of lncRNAs that had significant RIF 
scores with DE genes, TS genes, and QTL harboring genes.

Results were filtered for significant correlations (minimal 
correlation strength |r| > 0.8) between a lncRNA and another 
gene that were exclusive for the high or low metabolic efficiency 
group, meaning that the correlation was significant in one group 
but not in the other. The visualization was realized in Cytoscape 
3.6.1 (Shannon et al., 2003).

Characterization of Key Regulatory Long 
Non-Coding RNAs
Blast Search Against New Bovine Assembly
Highly connected lncRNAs with more than 100 directly linked 
nodes (genes) were selected from each network for further 
scrutiny. Since the prediction of lncRNAs was based on a merged 
annotation, which was reference guided by UMD3.1, Ensembl 
release 92, we wanted to investigate the sequence homology 
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and annotation status of key lncRNAs in the new bovine 
assembly ARS1.2 annotated in Ensembl release 95. The lncRNA 
sequences were blasted online with the blastn suite using the 
MegaBlast algorithm, specifying for high sequence similarity 
and otherwise default parameters (Altschul et al., 1990) (https://
blast.ncbi.nlm.nih.gov/Blast.cgi, accessed Mai 2019) against 
the new bovine assembly (ARS-UCD1.2, https://www.ncbi.
nlm.nih.gov/assembly/GCA_002263795.2; GenBank accession 
NKLS00000000.2; https://www.ensembl.org/Bos_taurus/Info/
Index). We considered blast hits to indicate high homology if the 
sequence identity was at least 98% in a region covering at least 
200 nucleotides.

Pathway Enrichment Analysis
To assess the possible biological function of high connectivity 
lncRNAs, we performed a pathway enrichment analysis based on 
genes identified as correlated (|r| > 0.8) in the PCIT analyses and 
also including blood plasma metabolites that were significantly 
(p ≤ 0.05) correlated with the high connectivity lncRNAs. To 
this end, a pairwise Pearson correlation analysis between blood-
plasma metabolites and lncRNA expression in the tissue, where 
the lncRNA was most abundant, was performed in R with the 
function rcorr of the Hmisc package (Harrell and Frank, 2019). 
The list of significantly correlated metabolites (p ≤ 0.05) and 
genes (adjacent network nodes with |r| > 0.8) were analysed 
using the Ingenuity Pathway Analysis (IPA: QIAGEN Inc., 
https://www.qiagenbioinformatics.com/products/ingenuity-
pathway-analysis) (Kramer et al., 2014). The workflow from 
group formation and tissue sampling up to the functional 
characterization of key lncRNAs is visualized for better 
comprehensibility and clarity in Figure 1.

REsULTs

RNA Preparation, sequencing, Alignment, 
and Mapping
The average RNA integrity (RIN) across the four tissues was 
8.22 ± 0.81 (Table 2). After quality trimming the average RNA 
sequencing depth was at 48 million read pairs per sample. A total 
of 9 out of 192 samples reached less than a 40 million read pair 
coverage. The alignment of reads with HISAT2 to the bovine 
reference genome UMD.3.1 (Ensembl release 92) resulted 
in an average alignment rate of 92.98 ± 9.50%. Compared 
with the other tissues, rumen scored a distinctly lower rate 
(78.00  ± 7.75%). The average mapping rate across all samples 
to the customized annotation, which contained 30,072 loci, was 
81.89%. The tissue specific average mapping rate was lowest in 
rumen, of comparable dimension in jejunum and muscle, and 
highest in liver.

Long Non-Coding RNA Prediction
Based on the merged annotation, FEELnc predicted 26,740 
mRNAs and 7,646 lncRNA transcripts (3,287 loci), out of 
which 544 were without potential positional interaction 
partner gene within the default window size of 10,000 to 
100,000 nucleotides. Those 7,102 lncRNA transcripts with 

an assigned potential positional interaction partner were 
generated by 3,051 loci (Table 3, Supplementary Table 1). 
FEELnc distinguishes between intergenic and genic lncRNA 
with different subtypes (see Wucher et al. (2017) for a graphical 
explanation). LncRNAs are also classified according to their 
position to neighboring protein coding genes (interaction 
partner gene). For intergenic lncRNAs, the best partner gene is 
closest in terms of distance in base pairs and for genic lncRNAs 
the best partner gene directly overlaps with it, preferably at an 
exon. All predicted 7,646 lncRNA transcripts were considered 
for further computational analyses.

The total of 3,287 lncRNA loci are equally distributed in 
terms of strandedness (50.6% on the plus strand, 49.41% on the 
minus strand), and in a locus-based approach (considering the 
transcript with highest exon number for each locus) the median 
number of exons per transcript was 3 (average number of exons 
per transcript: 4.9 ± 8.2). The total exon length geometric mean 
of the lncRNA loci amounted to 2,201.0 bp.

Prioritized gene List for Co-Expression 
Analysis
After filtering the 30,072 genes in the merged annotation for 
minimal expression (average FPKM across all samples >0.2 in 
at least one tissue) and exclusion of ribosomal and spliceosomal 
RNA genes, the dataset contained 22,625 genes out of which 
2,886 were lncRNAs, meaning that 401 lncRNAs were removed 
from RIF and subsequent PCIT co-expression analysis due to 
very low abundance.

Differential Expression Analysis
The DE analysis yielded a total of 2,154 unique significantly  
(q  < 0.05) DE genes between the high and low metabolic 
efficiency group with 496 DE genes in jejunum, 1,286 DE genes 
in liver, 479 DE genes in muscle, and no significant differences 
in rumen (Figure 2A). Generally, we observed little overlap of 
differentially expressed loci between tissues. Out of these unique 
2,154 DE genes, 238 were predicted to be lncRNAs corresponding 
to 11.05%. We observed 40 DE lncRNAs in jejunum, 173 DE 
lncRNAs in liver, 40 DE lncRNAs in muscle, and none in rumen 
(Figure 2B).

Tissue Enriched Genes
We found a total of 930 genes to be tissue-specifically expressed 
out of the 22,625 genes, which had passed the initial minimal 
expression threshold (average expression > 0.2 FPKM in at least 
on tissue). Out of those 930 genes, 279 were TS in jejunum, 283 
in liver, 204 in muscle, and 164 in rumen. Thereof, 21.9% were 
lncRNAs with 42 in jejunum, 65 in liver, 48 in muscle, and 49 
in rumen.

Quantitative Trait Locus Harboring Genes
The database AnimalQTL listed 278 QTL for RFI and 1,881 
QTL for milk production traits, which were distributed across 
1,615 genes out of which 1,064 passed the minimal expression 
threshold (average expression > 0.2 FPKM in at least one tissue) 
in our dataset.
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FIgURE 1 | Workflow for the identification and functional characterization of key lncRNAs with regulatory potential in two contrasting biological conditions. The 
phenotypes under investigation were high and low metabolic efficiency in a Charolais x Holstein cross-population. lncRNA, long non-coding RNA; FPKM, fragments 
per kilobase transcript length per million reads; TS, tissue specific; DE, differentially expressed; QTL, quantitative trait locus; RFI, residual feed intake; MY, milk 
production; RIF, regulatory impact factor; PCIT, partial correlation and information theory.
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Regulatory Impact Factor to select 
Long Non-Coding RNAs With a Potential 
Regulatory Effect on Metabolic Efficiency
The input prioritized gene lists filtered for expression level for the 
tissue specific RIF analysis contained 2,097 loci for jejunum (880 
lncRNAs), 1,890 loci for liver (614 lncRNAs), 961 loci for muscle 
(363 lncRNAs), and 1,458 loci for rumen (755 lncRNAs). RIF 
scores were then calculated for the lncRNAs in these gene sets.

With a significance threshold of a RIF1 or RIF2 score ≥ 
1.96, the tissue specific RIF analyses identified 92 potential key 
lncRNAs in jejunum, 55 in liver, 35 in muscle, and 73 in rumen. 
In total 240 unique lncRNAs had a RIF score ≥ 1.96 in at least one 
tissue and were considered for subsequent PCIT analysis.

Partial Correlation and Information Theory 
Approach to Identify Long Non-Coding 
RNA-Associated Co-Expression Networks
For the within-tissue RIF analysis, the sets of DE genes, TS 
genes, QTL harboring genes and lncRNAs had been filtered for 
a seizable expression level (abundance above average expression 
in the respective tissue) to facilitate a reliable calculation of 
correlation. For the PCIT analysis, a similar filter for minimal 
expression was applied: abundance above average expression 
across all samples in at least one tissue when combining DE genes 
and TS genes from all tissues with the QTL genes and lncRNAs 
with significant RIF scores. A total of 295 of the 4,049 prioritized 
loci were excluded due to not meeting this expression limit. The 
set of prioritized genes that was used for the final PCIT network 
analysis contained 3,754 unique genes in total. Thereof, 1,990 
were DE genes, 895 QTL containing genes, 926 TS genes, and 
583 lncRNAs, though some genes belonged to several categories 
(Figure 3, Supplementary Table 2).

The PCIT analysis was performed across tissues and results 
were filtered for significant correlations with a correlation 
strength |r| ≥ 0.8, between a lncRNA with significant RIF score 
and all genes from the prioritized gene list already used for 
RIF calculation. Furthermore, correlations had to be exclusive 
to either the high or low metabolic efficiency group. The high 
and low network contained 1,522 and 1,732 nodes (genes) 
respectively (Supplementary Figure 1, Supplementary Figure 2,  
Supplementary Table 3). Six and two lncRNAs showed a 
high connectivity (>100 nodes) exclusively in one of the two 
networks, which represent high and low metabolic efficiency, 

respectively. Thus, these eight lncRNAs stand out as potential 
regulatory keys for lncRNAs with respect to metabolic 
efficiency.

Characterization of Key Regulatory Long 
Non-Coding RNAs in the Networks
Blast Against New Bovine Assembly
The eight lncRNAs characterized by high connectivity for high 
and low metabolic efficiency in the PCIT analysis were blasted 
against the new bovine assembly and annotation [ARS-UCD.1.2, 
National Center for Biotechnology Information (NCBI) release 
106] (Table 4). If lncRNAs completely overlapped with annotated 
genes, the respective lncRNA was located on the opposite strand 
to the annotated gene (e.g. MSTRG.4926 overlapped with CDH17 
on the opposite strand). None of the eight lncRNA loci had yet 
been annotated as non-coding in the NCBI or the Ensembl 
genome annotation (ARS-UCD1.2, release 95).

Pathway Enrichment Analysis
The Pearson correlation analysis between blood plasma 
metabolites and lncRNA expression, which was calculated 
prior to the pathway enrichment analysis, showed that the eight 
key lncRNAs were significantly (p < 0.05) correlated to very 
different numbers of metabolites. Correlations ranged from one 
(MSTRG.18433) to 117 (MSTRG.4740) metabolites, out of which 
an average of 75% was successfully mapped in the IPA database 
and used in the subsequent enrichment analyses (Supplementary 
Table 4). The correlation strength ranged from -0.53 to + 0.48 
with an average of |0.35|.

Pathway enrichment analysis for each of the eight key 
lncRNAs with their respective correlated metabolites and genes 
showed that calcium signaling was the most strongly enriched 
canonical pathway for half of the key lncRNAs (MSTRG.9051, 
MSTRG.10337, MSTRG.18433, and MSTRG.19312). The other 
high ranking canonical pathway hits, i.e. hits with the lowest 
p-value, were tRNA charging, leukocyte extravasation signaling, 
caveolar-mediated endocytosis signaling, and T cell receptor 
signaling (data not shown).

Within the eight lncRNAs with a high connectivity in the 
PCIT analysis, three loci showed distinct pattern in the pathway 
enrichment analysis suggesting divergent molecular functions. 
Inspection of the results showed that the enriched canonical 
pathways for MSTRG.4740, which was differentially expressed in 

TABLE 2 | Overall and tissue-specific RNA sequencing, alignment, and mapping statistics.

RIN1 sequencing depth [read 
pairs]

Alignment to UMD.3.1 [%] Mapping to project-
specific annotation [%]

µ2 sD3 µ sD µ sD µ sD

All 8.22 0.81 48,041,209 5,601,638 92.98 9.50 81.89 8.67
Jejunum 8.73 0.44 48,954,376 3,993,201 96.91 0.31 84.99 2.20
Liver 8.00 0.62 50,093,826 5,869,833 98.43 0.20 91.36 1.21
Muscle 7.55 0.85 47,117,156 5,815,843 98.59 0.13 82.42 1.79
Rumen 8.41 0.86 45,999,477 5,587,407 78.00 7.75 69.05 4.67

1RIN, RNA integrity number, 2µ, mean, 3SD, standard deviation.

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1130

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


LncRNAs Regulating Bovine Metabolic EfficiencyNolte et al.

9

liver (Figure 4, Table 3, Supplementary Table 5), were related 
to amino acid biosynthesis and metabolism, as well as protein 
synthesis (Table 5). MSTRG.17681 (Figure 5, Supplementary 
Table 5) which was also differentially expressed in liver, 
seemed to act very locally in the coatomer subunit of the coat 
protein I (COPI) in the caveosome. MSTRG.10337, (Figure 6, 
Supplementary Table 5) apparently acts specifically in muscle 
where it was related to several signaling pathways, most strongly 
to calcium, protein kinase A, neuronal nitric oxide synthase 
(nNOS), and RhoA signaling (Table 5).

DIsCUssION
A major goal of this study was the identification of lncRNAs 
that hold a potential key regulatory role in metabolic efficiency, TA
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FIgURE 2 | Venn diagrams of (A) all loci (B) exclusively lncRNAs with differential 
expression (DE) between high and low metabolic efficiency in cattle. DE analysis 
was performed within the tissues jejunum, liver, muscle, and rumen. No loci 
were significantly [q-value (Benjamini–Hochberg) < 0.05] DE in rumen.
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which was roughly defined as the animal's ability to direct 
the energy adsorbed into protein synthesis and use it for 
muscle mass accumulation or milk secretion. We integrated 
phenotypic, metabolomics and transcriptomics data from a 
cattle F2-population (Charolais × Holstein) in a co-expression 
network approach to mine for lncRNAs with a regulatory role 

in metabolic processes. By contrasting animals of high and low 
metabolic efficiency and by including RNAseq data from four 
key metabolic tissues in a combined analysis, we identified highly 
connected hub lncRNAs. Finally, we subjected metabolites and 
genes, whose plasma levels or transcript abundance significantly 
correlated with expression levels of the specific, highly connected 
lncRNA, to the integrative approach for metabolomics and 
transcriptomics data as offered by the cross-platform IPA 
(Kramer et al., 2014).

Establishment of a Pipeline Based on 
Regulatory Impact Factor and Partial 
Correlation and Information Theory to 
Establish Co-Expression Networks for 
Long Non-Coding RNAs and genes to 
Predict Their Role in Metabolic Efficiency
Weighted gene co-expression network analysis (WGCNA) 
(Langfelder and Horvath, 2008) is a frequently applied method 
to identify co-expression pattern at whole transcriptome level. 
Recently, Sun et al. (2019) applied this method for mining 
regulatory signatures of divergent feed efficiency in beef cattle 
investigating a multi-tissue transcriptome data set. WGCNA 
has also been used to find hub lncRNAs in a transcriptomic 
landscape in multiple studies in humans as well as animals (Miao 
et al., 2016; Tang et al., 2017; Li et al., 2018; Weikard et al., 2018; 
Wang et al., 2019). To mine for the functional role of lncRNAs 
of interest via WGCNA, one might select lncRNAs that are 
strongly correlated with coding neighbor genes (Li et al., 2018) or 
lncRNAs that were differentially expressed between conditions 
or phenotypes (Weikard et al., 2018; Wang et al., 2019). 

 

FIgURE 3 | Venn diagram of 3,754 loci selected for co-expression network 
construction. Loci belonging to at least one of these four categories were 
considered: differential expression (DE) in at least one tissue, tissue specific 
(TS) expression, harboring a QTL for residual feed intake and or milk 
production (QTL) and key regulatory long non-coding (lnc) RNAs [significant 
(p < 0.05) regulatory impact factor score].

TABLE 4 | BLAST results for eight high connectivity long non-coding RNAs (>100 nodes) in partial correlation and information theory networks with connections 
exclusive for high or low metabolic efficiency.

lncRNA BLAsT against bovine reference genome (ARs-UCD1.2, release 106)

Identifier Network 
(connectivity 
in nodes)

Annotated gene with highest sequence 
homology

Identity [%] Query cover 
[%]

E-Value Position of 
lncRNA relative to 
homologous gene 
in ARs-UCD1.2

MSTRG.4740 Low (147) mRNA-transient receptor potential cation 
channel subfamily A member 1 (TRPA1)

100.00 100.00 9.00E-116 Intronic, anti-sense

ADP-ribosylation factor 4 (ARF4) 98.57 91.00 3.00E-100 Exonic, sense
MSTRG.4926 High (144) Cadherin-17 precursor (CDH17) 100.00 100.00 0.00E+00 Anti-sense
MSTRG.9051 High (170) Nucleoside diphosphate kinase A 1 

isoform X1 (NME1)
99.72 100.00 0.00E+00 Sense, genic

MSTRG.10337 Low (239) Desmin (DES) 99.93 100.00 0.00E+00 Exonic, anti-sense
MSTRG.17681 High (120) 39,201 bp at 5' side: alpha-aminoadipic 

semialdehyde synthase, mitochondrial 
precursor 88559 bp at 3' side: fez family 
zinc finger protein 1

98.40 99.00 0.00E+00 Sense, genic

Chromobox protein homolog 3 isoform X1 
(CBX3)

99.00 89.00 0.00E+00 Sense, genic

MSTRG.18433 High (268) 364 bp at 5' side: ADP-ribosylation factor 
3; 37831 bp at 3' side: peptidyl-prolyl cis-
trans isomerase FKBP11 precursor

99.96 100.00 0.00E+00 Sense, intergenic

MSTRG.19098 High (184) C-type lectin domain family 2 member D11 100.00 100.00 0.00E+00 Anti-sense, genic
MSTRG.19312 High (212) ER lumen protein-retaining receptor 3 

(KDELR3)
100.00 99.00 0.00E+00 Anti-sense, genic
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The connectivity within a network and the differential wiring 
between two networks can also serve as a selection criterion 
(Pellegrina et al., 2017). In our study we present an alternative 
approach for the selection of lncRNAs of interest, the RIF 
(Reverter et al., 2010), which has already successfully been 
applied to transcription factors (TF). In combination with a 
PCIT (Reverter and Chan, 2008), key regulatory TFs during 
puberty could be identified in cattle (Cánovas et al., 2014), as well 
as critical TFs in porcine muscle (Perez-Montarelo et al., 2012). 
This approach seemed to be particularly applicable for lncRNAs 

with regard to the expression level as they generally exhibit lower 
transcript abundance compared with mRNAs (Derrien et al., 
2012), as do TFs compared with other coding genes (reviewed 
by Vaquerizas et al., 2009). We indeed found that only 10% of 
the unique lncRNAs with a significant RIF-score (n = 240) were 
also differentially expressed, including three of the eight key hub 
lncRNAs. LncRNAs were significantly underrepresented in the 
list of DE loci across all tissues (Χ2 test, p = 1.2E-06): while they 
accounted for 14.85% of all loci in the DE analyses, only 11.05% 
of the DE loci were classified as lncRNAs. In contrast, the other 

FIgURE 4 | Co-expression network for the novel long non-coding (lnc) RNA MSTRG.4740 with key regulatory potential for metabolic efficiency in cattle and 
significantly (p < 0.05) correlated genes with a minimal correlation coefficient of |r| > 0.8. Correlations are exclusive for animals with low metabolic efficiency.
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loci accounted for 85.25% of all loci in the DE analyses, but had 
a share of 88.95% in the total of 2,154 differentially expressed 
unique loci.

In a recent publication, van Dam et al. (2017) reviewed and 
highlighted the usefulness of gene co-expression networks for 
the functional classification of genes and novel loci, such as non-
coding elements without any known function. Correspondingly 
Oliveira et al. (2018) successfully applied a co-expression network 
concept to identify genes and miRNAs regulating IMF in Nellore 
steers. Besides the preselection of lncRNAs for co-expression 
networks, it might be advisable to make a knowledge-based 
preselection also for other genes to be included instead of 
simply using all expressed genes. The combination of RNA-Seq 

results with GWAS hits (gene regions associated with QTL for 
milk performance traits or RFI) is an acknowledged procedure 
to integrate multiple layers of knowledge into a prioritized gene 
set for co-expression network analysis (Schaefer et al., 2018). 
In our PCIT analysis, we prioritized genes that appeared to be 
functionally important from the RNA-Seq analysis [DE loci 
(2,154) or TS loci (930)] and published GWAS data and selected 
those for our prioritized gene set to create a stronger focus 
on bovine metabolic efficiency, accepting however that still 
unknown, yet important elements might be overlooked. When 
preparing the prioritized gene set, we noted that the key role of 
liver in metabolic processes was clearly reflected by the by far 
highest number of DE loci (1,286) between the two metabolic 

TABLE 5 | Top 10 enriched pathways derived from genes and metabolites significantly correlated with key long non-coding RNAs associated with metabolic efficiency

ID Ingenuity Canonical Pathways log(p) Ratio Molecules

MSTRG.4740 tRNA Charging 5.56E00 8.54E-02 L-valine, L-phenylalanine, L-tryptophan, glycine, 
L-arginine, L-tyrosine, L-lysine

EIF2 Signaling 4.13E00 3.83E-02 MYC, RPS7, RPL27A, RPL35, RPL23A, RPL37, 
RPL26, EIF3E, RPL31

Glucose and Glucose-1-phosphate 
Degradation

3.18E00 1.3E-01 D-glucose, PGM3, phosphate

Tyrosine Biosynthesis IV 2.94E00 2.86E-01 L-phenylalanine, L-tyrosine
Acetyl-CoA Biosynthesis III (from Citrate) 2.82E00 2.5E-01 phosphate, citric acid
Glycine Degradation (Creatine 
Biosynthesis)

2.71E00 2.22E-01 glycine, L-arginine

Phenylalanine Degradation IV 
(Mammalian, via Side Chain)

2.68E00 8.82E-02 L-phenylalanine, phenylpyruvic acid, glycine

Glutathione Biosynthesis 2.53E00 1.82E-01 phosphate, glycine
Thymine Degradation 2.53E00 1.82E-01 5, 6-dihydrothymine, beta-ureidoisobutyric acid

MSTRG.10337 Calcium Signaling 1.63E01 9.35E-02 TNNT1, CHRNA1, CACNB1, CACNG1, 
CACNA1S, MYL2, TNNI2, TNNT3,T NNC2, 
TNNC1, MYL1, ATP2A1, CAMK2A, CASQ1, 
RYR1, TNNI1, CASQ2, MYL3, ACTA1, CAMK2B

Protein Kinase A Signaling 7.45E00 3.88E-02 TNNI2, MYL2, MYLPF, MYLK2, PPP1R3A, TTN, 
MYL1, EPM2A, CAMK2A, PLCB1, RYR1, TNNI1, 
EYA1, MYL3, CAMK2B, PHKG1

nNOS Signaling in Skeletal Muscle Cells 6.1E00 1.3E-01 CACNG1, CACNB1, CACNA1S, CHRNA1, RYR1, 
L-arginine

Cellular Effects of Sildenafil (Viagra) 6.09E00 6.25E-02 CACNA1S, CACNG1, MYL2, MYLPF, PLCB1, 
L-arginine, MYL1, MYL3, ACTA1

RhoA Signaling 4.55E00 5.6E-02 MYL2, MYLPF, MYLK2, TTN, MYL1, MYL3, 
ACTA1

Apelin Cardiomyocyte Signaling Pathway 3.7E00 5.00E-02 MYL2, MYLPF, PLCB1, MYL3, MYL1, ATP2A1
Actin Cytoskeleton Signaling 3.55E00 3.36E-02 MYL2, MYLPF, ACTN3, MYLK2, TTN, ACTA1, 

MYL3, MYL1
Regulation of Actin-based Motility by Rho 3.24E00 5.21E-02 MYL2, MYLPF, MYL3, ACTA1, MYL1
ILK Signaling 3.19E00 3.38E-02 PARVB, MYL2, TNFRSF1A, ACTN3, MYL1, 

MYL3, ACTA1
Thrombin Signaling 2.93E00 3.06E-02 CAMK2A, MYL2, MYLPF, PLCB1, MYL1, MYL3, 

CAMK2B
MSTRG.17681 Caveolar-mediated Endocytosis Signaling 3.56E00 5.48E-02 ARCN1, COPA, COPE, COPB2

Fatty Acid α-oxidation 2.29E00 8.00E-02 ALDH3A2, ALDH9A1
Death Receptor Signaling 2.15E00 3.3E-02 PARP10, PARP4, HTRA2
Histamine Degradation 2.05E00 6.06E-02 ALDH3A2, ALDH9A1
Oxidative Ethanol Degradation III 2.05E00 6.06E-02 ALDH3A2, ALDH9A1
G Protein Signaling Mediated by Tubby 2.03E00 5.88E-02 GNG2, GNAQ
Tryptophan Degradation X (Mammalian, 
via Tryptamine)

2.00E00 5.71E-02 ALDH3A2, ALDH9A1

Putrescine Degradation III 2.00E00 5.71E-02 ALDH3A2, ALDH9A1
Ethanol Degradation IV 1.98E00 5.56E-02 ALDH3A2, ALDH9A1
NER Pathway 1.96E00 2.8E-02 HIST2H4B, XAB2, RAD23B
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efficiency groups, which was 2.6 fold higher than in jejunum or 
rumen. For DE loci in the prioritized gene set that was used for 
the PCIT, we noted that these predominantly (65%) had their 
highest expression in a different tissue than where they were 
differently expressed. This underlines that tissue specificity or 
tissue of highest abundance and DE of loci are indeed different, 
non-redundant features and that it is recommendable to follow a 
TS perspective in the beginning of the analysis.

One way to deduce a biological function of lncRNAs is to take 
a close look at coding genes in their immediate vicinity. This idea 
has also been implemented in the bioinformatics tool FEELnc 
for lncRNA prediction and annotation (Wucher et al.,  2017), 

where the potential partner gene is generally assumed to be the 
closest annotated gene. However, this exclusively focusses on 
in-cis interaction with a narrow frame of impact. However, it has 
been reported that some lncRNAs execute in-trans regulatory 
tasks by binding directly to distant DNA sites or via RNA-
protein interactions (Long et al., 2017) or a direct effect on RNA 
polymerase II activity (Kornienko et al., 2013).

Another way to infer functionality of unknown genomic 
elements subsequent to the network construction is to submit 
correlated coding genes to an enrichment analysis (Chen et al., 
2018b), thereby assuming the guilt-by-association principle. 
Following this approach, we took genes from the prioritized 

FIgURE 5 | Co-expression network for the novel long non-coding (lnc) RNA MSTRG.17681 with key regulatory potential for metabolic efficiency in cattle and 
significantly (p < 0.05) correlated genes with a minimal correlation coefficient of |r| > 0.8. Correlations are exclusive for animals with high metabolic efficiency.
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gene set that were correlated with high connectivity lncRNAs 
of interest. LncRNA partner genes predicted by FEELnc could 
also be part of the prioritized gene set if they fell into one of the 
categories (DE, tissue-specificity, QTL-harboring). This was the 
case for 473 out of 2,741 unique predicted lncRNA interaction 
partner genes. Thus, 12.6% of the genes that were used as PCIT 
input (3,754) were very close to or overlapped with a lncRNA.

In addition, we aimed to add a supplementary layer of 
information to the pathway enrichment analysis and thereby to 

create further biological depth by using the option to integrate 
gene expression and metabolic profiles. In a single step this 
approach facilitates to predict a link between transcriptome 
activity, the direct functional readout of metabolic activity or 
physiological status and the functional analysis of lncRNAs. 
MSTRG.4740, e.g., correlated with plasma levels of 117 
metabolites—valuable information that would otherwise be 
missing from the enrichment analysis. To our knowledge, we 
here present the first study that integrates metabolomics and 

FIgURE 6 | Co-expression network for the novel long non-coding (lnc) RNA MSTRG.10337 with key regulatory potential for metabolic efficiency in cattle and 
significantly (p < 0.05) correlated genes with a minimal correlation coefficient of |r| > 0.8. Correlations are exclusive for animals with low metabolic efficiency.
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transcriptomic data in an enrichment analysis to predict the 
functional role of lncRNAs.

Across-Tissue Candidate Long Non-
Coding RNAs for Metabolic Efficiency
LncRNAs were defined as hubs when they were connected 
to at least 100 other nodes in the high or low efficiency PCIT 
network. Three of the identified eight hub lncRNAs were 
exemplarily chosen for a more detailed description of their 
biological functionality predicted with IPA. These lncRNAs—
namely MSTRG.4740, MSTRG.10337, and MSTRG.17681—
were hubs in gene groups that showed enrichment for transfer 
RNA (tRNA) charging (p = 2.78E-06) and EIF2 signaling (p = 
7.34E-05), calcium signaling (p = 4.98E-17) and nNOS signaling 
in skeletal muscle cells (p = 7.88E-07), and calveolar-mediated 
endocytosis signaling (p = 2.77E-04) and fatty acid oxidation 
(p = 5.13E-03), respectively.

For MSTRG.4740 an encompassing look at the enriched 
pathways clearly pointed towards amino acid metabolism 
and protein synthesis. This lncRNA was DE in liver (adjusted 
p-value (BH) = 9.13E-03, log2FC = 1.70) but displayed highest 
abundance (average FPKM) in jejunum (10.68) and rumen 
(8.41) and lowest in muscle (1.66) compared to liver (6.23). The 
DE status in liver suggested biological relevance there. However, 
the RIF analysis attributed a significant score to MSTRG.4740 
in jejunum. The strongest enrichment was for tRNA charging 
(p = 2.78E-06), which describes the attachment of amino acids 
to a tRNA before incorporation into a growing polypeptide. 
According to IPA, the enrichment of this pathway was due to 
the correlation of MSTRG.4740 expression level with the blood 
plasma content of six essential or semi-essential amino acids 
(L-valine, L-phenylalanine, L-tryptophan, L-arginine, L-tyrosine, 
L-lysine). No non-essential amino acid showed a significant 
correlation with this lncRNA. The significantly correlated amino 
acids play integral roles as regulators of metabolism and key body 
functions, but cannot or only partially be synthesized by bovine 
animals themselves. Plasma concentration of essential amino 
acids depends on uptake from the diet, the balance between 
protein synthesis and degradation in peripheral tissues as well as 
on the efficiency of transport processes. The enrichment of the 
tRNA Charging pathway was not backed up by other components 
in addition to the indicated amino acids (e.g., charged tRNAs 
themselves). Thus, we restrict our conclusion and suggest that 
the lncRNA has a close relationship with (semi-) essential amino 
acid levels, but rather not to tRNA Charging per se. Widmann 
et al. (2015) reported no significant correlation between plasma 
amino acids and RFI at the onset of puberty in bulls in the same 
resource population. However, in the current study we employed 
adult animals.

Endogenous metabolism and also supply of amino acid have 
been demonstrated to limit growth or lactation in pigs, cattle and 
fish as reviewed by Hou et al. (2016). Furthermore, Doelman et al.  
(2015) showed that an abomasal infusion with essential amino 
acids leads to increased protein levels of eIF2α and eIF2Bε in the 
mammary gland in dairy cows. The authors proclaimed a direct 
link between the eIF2 factor, which is essential for eukaryotic 

translation initiation and milk protein yield. Interestingly, we 
found eIF2Bε to be DE [q-value (BH) = 0.022, log2FC = 0.204] 
in liver and to be one of the genes underlying the significant 
enrichment of the EIF2 Signaling pathway (p = 7.34E-05), 
which is tightly linked to protein synthesis. Genes encoding 
for ribosomal proteins of 40S (RPS7) or 60S subunits (e.g. 
RPL26, RPL31) were significantly correlated with MSTRG.4740, 
as well as the before mentioned eIF2Bε. EIF2 signaling and 
subsequently EIF3E are required for the correct initiation of 
mRNA translation (Kimball 1999; Walsh and Mohr, 2014).

Considering the presented correlations of MSTRG.4740 with 
other genes and plasma metabolites, this hub lncRNA seems to be 
an excellent example of a potential new key regulator in metabolic 
efficiency through the modulation of translational processes.

In contrast to MSTRG.4740 that seems to act on the broader 
forefront of translation, MSTRG.17681 appears to have a rather 
narrow and more targeted function. The first hit in pathway 
enrichment was calveolar-mediated endocytosis signaling 
(p = 2.77E-04). Four genes (COPA, COPE, COPB2, ARCN1) 
belonging to this pathway were highly correlated (|r| > 0.8) with 
this hub lncRNA. We observed significant DE in the liver of 
divergently efficient animals for MSTRG.17681 (q-value (BH) = 
0.0050, log2FC = 0.766) as well as the respective quartet of genes. 
COPA, COPE and COPB2 are transporters and ARCN1 encodes 
the coatomer subunit of the coat protein I (COPI) complex 
(Tunnacliffe et al., 1996). All genes are allocated to a subunit 
in the cellular calveolar-mediated endocytosis signaling: the 
COPI vesicle, which plays a role in intracellular lipid transport 
(Popoff et al., 2011) and regulates lipid homeostasis (Beller et al., 
2008). COPI-vesicle biogenesis is ARF1-dependent (Beck et al., 
2009), which we found to be DE in liver and to be positively 
correlated with MSTRG.17681. The Arf1 GTPase-activating 
protein 3 (ArfGAP3) that subsequently allows the vesicle to fuse 
with a target membrane (Beck et al., 2009), was also correlated to 
MSTRG.17681 and DE in liver.

Considering that COPI-vesicles assist in lipid transport, it 
seems fitting that we found significant correlations between 
MSTRG.17681 expression and plasma levels of two saturated 
fatty acids: caprylate (p = 0.013, r = 0.357) and heptanoate (p = 
0.047, r = 0.289). Caprylic acid supplementation in the diet of 
weaned piglets was observed to lead to a significant increase body 
weight gain (Marounek et al., 2004). MSTRG.17681 most likely 
acts predominantly in jejunum, liver, and rumen, where average 
expression was much higher (31.83, 25.26, and 18.74 FPKM, 
respectively) compared with the expression in skeletal muscle (3.36 
FPKM). We infer that MSTRG.17681 is a key regulator in COPI-
vesicle functioning and thereby presumably affects lipid levels.

MSTRG.10337 was the third key hub lncRNA with a distinct 
prediction of biological function. In the network specific 
for animals of low metabolic efficiency, MSTRG.10337 was 
co-expressed with 39 genes that were DE in liver, 4 of which were 
also DE in muscle. Interestingly, the hub lncRNA MSTRG.10337 
correlated with RORA (RAR related orphan receptor A), which 
was DE in liver. RORA is a transcriptional regulator of genes 
related to lipid metabolism, e.g. APOA1, APOA5, APOC3, and 
PRAPRG (Vu-Dac et al., 1997; Raspe et al., 2001; Sundvold and 
Lien, 2001; Lind et al., 2005). Although not meeting the threshold 
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for entering the PCIT network with respect to correlation to 
MSTRG.10337, we found APOA1 to be DE in the liver, providing 
consistency in gene expression and biological interplay with 
regard to RORA. Previously, Krappmann et al. (2012) has attested 
an association of a RORC (RAR Related Orphan Receptor C) 
variant with milk yield, as well as milk fat and protein percentage 
in our SEGFAM resource population. Furthermore, Zhang et al. 
(2017) linked both nuclear receptors RORA and RORC to hepatic 
lipid and fatty acid metabolism as well as circadian rhythm 
pathways in a liver-specific depletion experiment in mice.

The most enriched pathways related to MSTRG.10337 are 
Calcium signaling (p = 4.98E-17) Protein Kinase A (PKA) 
signaling (p = 3.51E-08), and nNOS signaling in skeletal muscle 
cells (p = 7.88E-07). These data confirmed findings from an 
alternative previous network analysis in our resource population, 
where GWAS results for RFI and metabolomics profiles were 
merged for bulls in puberty. Widmann et al. (2015) also has 
identified Protein Kinase A (PKA) signaling and Nitric Oxide 
signaling to be significantly enriched pathways in IPA analyses.

Calcium signaling, Protein Kinase A (PKA) signaling and 
nNOS signaling in skeletal muscle cells are in biological interplay. 
Protein kinases are in charge of nNOS phosphorylation on 
different serine residues and catalyze the hydroxylation of 
L-arginine (Fleming, 2008). In turn, L-arginine plasma levels were 
negatively correlated with expression levels of MSTRG.10337 
(p=0.038, r=-0.323) in our study. This would fit an inhibitory role 
of MSTRG.10337 in metabolic efficiency, because of unfavorable 
effects of arginine depletion in the diet on milk protein synthesis 
in dairy cows (Tian et al., 2017). The inhibitory effect is underlined 
by numerous negative correlations of MSTRG.10337 to genes with 
DE in liver (e.g. LGR4, FIG4, ESD), muscle (e.g. PON2, IDH1, 
NUP54) and jejunum (e.g. LINGO1, MPDU1, UFC1), as well as 
QTL harboring genes (e.g. GAPDH, MAFA, MYBPC1), although 
the exact mode of operation is unclear. The supplementation of 
arginine has been reported to reduce body fat deposition, improve 
muscle gain and improve insulin sensitivity and the metabolic 
profile (Wu et al., 2009), and its availability in the organism is 
therefore particularly interesting for beef production. In chicken, 
L-arginine supplementation enhanced lean muscle growth (Castro 
et al., 2018). However, protein anabolic effects in muscle via 
dietary arginine supplementation are controversially discussed in 
other species (Tang et al., 2011). In addition to Calcium and PKA 
signaling, a third highly enriched pathway for MSTRG.10337 
was nNOS signaling. In terms of gene expression, nNOS is not 
restricted to neuronal cells but is commonly expressed in skeletal 
muscle and certain vascular smooth muscle cells as well (Fleming 
2008), where it is important for tissue integrity and contractile 
performance (Percival, 2011). After Ca2+-activation, nNOS 
enzymes produce NO, which affects the autoregulation of blood 
flow, myocyte differentiation and glucose homeostasis in skeletal 
muscle cells (Stamler and Meissner, 2001). In a previous study we 
already suspected a relationship between NO signaling, arginine 
and growth in cattle (Widmann et al., 2013).

We assume that MSTRG.10337 influences the onset of nNOS 
activation, because of its correlation to calcium voltage-gated 
channel genes and RYR1 (ryanodine receptor 1) that encodes a 
calcium release channel protein (Loy et al., 2011). Co-expression 

with a large number of muscle specific genes (e.g. CACNG1, 
MYLK2, TNNT1, MYL2) or genes that are DE in muscle 
(CAMK2B) related this hub lncRNA to PKA and nNOS signaling. 
It might thereby influence phosphorylation, degradation and 
availability of L-arginine in the muscle cells, but simultaneously 
perform some regulatory tasks in hepatic lipid metabolism.

CONCLUsIONs
In this study, we were able to identify novel lncRNAs with potential 
key regulatory function in metabolic efficiency in cattle. Although 
usually low expression levels of lncRNAs entail difficulties in DE and 
co-expression analyses, the careful setting of expression thresholds, 
the use of a-priori knowledge in gene prioritization and the integrated 
use of RIF metrics and PCIT based co-expression networks have 
proven to be a valid method for the identification of regulatory hub 
lncRNAs. The enrichment analysis based on metabolites and gene 
expression data provided valuable insight into the putative biological 
functions of yet uncharacterized lncRNAs.

We focused on phenotypic differences and looked at 
mechanisms or correlations that were exclusive to either metabolic 
efficiency group. Still, other correlations between lncRNAs and 
mRNAs might exist simultaneously in both groups, and we 
propose to take a group transcending approach in a follow-up 
study. For future work, we suggest to proceed within tissues to 
get a clearer picture of gene-gene interactions within a tissue, 
also because we noted that a multi-tissue approach presents its 
challenges when interpreting pathway enrichment results. The hub 
lncRNAs, which we identified, can be considered as candidates for 
further validation studies, in vitro or in vivo. Kashi et al. (2016) 
neatly described modern methods to determine where and how 
lncRNAs act in the cell or organism, such as chromatin isolation 
by RNA purification (ChIRP) sequencing (Chu et al., 2011).

In conclusion, our study demonstrates that the method we 
presented is suitable for the identification for key regulatory lncRNAs 
in a complex phenotype. By carefully adjusting different elements of 
the procedure, e.g. the tissue under consideration or the choice of 
priority categories for genes to include in the network analysis, this 
pipeline allows us to answer targeted biological questions.
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