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Copper toxicity involves the destruction of mitochondrial metabolic

enzymes, triggering an unusual mechanism of cell death called

cuproptosis, which proposes a novel approach using copper toxicity to

treat cancer. However, the biological function of cuproptosis has not been

fully elucidated in kidney renal clear cell carcinoma (KIRC). Using the

expression profile of 13 cuproptosis regulators, we first identified two

molecular subtypes related to cuproptosis defined as “hot tumor” and

“cold tumor”, having different levels of biological function, clinical

prognosis, and immune cell infiltration. We obtained three gene clusters

using the differentially expressed genes between the two cuproptosis-

related subtypes, which were associated with different molecular

activities and clinical characteristics. Next, we developed and validated a

cuproptosis prognostic model that included two genes (FDX1 and DBT). The

calculated risk score could divide patients into high- and low-risk groups.

The high-risk group had a poorer prognosis, lower level of immune

infiltration, higher frequency of gene alterations, and greater levels of

FDX1 methylation and limited DBT methylation. The risk score was also

an independent predictive factor for overall survival in KIRC. The established

nomogram calculating the risk score achieved a high predictive ability for

the prognosis of individual patients (area under the curve: 0.860). We then

identified small molecular inhibitors as potential treatments and analyzed

the sensitivity to chemotherapy of the signature genes. Tumor immune

dysfunction and exclusion (TIDE) showed that the high-risk group had a

higher level of TIDE, exclusion and dysfunction that was lower than the low-

risk group, while the microsatellite instability of the high-risk group was

significantly lower. The results of two independent immunotherapy datasets

indicated that cuproptosis regulators could influence the response and

efficacy of immunotherapy in KIRC. Our study provides new insights for

individualized and comprehensive therapy of KIRC.
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Introduction

Renal cell carcinoma (RCC) is a common malignant tumor

derived from renal tubular epithelial cells (Moch et al., 2016).

Globally, more than 350,000 new cases of RCC are diagnosed and

140,000 associated deaths are identified per year, representing

approximately 2%–3% of all cancer diagnoses and deaths (Gupta

et al., 2008; Sung et al., 2021). Kidney renal clear cell carcinoma

(KIRC) is one of the most aggressive subtypes of RCC,

comprising 70%–80% of all cases of RCC and shows a male

preponderance of 2:1 (Capitanio et al., 2019). The standard

treatment for surgically respectable patients with KIRC is

partial or radical nephrectomy with curative intention

(Meskawi et al., 2012). Active surveillance, ablative therapies,

and systematic treatments containing radiation therapy,

chemotherapy, targeted therapy, and immunotherapy were

chosen for patients with inoperable or metastatic KIRC (El

et al., 2012; Pierorazio et al., 2015). Immune responses are

closely correlated with clinical performance in KIRC

(Considine and Hurwitz, 2019). With the advent of

immunotherapy, many immune-related drugs, such as

nivolumab and ipilimumab, have been applied to patients

with KIRC to improve survival with successful outcomes

(Motzer et al., 2019). Despite considerable improvements in

diagnosis technologies and treatment methods in the past

several decades, the prognosis of KIRC patients remains poor

due to metastasis at diagnosis and drug resistance.

A recent study reported a novel form of cell death: cuproptosis,

through which copper toxicity induces the destruction of certain

mitochondrial metabolic enzymes, triggering an unusual

mechanism of cell death. This mechanism could explain the

pathology associated with inherited copper overload diseases and

suggest newways to exploit copper toxicity to treat cancer (Tsvetkov

et al., 2022). Some studies have reported that cuproptosis is

associated with cancer prognoses and immunotherapy sensitivity

(Wang et al., 2022a). For instance in pancreatic cancer, a model

using three cuproptosis genes was shown to be a good predictor of

prognosis. Furthermore, the study found significantly different levels

of immune infiltration between different risk groups based on the

cuproptosis prognosis model (Xu et al., 2022). A recent study also

explored the role of cuproptosis in KIRC (Bian et al., 2022).

However, some important issues have not been clearly

investigated, such as the role of gene alterations, the definition of

molecular subtypes, and the development of a prognostic model

based on cuproptosis regulators, and potential response to

chemotherapy and immunotherapy. In the present study, we

investigated gene alterations and variations in the number of

cuproptosis regulators genes in KIRC. Next, we performed a

clustering analysis based on differentially expressed cuproptosis

regulators and explored the clinical and immune characteristics

of these molecular subtypes. We then developed and validated a

cuproptosis-related prognosticmodel by calculating a risk score. The

risk score obtained could independently predict the prognosis of the

individual patient using a novel nomogram risk assessment model.

Finally, we explored the effect of the cuproptosis regulator-based risk

score on the potential response to chemotherapy and

immunotherapy. Overall, we present a new and different

perspective on the functional roles of cuproptosis in KIRC, and

provide new information for developing an individualized treatment

strategy for KIRC.

Methods

Data sources

We obtained the KIRC transcriptome profile (tumor: 539,

normal: 72 samples) from The Cancer Genome Atlas (TCGA)

TABLE 1 General characteristic of data source of patients.

Category Number Percent (%)

Age

<=60 264 49.8

>60 266 50.2

Gender

Male 344 64.9

Female 186 35.1

Grade

G1-2 241 45.5

G3-4 281 53.0

GX 5 0.9

unknown 3 0.6

Stage

I/II 322 60.8

III/IV 205 38.7

unknown 3 0.6

T

T1-2 340 64.2

T3-4 190 35.8

N

N0 239 45.1

N1 16 3.0

NX 275 51.9

M

M0 420 79.2

M1 78 14.7

MX 30 5.7

unknown 2 0.4
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(https://portal.gdc.cancer.gov/), and clinical information was

also extracted, including age, sex, grade, stage, and tumor

node metastasis classification (TNM). Data without follow-up

time or outcomes were excluded. The dataset included 531 KIRC

patients, which were randomly separated into a training group

(n = 266) and a validation group (n = 265), and complete data

with clinical data was 530. The general characteristics of data

sources were presented in Table 1. Simple nucleotide variation

and copy number variation were also downloaded obtained. All

omics data were normalized before the analysis. We obtained

13 cuproptosis regulators from a previous study (Supplementary

Table S1) (Cobine and Brady, 2022; Li et al., 2022) and the gene

list is provided in Supplementary Table S2. All original data and

codes have been submitted to the Editorial Office.

Molecular clustering

The molecular clustering was completed using the R

packages “ConsensusClusterPlus”. This method chooses the

optimal number of clusters after 1000 repeated calculations.

The clustering result was further confirmed by principal

component analysis (PCA) and the t-distributed stochastic

neighbor embedding (tSNE) algorithm. We first performed

molecular clustering in terms of cuproptosis regulators, and

then performed gene clustering using differential gene

expression (DGE) analysis between the different cuproptosis

clusters. Kaplan-Meier analysis was used to compare the

overall survival (OS) curves of different molecular clusters.

Gene set variation analysis (GSVA) was performed using the

R package “GSVA”. We first calculated the pathway enrichment

score of each sample using the gmt file

“c2.cp.kegg.v6.2.symbols.gmt” and performed the DGE

analysis using the R package “limma”. The results are

presented in the form of a heatmap. p-values <0.05 were

considered a statistically significant. We estimated the

correlations among different genes using Spearman’s methods.

Gene ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analysis were performed using

the R “clusterProfiler” packages.

Development and validation of a
cuproptosis prognostic model

The entire KIRC dataset was randomly grouped into training

and validation groups (50% for each group). The least absolute

shrinkage and selection operator (Lasso) analysis was used to

identify the signature genes in the training dataset, and the

regression coefficient was obtained from Cox regression. We

estimate the cuproptosis score using the following formula: risk

score = gene1 expression * regression coefficient-1 +... + geneN

expression × regression coefficient-N. Based on the median score

value, we divided KIRC patients into high- and low-risk groups.

We then conducted a survival analysis for the high- and low-risk

groups using the “survminer” package R. PCA analysis was used

to show the risk distribution and receiver operating characteristic

curves (ROC) were performed to calculate the area under the

curve (AUC) for 1-year, 2-year and 3-year OS and to evaluate the

predictive capacity of the signature. Using the established

prognostic model, we validated the results of all analyses in

the validation data set.

Independence and clinical correlation
analysis

To explore the independence of the cuproptosis score in

the prognosis of KIRC, we performed a univariate and

multivariate Cox regression analysis. The hazard ratio (HR)

and the 95% confidence interval (CI) were also calculated. We

compared the clinical characteristics among different

cuproptosis clusters, gene clusters, and risk groups using

the Chi-square test, and compared the cuproptosis score of

different cuproptosis and gene clusters using non-

parameters test.

To evaluate the prognosis of each patient, we built a

nomogram risk assessment model using the risk score and

clinical parameters. The calibration plot was used to assess the

degree of fitness between observed probability and predicted

probability for 1-year, 3-year, and 5-year OS. A ROC was used to

assess the predictive capacity of the nomogram score for

individual patients.

Immune infiltration analysis

We calculated immune, stromal, and estimate scores, and

tumor purity using the ESTIMATE algorithm (Yu et al., 2021).

Furthermore, we investigated the levels of infiltration of

22 immune cell types and the function for each sample. Genes

related to immune checkpoints were also evaluated. Differential

analysis was performed for cuproptosis groups, gene groups, and

risk groups. p-values <0.05 were considered statistically

significant.

Chemotherapy sensitivity and
immunotherapy

Data were obtained from the Genomics of Drug Sensitivity in

Cancer (GDSC). IC50 of 746 small molecules (GDSC: 265) and in

1861 (GDSC: 860) cell lines was collected along with their mRNA

expression data from databases. The mRNA expression and drug

sensitivity data were merged. Pearson’s correlation analysis was

performed to assess the level of correlation between the drug

Frontiers in Genetics frontiersin.org03

Liu et al. 10.3389/fgene.2022.983445

https://portal.gdc.cancer.gov/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.983445


IC50 and mRNA expression (Muttenthaler et al., 2021). p-values

with adjusted FDR were obtained. A negative correlation

indicated that gene expression is suppressed, which suggested

sensitivity to that drug and vice versa. We also compared

IC50 levels between high- and low-risk groups.

Subsequently, we validated the role of the cuproptosis score

on prognosis using Imvigor 210 (http://research-pub.gene.com/

IMvigor210CoreBiologies/) and the GSE78220 dataset (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78220),which

were cohorts of patients with urothelial carcinoma and

melanoma treated with an inhibitor of PD-L1 (Hugo et al.,

2016; Mariathasan et al., 2018). Follow-up information and

expression of the cuproptosis regulator were extracted.

Survival analysis was performed to compare the survival

curves of different risk scores.

Results

Landscape of cuproptosis regulators in
kidney renal clear cell carcinoma

Figure 1 presents the entire flow of the data analysis in the

study. We first explored the gene alterations of 13 cuproptosis

regulators, and identified only two genes (ATP7B and DLD) with

a frequency of gene alterations of at least 1% (Figure 2A). Most

cuproptosis regulators show a higher loss frequency than a higher

gain frequency (Figure 2B). Figure 2C shows the location of these

regulators on the chromosome. Among these regulators, most

showed positive associations among them, except for GCSH-

KIAA1429 (Figure 2D). DGE analyses indicated that most

cuproptosis regulators were significantly downregulated in the

tumor tissue (Figure 2E).

Molecular subtypes and characteristics

To explore the molecular subtypes, we first performed survival

analyses and identified 12 genes related to prognosis (Figure 3A).

Next, we performed consensus clustering and found that KIRC

patients could be separated into two cuproptosis clusters

(CuproCluster A and CuproCluster B, Figure 3B and

Supplementary Table S3). The PCA and tSEN analyses further

identifiedmolecular subtypes (Figures 3C,D), and the Kaplan-Meier

analysis also indicated that CuproCluster B had poorer OS than

CuproCluster A (Figure 3E). We then explored the correlation

between clusters and clinical characteristics. CuproCluster B was

associated with advanced clinical stage, grade, and T and M

classification (Figure 3F), while cuproptosis regulators were

highly expressed in CuproCluster B. Finally, we further explored

the function and levels of immune infiltration in different molecular

clusters. GSVA indicated that most metabolic functions and

signaling pathways were significantly and highly enriched in

CuproCluster B; epithelial cell signaling, the adipocytokine

signaling pathway, and metabolism of glyoxylate and

dicarboxylate, glycosaminoglycan biosynthesis, chondroitin

sulfate, and ribosome were significantly down-regulated

(Figure 3G). Furthermore, we analyzed the tumor

microenvironment (TME) and levels of immune infiltration. Our

results indicated that the stromal score, immune score, and estimate

score were significantly decreased in CuproCluster B, while tumor

purity was higher in CuproCluster B than in CuproCluster A

FIGURE 1
Flow chart showing data processing.
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FIGURE 2
Landscape of cuproptosis regulators in KIRC. (A): Gene alterations of cuproptosis regulators. (B): Copy number variation frequency of
cuproptosis regulators. (C): Chromosome ideograms and labelled chromosomes. (D): Correlation circle among cuproptosis regulators. (E):
Differentially gene expression analysis of cuproptosis regulators between normal and tumor cells.
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(Figures 3H–K). Immune cells including aDC, CD8+ T cells, NK

cells, Tfh, Th1 cells, The2 cells, and TIL were downregulated in

CuproCluster B (Figure 3L). Immune functions (CCR, checkpoint,

cytolytic activity, inflammation-promoting, para-inflammatory, co-

inhibition of T cells, co-stimulation of T cells, response to Type I

IFN) were also significantly decreased in CuproCluster B

(Figure 3M). According to the subtype of cold-hot tumor,

CuproCluster B with a low level of immune infiltration can be

FIGURE 3
Molecular subtypes based on cuproptosis regulators in KIRC. (A): Correlations between the prognosis of cuproptosis regulators in KIRC. (B): The
consensus matrix identified the optimal number of cuproptosis subtypes. (C,D): PCA and tSEN identified two components. (E): Kaplan-Meier survival
curves of the twomolecular subtypes. (F): Correlations of subtypes with clinical characteristics. (G): GSVA identified differentially expressed signaling
pathways. (H–K): Tumormicroenvironment and tumor purity levels of different subtypes. (L,M): Immune cells and functions of two cuproptosis
subtypes. (N): Distribution of immune subtypes of the two cuproptosis subtypes. (O): Expression levels of immune-related checkpoint genes
between the two cuproptosis subtypes.
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FIGURE 4
Molecular clustering based on differentially expressed genes between two cuproptosis subtypes. (A): The consensus matrix identified the
optimal gene clusters. (B,C): PCA and tSEN identified three gene clusters. (D): Kaplan-Meier survival curves of gene clusters. (E,F): Correlations of
gene clusters with clinical characteristics and expression of cuproptosis regulators. (G): Association between cuproptosis clusters, gene clusters, and
prognosis. (H–K): stromal and immune estimate scores, and tumor purity across three gene clusters. (L,M): Immune cells and levels of function
of three gene clusters. (N): Expression of immune-related checkpoint genes among three groups. (O–Q): Differentially expressed signaling pathways
among three gene clusters.
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defined a “cold tumor” and CuproCluster A with a high level of

immune infiltration could be considered a “hot tumor.”

Furthermore, there was a significant difference in the distribution

of immune subtypes between CuproCluster A and CuproCluster B

(Figure 3N), and the immune checkpoint genes were significantly

downregulated in CuproCluster B (Figure 3O).

Gene clusters and characteristics

Using the 6742 DGEs between CuproCluster A and

CuproCluster B of cuproptosis (Supplementary Table S4), we

first performed clustering to identify the three gene groups

(geneCluster A, geneCluster B, and geneCluster C, Figure 4A and

Supplementary Table S5). Similarly, PCA and tSEN also identified

three components (Figures 4B,C). Furthermore, Kaplan-Meier

analysis indicated that gene Cluster C had the poorest prognosis

followed by gene Cluster B, while gene Cluster A had the best OS

(Figure 4D). Cuproptosis regulators also presented the highest levels

of expression in gene geneCluster A among three gene clusters

(Figure 4E). Next, we explored the correlations of geneClusters with

clinical characteristics and cuproptosis clusters, and the results

indicated that geneClusters were significantly correlated with

grade, T classification, CuproClusters and clinical outcomes

(Figures 4F,G). The analysis of the TME revealed that the

stromal and ESTMATE scores of geneCluster A were higher

than those of geneCluster B and C, while there were no

differences in immune score between three geneClusters (Figures

4H–K). Furthermore, B cells showed the highest infiltration level in

geneCluster A followed by geneCluster B and geneCluster C.

Immune cells (DCs, iDCs, mast cells, T-helper cells, and Treg)

and immune function (APC co-inhibition, CCR, class I major

histocompatibility complex, pro-inflammatory, Type II interferon

response) showed similar trends (Figures 4L,M). Further analyzes

indicated that PD-L1, CD40, CD44, CD80, CD28, CD200, and

CD86 expression decreased from gene cluster A, B, to C (Figure 4N).

GSVA revealed that geneCluster A was mainly enriched in the Wnt

signaling pathway, mitogen-activated protein kinase signaling

pathway, neurotrophic signaling pathway, ERBB signaling

pathway (Figure 4O). GeneCluster B was enriched in basal

transcription factors, RNA degradation, cell cycle, the RIG I

receptor signaling pathway, and receptor toll signaling pathways

(Figure 4P). GeneCluster C was enriched in endocytosis, the insulin

signaling pathway, and progesterone-mediated oocyte maturation

(Figure 4Q and Supplementary Tables S6–S8).

Development and validation of a
cuproptosis prognostic model

Using a training dataset, we performed Lasso regression and

identified two genes in the final regression model

(Supplementary Figures S1A,B). We estimated the risk score

of each sample in the training group, and divided KIRC into

high- and low-risk groups. Kaplan-Meier analysis showed that

the high-risk group had poorer OS survival than the low-risk

group (Figures 5A,B). Similar results were also found in the

validation group (Figures 5C,D). The combined data also

indicated that patients with a high-risk score had a poor

prognosis (Figures 5E,F). Time-independent ROC showed that

the AUCs for 1-year, 2-year and 3-year were 0.719, 0.655, and

0.666, respectively (Figure 5G).

Independence and clinical correlation
analysis

The univariate cox regression indicated that the risk score

was associated with a poor prognosis in KIRC (hazard ratio [HR]:

3.519, 95% confidence interval [CI]: 2.373–5.220, p < 0.001), and

the multivariate cox regression further showed that the risk score

was an independent predictive factor for KIRC (HR:1.426, 95%

CI:1.236–1.645, p < 0.001). The risk score in CuproCluster B was

significantly higher than in CuproCluster A (p < 0.001,

Figure 5J). The risk scores also increased in gene clusters A,

B, and C (Figure 5K). The correlation analysis indicated that the

high-risk group had a higher ratio of patients with CuproCluster

B and geneClusters B and C (Figures 5L–N).

We then built a nomogram to predict the probability of risk

of individual patients with KIRC (Figure 5O). The results

indicated that the 1-year, 3-year and 5-year death risk were

0.201, 0.504, and 0.703, respectively, for a female aged >60 years
with N1, stages III-IV, grades 3–4, and high-risk status. The 1-

year, 3-year and 5-year OS calibration plots showed that the

probability predicted by the nomogram was fitted with the actual

observed probability (Figures 5P–R). The time-independent

ROC indicated that the nomogram achieved the highest

predictive value for 5-year survival outcomes, and the AUC

was 0.860 (Figure 5S).

Gene alterations and methylation

Additionally, we compared gene alterations and methylation

level. We found that the high-risk group had relatively more

frequent gene alterations in ATP7B and DLD (Figure 6A). FDX1,

LIAS, DLD, GCSH, DLST, PDHA1, ATP7A methylation levels

were lower in the high-risk group than in the low-risk group, and

the opposite result was observed for DBT (Figure 6B). We further

compared the top 20 gene mutations of two risk groups, and

found that there were differences between the high and low-risk

groups in SETD2, DNAH9, HMCN1, LRP2, ANK3, FBN2, which

showed the highest mutation frequencies in high-risk group,

while the low-risk group showed high frequencies in KDM5C,

PTEN, XIRP2, DST, ABCA13, LRP1B and USH2A (Figures

6C,D). However, there were no differences in variant
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FIGURE 5
Development and validation of the cuproptosis-related prognostic model. (A,B): The Kaplan-Meier (K–M) survival curve and risk distribution of
the patients in the training group. (C,D): The K-M survival curve and the risk distribution of the patients in the validation group. (E,F): The K-M survival
curve and risk distribution of patients in the whole dataset. (G): The time-independent ROC of 1-year, 2-year, and 3-year overall survival. (H,I): Forest
plot of univariate and multivariate Cox regression for the risk score. (J,K): Risk scores for cuproptosis clusters and gene clusters. (L–N):
Correlations of risk groups with cuproptosis clusters, gene clusters, and clinical outcomes. (O): Nomogram that predicts individual risk based on risk
groups and clinical parameters. (P–S): The calibration plot of the observed value and the probability predicted by the nomogram at 1 year, 3 years,
and 5 years. (R): AUCs of the risk score and clinical parameters.
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FIGURE 6
Characteristics of genemutations of different risk groups. (A): Heatmap showing the alterations of the cuproptosis regulator genes between the
high and low-risk groups. (B): The yellow line indicates the level of methylation of the cuproptosis regulators between the high- and low-risk groups.
(C,D): Top 20 gene alterations of the high and low risk groups. (E,F): Types of gene alterations in the high- and low-risk groups. (G,H): Summary of
gene co-occurrences and mutually exclusive genes of the two risk groups.

Frontiers in Genetics frontiersin.org10

Liu et al. 10.3389/fgene.2022.983445

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.983445


FIGURE 7
Effects of cuproptosis regulators on chemotherapy sensitivity. (A–P): Small molecular compounds related to cuproptosis regulators. (Q–A2):
IC50 levels of different chemotherapy drugs between the high- and low-risk groups.
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FIGURE 8
Associations between cuproptosis regulators and immunotherapy. (A–D): TIDE, exclusion, dysfunction, and MSI levels of different risk groups.
(E,F): The immune response and prognosis comparisons of different risk groups in the IMvigor cohort. (G,H): The immune response and prognosis
comparisons of different risk groups in the GSE78220 cohort.
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classification and variant types between two risk groups (Figures

6E,F). The high-risk group presented co-occurrence in DNAH2-

MTOR, BAP1-AKAP9, DNAH9-ATRX, while the low-risk

group showed mutual exclusiveness in AHNAK2/KMT2C/

MUC16/XIRP2/ABSCA13/LRP1B-TP53 (Figures 6G,H).

Correlations of the risk scorewith function
and pathway enrichment and immune
infiltration

Furthermore, we evaluated the correlations of the risk score

with immune cell levels using Spearman’s analysis. The risk score

was positively associated with memory B cells, regulatory T cells,

follicular helper T cells, plasma cells, macrophages M0, and RNA

(Supplementary Figure S2B). However, the risk score showed

negative associations with eosinophils, dendritic cells,

monocytes, resting mast cells, and M2 and M1 macrophages

(Supplementary Figure S3). These results indicated that the high-

risk group had a lower level of immune infiltration.

Chemotherapy sensitivity and
immunotherapy

To explore the effects of cuproptosis regulators on treatment

in KIRC, we first explored the correlations of signature genes

with small molecular compounds and find ATP7B could increase

resistance to chemotherapy of E-7820, carmustine, and nilotinib

and showed sensitivity to chemotherapy towards ifosfamide,

teniposide, mitosantrone, carmustine, and uracil mustard.

DLAT expression could increase the KIRC sensitivity toward

staurosporine, everolimus, and AT-13387. FDX1 expression

show chemotherapy resistance of KIRC toward chelerythrine

and ifosfamide (Figures 7A–L). We then compared the

IC50 levels of some chemotherapy drugs between the high

and low-risk groups. The results indicated that the high-risk

group may show sensitivity to chemotherapy in dasatinib and

gefitinib (Figure 7Q–7R). Most drug resistance was associated

with the high-risk group (Figures 7S–A2).

We then evaluated tumor immune dysfunction and exclusion

(TIDE). Based on tumor pretreatment expression profiles, this

TIDE module can estimate multiple published transcriptomic

biomarkers to predict patient response. The results indicated that

the high-risk group had a higher level of TIDE, exclusion, and

dysfunction than the low-risk group, while the degree of

microsatellite instability (MSI) of the high-risk group

decreased significantly (Figures 8A–D). Finally, we evaluated

the effects of the cuproptosis risk score in patients who

received PD-L1 inhibitors. The CR/PR response rate was

similar between the high- and low-risk groups (78% vs. 76%,

p > 0.05, Figure 8E), but the high-risk group had a poorer

prognosis than the low-risk group (p = 0.008, Figure 8F). In

other data from the immunotherapy cohort, the high-risk group

had a lower immunotherapy response rate than the low-risk

group (31% vs. 71%, p < 0.001), and the Kaplan-Meier analysis

indicated that the prognosis of the high-risk group was poorer

than that of the low-risk group (p = 0.006, Figure 8H). These

results indicated that cuproptosis regulators could affect the

immunotherapy response and efficiency in cancer.

Discussion

Copper ion is an essential metal element in living organisms.

It plays an important role in biological mechanisms acting as a

cofactor of essential enzymes (Mahl et al., 2020). In the normal

physiological state, copper ions maintain low concentration and

dynamic balance in the organism, when abnormal accumulation

of copper ions can cause copper toxicity and then induce cell

death (Fowler et al., 2019). Studies have shown that mutations in

human genes can cause an imbalance of copper homeostasis and

induce a variety of diseases (Wang et al., 2022a; Tang et al., 2022).

Furthermore, several studies have found that copper ion carriers

and their chelating agents are expected to be potential drug

molecules for tumor treatment (Cobine and Brady, 2022).

However, the specific molecular mechanisms underlying

copper ion-induced cell death have not been clarified.

Therefore, exploring mechanisms of copper-induced cell death

is helpful to better understand the copper imbalance and to

develop treatment strategies.

Recent studies also evaluated the role of cuproptosis in KIRC

(Bian et al., 2022; Ji et al., 2022; Wang and Wang, 2022).

However, there were notable differences with the present

study. First, we performed a molecular cluster analysis and

identified two cuproptosis clusters and three gene clusters that

could facilitate personalized treatment, which were not reported

in the Bian’s and Wang’s study but three cuproptosis clusters in

Li’s study. Second, we build a prognostic model using different

processing strategies. We divided the whole sample into training

and test cohorts. Then, we built the prognostic model in the

training cohort and validated the prognostic model in the test

cohort. The previous studies only built prognostic models that

were not validated using external or even internal data. Besides,

the aforementioned model for OS included multiple genes (Bian:

FDX1, DLAT, CDKN2A; Wang: MTF1, LIAS, FDX1, DLAT,

CDKN2A; Li: ENAM, WDR72, CLDN10, HMGCS2, CYFIP2,

and QRFPR) with low predictive ability, while our model

included two genes (FDX1 and DBT) with 0.714, 0.660, and

0.684 at the 1-year, 3-year, and 5-year time points. Our model

showed a high predictive capacity. Third, we included key genes

as markers to build the nomogram, which differed from the

previous study that used single genes in the final model, while

Wang and Li’s studies did not perform such analyses. Our final

nomogram risk score achieved 0.860 AUC at the 5-year time

point. Furthermore, we evaluated the sensitivity to chemotherapy

Frontiers in Genetics frontiersin.org13

Liu et al. 10.3389/fgene.2022.983445

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.983445


of the model and its effects on immunotherapy in data from two

independent cohort, which was also not reported in the previous

three studies. Finally, we evaluate the effect of cuproptosis on

immunotherapy in two independent cohort data, which were not

reported in previous three studies. Overall, our study provided

more comprehensive results, an efficient and reliable prognostic

model, and a strategy for practical clinical treatment.

Precision oncology requires that clinical practitioners use the

molecular characteristics of individual patient tumors to assess the

benefit or toxicity of specific therapeutic interventions (Mateo et al.,

2022). If we can use genomics to classify tumors into molecular

subtypes with oncogenic mechanisms and responses to targeted

drugs against these mechanisms, this will have important

implications for our understanding of the molecular

heterogeneity that is prevalent between different tumor subtypes

and can promote the development of clinical therapeutic drugs

(Prasad et al., 2016). Our results indicate that patients with KIRC

can be divided into twomolecular subtypes with different biological

functions, clinical prognosis, and immune status according to the

expression of cuproptosis regulators. Our findings may be helpful

for the management of the risk of KIRC. Furthermore, we obtained

three clusters of genes from the DGE analysis between two

molecular subtypes of cuproptosis, which will help stratify

intervention management with greater precision. Next, we built

a cuproptosis prognostic model that could predict the OS of KIRC.

Compared to the previous prognostic model comprising multiple

and evenmore than a dozen genes, our model wasmore practical as

our prognostic model only included two genes: FDX1 and DBT.

FDX1 encodes a small iron-sulfur protein that transfers electrons

from NADPH through ferredoxin reductase to mitochondrial

cytochrome P450, and is involved in the metabolism of steroids,

vitaminD, and bile acids (Mateo et al., 2022). DBT encodes an inner

mitochondrial enzyme complex involved in the breakdown of

branched chain amino acids isoleucine, leucine, and valine (Li

et al., 2021; Wang et al., 2022b). A recent study found that

copper-dependent cell death occurs through the direct binding

of copper ions to the lipoacylated components of the tricarboxylic

acid cycle (TCA) in mitochondrial respiration, resulting in the

aggregation of lipoacylated proteins and subsequent down-

regulation of iron-sulfur clusters, which leads to proteotoxic

stress and ultimately to cell death. FDX1 and DBT are

important cuproptosis regulators that can induce cell death

through copper ions, and may be a new method of tumor

therapy (Tsvetkov et al., 2022). Our results indicated that high

expression of cuproptosis-inducing FDX1 and DBT was

significantly associated with a favorable prognosis in KIRC.

Therefore, increasing the expression of FDX1 and DBT could be

a potential approach for killing tumor cells in KIRC. This may be

potential mechanism of cuproptosis inducing cell death in KIRC.

Subsequently, we established a nomogram risk score system,

and calibration analyses and time-independent ROC proved that

this individual risk prognosis model achieved good prediction

ability. Furthermore, we dividedKIRC patients into high- and low-

risk groups according to the risk score. Different risk groups

presented different biological functions and signaling pathways.

GO enrichment analysis indicated that the high-risk group was

enriched in the protein catabolic process, neutrophil activation and

degranulation, immune response, protein ligase, GTPase binding,

and KEGG pathway analysis revealed that cytokine-cytokine

receptor interaction, the IL-17 signaling pathway, epithelial cell

signaling, valine, leucine, and isoleucine degradation were highly

enriched in the high-risk group. These functions and pathways are

suggested to be associated with KIRC (Akhtar et al., 2018).

The TME and immune infiltration play an important role in

tumor genesis and development (Pages et al., 2010; Fridman et al.,

2011; Wu and Dai, 2017; Arneth, 2019). Our results also indicated

that the risk score was positively associated with memory B cell,

regulatory T cells, follicular helper T cells, plasma cells,

M0 macrophages and showed negative associations with

eosinophils, dendritic cells, monocytes, mast cells resting, and

M2 and M1 macrophages. These results indicated that the

high-risk group had lower levels of immune infiltration. A

positive response to immunotherapy usually depends on the

interaction between tumor cells and immune regulation within

the TME. In these interactions, the TME plays an important role in

inhibiting or enhancing the immune response (Kim et al., 2020;

Mhaidly and Mechta-Grigoriou, 2021). Therefore, we evaluated

the effect of cuproptosis regulators on immunotherapy. We first

examined tumor immune dysfunction and exclusion and found

that the high-risk group had a higher level of TIDE, exclusion and

dysfunction than the low-risk group, while the MSI level of the

high-risk group significantly decreased, which means that the

high-risk group may have a poor response to immunotherapy.

The cytotoxic effect of copper carrier is related to mitochondrial

respiration. Previous studies have found that when the

mitochondria of innate immune cells are divided, melanoma

growth is significantly reduced and survival of vaccinated

animals is significantly improved. Tumor-infiltrating T cells

also produce large amounts of IFN-γ, which enhances their

anti-tumor immunity (Gao et al., 2017). In addition, the

relationship between copper death and immune regulation may

be related to NK cell metabolism. Activated NK cells not only have

enhanced glycolysis supported by increased expression of

glycolytic enzymes and glucose transporters, but also have

increased basal oxidative phosphorylation rate and maximal

respiratory capacity accompanied by increased mitochondrial

mass. The insufficient metabolism of NK cells in tumor

microenvironment will weaken their immune surveillance of

tumor, and is related to tumor growth and metastasis (Guo

et al., 2022). This may be one of the mechanisms by which

copper death affects KIRC immune regulation.

To validate this finding, we evaluated the effect of the

cuproptosis risk score on patients who received PD-L1

inhibitors. The IMvigor tool showed that the response rate

was similar between the high- and low-risk groups, but the

high-risk group had a poorer prognosis than the low-risk
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group. In another immunotherapy cohort data, the high-risk

group had lower immunotherapy response rate and poorer

prognosis than low-risk group. Our findings confirmed the

immune regulation function of cuproptosis in KIRC. Finally,

we identified several small molecular compounds that are

resistant and sensitive to chemotherapy, which can help

clinicians make decisions in clinical practice.

The present study presented several limitations that should

be considered. One limitation was that the validation data

consisted of internal data and additional data are required to

validate the prognostic model and immunotherapy response.

Another limitation was that our study did not define a biological

mechanism. We can only explore the molecular mechanism

through omics data, and in vitro and in vivo experiments

should be performed to confirm the present findings.

However, these multiple omics analyses based on cuproptosis

regulators will help in stratifying risk management and in

providing a better understanding of the molecular

mechanisms and treatment strategies for KIRC.

In conclusion, cuproptosis regulators can be used for

molecular subtyping and prognostic risk assessment in KIRC.

The established nomogram risk score system presented a high

predictive capacity for the prognosis of individual patients.

Furthermore, cuproptosis regulators can influence the response

to chemotherapy and immunotherapy in KIRC. The present study

provides new information and theoretical support that will

facilitate risk management and individualized treatment in KIRC.
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