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Abstract

DNA-binding proteins play pivotal roles in alternative splicing, RNA editing, methylating and

many other biological functions for both eukaryotic and prokaryotic proteomes. Predicting

the functions of these proteins from primary amino acids sequences is becoming one of the

major challenges in functional annotations of genomes. Traditional prediction methods often

devote themselves to extracting physiochemical features from sequences but ignoring motif

information and location information between motifs. Meanwhile, the small scale of data vol-

umes and large noises in training data result in lower accuracy and reliability of predictions.

In this paper, we propose a deep learning based method to identify DNA-binding proteins

from primary sequences alone. It utilizes two stages of convolutional neutral network to

detect the function domains of protein sequences, and the long short-term memory neural

network to identify their long term dependencies, an binary cross entropy to evaluate the

quality of the neural networks. When the proposed method is tested with a realistic DNA

binding protein dataset, it achieves a prediction accuracy of 94.2% at the Matthew’s correla-

tion coefficient of 0.961. Compared with the LibSVM on the arabidopsis and yeast datasets

via independent tests, the accuracy raises by 9% and 4% respectively. Comparative experi-

ments using different feature extraction methods show that our model performs similar accu-

racy with the best of others, but its values of sensitivity, specificity and AUC increase by

27.83%, 1.31% and 16.21% respectively. Those results suggest that our method is a prom-

ising tool for identifying DNA-binding proteins.

Introduction

One vital function of proteins is DNA-binding that play pivotal roles in alternative splicing,

RNA editing, methylating and many other biological functions for both eukaryotic and pro-

karyotic proteomes [1]. Currently, both computational and experimental techniques have

been developed to identify the DNA binding proteins. Due to the pitfalls of time-consuming

and expensive in experimental identifications, computational approaches are highly desired to
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distinguish the DNA-binding proteins from the explosively increased amount of newly discov-

ered proteins. So far, numerous structure or sequence based predictors for determining DNA-

binding proteins have been proposed [2–4]. Structure based predictions normally gain high

accuracy on the basis of availability of many physiochemical characters. However, they are

only applied to small number of proteins with high-resolution three-dimensional structures.

Thus, uncovering DNA binding proteins from their primary sequences alone is becoming an

urgent task in functional annotations of genomics with the availability of huge volumes of pro-

tein sequence data.

In the past decades, a series of computational methods for identifying of DNA-binding pro-

teins using only primary sequences have been proposed. Among these methods, building a

meaningful feature set and choosing an appropriate machine learning algorithm are two crucial

steps to make the predictions successful [5]. Cai et al. first developed the SVM algorithm,

SVM-Prot, in which the feature set came from three protein descriptors, composition (C), tran-

sition (T) and distribution (D)for extracting seven physiochemical characters of amino acids [2].

Kumar et al. trained a SVM model using amino acid composition and evolutionary information

in the form of PSSM profiles [1]. iDNA-Prot used random forest algorithm as the predictor

engine by incorporating the features into the general form of pseudo amino acid composition

that were extracted from protein sequences via a “grey model” [3]. Zou et al. trained a SVM clas-

sifier, in which the feature set came from three different feature transformation methods of four

kinds of protein properties [4]. Lou et al. proposed a prediction method of DNA-binding pro-

teins by performing the feature rank using random forest and the wrapper-based feature selec-

tion using a forward best-first search strategy [6]. Ma et al. used the random forest classifier with

a hybrid feature set by incorporating binding propensity of DNA-binding residues [7]. Professor

Liu’s group developed several novel tools for predicting DNA-Binding proteins, such as iDNA-

Prot|dis by incorporating amino acid distance-pairs and reducing alphabet profiles into the

general pseudo amino acid composition [8], PseDNA-Pro by combining PseAAC and physio-

chemical distance transformations [9], iDNAPro-PseAAC by combining pseudo amino acid

composition and profile-based protein representation [10], iDNA-KACC by combining auto-

cross covariance transformation and ensemble learning [11]. Zhou et al. encoded a protein

sequence at multi-scale by seven properties, including their qualitative and quantitative descrip-

tions, of amino acids for predicting protein interactions [5]. Also there are several general pur-

pose protein feature extraction tools such as Pse-in-One [12] and Pse-Analysis [13]. They

generated feature vectors by a user-defined schema and make them more flexible.

Deep learning is now one of the most active fields in machine learning and has achieved big

success in computer vision [14], speech recognition [15] and natural language processing [16].

It is composed of multiple linear and non-linear transformations to model high-level abstrac-

tions by using a deep graph with multiple processing layers. Convolutional neural networks

(CNN) and Long short term memory neural networks(LSTM) are two typical architectures of

deep learning. Communities from computation biology are making efforts into deep learning

to solve their biological problems [17] ranged from DNA, RNA binding specifity prediction

[18–20] to protein secondary structure [21], folding [22], and contact map [23] recognitions.

Most of them make predictions using not only sequences, but additional information, such as

transcription [18] and evolutionary profiles [21]. Few of them use sequences information

alone. Furthermore, Asgari et al. have derived a continuous distributed representation of bio-

logical sequences to make the development rapidly [24].

Since deep learning techniques have been successful in other disciplines, we aim to investi-

gate whether deep learning networks could achieve notable improvements in the field of iden-

tifying DNA binding proteins only using sequence information. In this work, we propose a

deep learning based method to predict DNA-binding proteins from primary sequences. The
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model utilizes two stages of convolutional neutral network to detect the function domains of

protein sequences, and the long short-term memory neural network to identify their long

term dependence, an binary cross entropy to evaluate the quality of the neural networks. It

overcomes more human intervention in feature selection procedure than in traditional

machine learning methods, since all features are learned automatically. It uses filters to detect

the function domains of a sequence. The domain position information are encoded by feature

maps produced by the LSTM. Intensive experiments show its remarkable prediction power

with high generality and reliability.

Materials and methods

Data sets

The raw protein sequences are extracted from the Swiss-Prot dataset, a manually annotated

and reviewed subset of UniProt. It is a comprehensive, high-quality and freely accessible data-

base of protein sequences and functional information. We collect 551, 193 proteins as the raw

dataset from the release version 2016.5 of Swiss-Prot.

To obtain DNA-Binding proteins, we extract sequences from raw dataset by searching key-

word “DNA-Binding”, then remove those sequences with length less than 40 or greater than

1,000 amino acids. Finally 42,257 protein sequences are selected as positive samples. We ran-

domly select 42,310 non-DNA-Binding proteins as negative samples from the rest of the data-

set by using the query condition “molecule function and length [40 to 1,000]”. For both of

positive and negative samples, 80% of them are randomly selected as the training set, rest of

them as the testing set. Also, to validate the generality of our model, two additional testing sets

(Yeast and Arabidopsis) from literature [25] are used. See Table 1 for details.

In reality, the number of none-DNA-binding proteins is far greater than the one of DNA-

binding proteins and the majority of DNA-binding protein data sets are imbalanced. There-

fore we simulate a realistic data set by using the same positive samples in the equal set, and

using the query conditions ‘molecule function and length [40 to 1,000]’ to construct negative

samples from the dataset which doesn’t include those positive samples, see Table 2. The valida-

tion datasets were also obtained using the method in the literary [25], adding a condition

‘(sequence length� 1000)’. Finally 104 sequences with DNA-binding and 480 sequences with-

out DNA-binding were obtained.

Table 1. Equal data set.

Data set DNA-binding non-DNA-binding Total

Original set 42,257 42,310 84,567

Train set 33,805 33,848 67,653

Test set 8,452 8,462 16,914

Yeast 100 100 200

Arabidopsis 100 100 200

https://doi.org/10.1371/journal.pone.0188129.t001

Table 2. Realistic data set.

Data set DNA-binding non-DNA-binding Total

Original set 42,257 341,481 383,738

Train set 33,805 273,185 306,990

Test set 8,452 68,296 76,748

Validation set 104 480 584

https://doi.org/10.1371/journal.pone.0188129.t002
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In order to further verify the generalization of the model, multi-species datasets including

human, mouse and rice species are constructed using the method above. For the details, see

Table 3.

For the traditional sequence-based classification methods, the redundancy of sequences in

the training dataset often leads to over-fitting of the prediction model. Meanwhile, sequences

in testing sets of Yeast and Arabidopsis may be included in the training dataset or share high

similarity with some sequences in training dataset. These overlapped sequences might result in

the pseudo performance in testing. Thus, we construct low-redundancy versions of both equal

and realistic datasets to validate if our method works on such situations. We first remove the

sequences in the datasets of Yeast and Arabidopsis. Then the CD-HIT tool with lowest thresh-

old value 0.7 is applied to remove the sequence redundancy, see Table 4 for details of the

datasets.

Methods

Just like the natural language in the real world, letters working together in different combina-

tions construct words, words combining with each other in different ways form phrases. Pro-

cessing words in a document can convey the topic of the document and its meaningful

content. In this work, a protein sequence is analogous to a document, amino acid to word, and

motif to phrase. Mining relationships among them would yield higher level information on

the behavioral properties of the physical entities corresponding to the sequences.

Deep learning model structure. The proposed deep learning model consists of four lay-

ered components: an encoding layer, an embedding layer, a CNN layer and a LSTM layer,

shown in Fig 1. The encoding layer maps a sequence to a fixed length digital vector. The

embedding layer translates it into a continuous vector. Similar to the word2vec model, trans-

forming into this continuous space allows us to use continuous metric notions of similarity to

evaluate the semantic quality of individual amino acid. The CNN layer consists of two convo-

lutional layers, each followed by a max pooling operation. The CNN can enforce a local con-

nectivity pattern between neurons of layers to exploit spatially local structures. Specifically, the

CNN layer is used to capture non-linear features of protein sequences, e.g. motifs, and

enhances high-level associations with DNA binding functions. The Long Short-Term Memory

Table 3. Multi-species data set.

Species Data set DNA-binding non-DNA-binding Total

Human Original set 6,932 6,932 13,864

Train set 5,546 5,546 11,092

Test set 1,386 1,386 2,772

Mouse Original set 4,883 4,883 9,766

Train set 3,907 3,907 7,814

Test set 976 976 1,952

Rice Original set 4,501 4,501 9,002

Train set 3,601 3,601 7,202

Test set 900 900 1,800

https://doi.org/10.1371/journal.pone.0188129.t003

Table 4. Low-redundancy versions of the equal and realistic datasets.

Data set DNA-binding non-DNA-binding Total

Equal dataset 17,327 26,443 43,770

Realistic dataset 17,327 125,792 143,119

https://doi.org/10.1371/journal.pone.0188129.t004
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(LSTM) networks capable of learning order dependence in sequence prediction problems are

used to learn long-term dependencies between motifs.

A given protein sequence S, after four layer processing, an affinity score f(s) to be a DNA-

binding protein is calculated by the Eq 1.

f ðsÞ ¼ LSTMðCNNðEmbeddingðencodingðsÞÞÞ ð1Þ

After that, a sigmoid activation is applied to predict the function label of a protein sequence

and an binary cross-entropy is applied to assess the quality of networks. The whole process is

trained in the back propagation fashion. Fig 1 shows the details of the model. To illustrate how

the proposed method works, an example sequence S = MSFMVPT is used to show products

after each processing.

Protein sequence encoding. Feature encoding is a tedious but critical work for building a

statistical machine learning model in most of protein sequence classification tasks. Various

approaches, such as homology-based methods, n-gram methods, and physiochemical properties

based extraction methods, etc, have been proposed. Although those methods work well in most

scenarios, human intensive involvement lead to less useful practically. One of the most success

in the emerging deep learning technology is its capability in learning features automatically. In

order to verify its generality, we just assign each amino acid a nature number, see Table 5. It

should be noted that the orders of amino acids have no effects on the final performance.

The encoding stage just generates a fixed length digital vector of a protein sequence. If its

length is less than the “max_length”, a special token “X” is filled in the front. As the example

sequence, it becomes 2 after the encoding.

S1 ¼ encodingðSÞ ¼ ð0; 11; 16; 5; 11; 18; 13; 17Þ ð2Þ

Embedding stage. The vector space model is used to represent words in natural language

processing. Embedding is a map process that each word in the discrete vocabulary will be

embed into a continuous vector space. In this way, Semantically similar words are mapped to

similar regions. This is done by simply multiplying the one-hot vector from left with a weight

matrix W 2 Rd × |V|, where |V| is the number of unique symbols in a vocabulary, as in (3).

et ¼Wxt ð3Þ

After the embedding layer, the input amino acid sequence becomes a sequence of dense

Fig 1. Architecture of the deep learning model.

https://doi.org/10.1371/journal.pone.0188129.g001
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real-valued vectors (e1, e2, . . .et). Existing deep learning development toolkits Keras provide the

embedding layer that can transform a (n_batches, sentence_length) dimensional matrix of inte-

gers representing each word in the vocabulary to a (n_batches, sentence_length, n_embedding_

dims) dimensional matrix. Assumed that the output length is 8, The embedding stage maps

each number in S1 to a fixed length of vector. S1 becomes a 8 × 8 matrix (in 4) after the embed-

ding stage. From this matrix, we may represent Methionine with [0.4, −0.4, 0.5, 0.6, 0.2, −0.1,

−0.3, 0.2] and represent Thyronine with [0.5, −0.8, 0.7, 0.4, 0.3, −0.5, −0.7, 0.8].

S2 ¼

0:1 � 0:4 0:1 0:2 0:6 0:4 � 0:1 0:1

0:4 � 0:4 0:5 0:6 0:2 � 0:1 � 0:3 0:2

0:2 � 0:2 0:6 0:7 � 0:1 0:1 � 0:2 0:1

0:5 � 0:2 0:1 0:6 0:2 � 0:6 � 0:2 0:9

0:4 � 0:4 0:5 0:6 0:2 � 0:1 � 0:3 0:2

0:8 � 0:5 0:4 0:7 0:5 � 0:2 � 0:5 0:3

0:9 � 0:6 0:7 0:8 0:2 � 0:1 � 0:2 0:7

0:5 � 0:8 0:7 0:4 0:3 � 0:5 � 0:7 0:8

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

ð4Þ

Convolution stage. Convolution neural networks are widely used in image processing by

discovering local features in the image. The encoded amino acid sequence is converted into a

Table 5. The amino acids encoder.

Amino acids Letters Code

Alanine A 1

Cysteine C 2

Aspartic D 3

Glutamic E 4

Phenylalanine F 5

Glycine G 6

Histidine H 7

Isoleucine I 8

Lysine K 9

Leucine L 10

Methionine M 11

Asparagine N 12

Proline P 13

Glutamine Q 14

Arginine R 15

Serine S 16

Threonine T 17

Valine V 18

Tryptophan W 19

Tyrosine Y 20

Illegal Amino acids B, J, O, U, X, Z 0

https://doi.org/10.1371/journal.pone.0188129.t005
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fixed-size two-dimensional matrix as it passed through the embedding layer and can therefore

be processed by convolutional neural networks like images. Let X with dimension Lin × n
be the input of a 1D convolutional layer. We use N filters of size k × n to perform a sliding

window operation across all bin positions, which produces an output feature map of size

N × (Lin − k + 1). As the example sequence, the convolution stage uses multiple 2-dimension

filters W� R2×8 to detect these matrixes, as in (5)

xl
j ¼ f ðxl� 1

i 
Wj þ bi
jÞ ð5Þ

Where xj is the j—th feature map, l is the number of the layer, Wj is the j—th filter,
 is convo-

lution operator, b is the bias, and the activation function f uses ‘Relu’ aiming at increasing the

nonlinear properties of the network, as shown in (6).

f ðxÞ ¼ maxð0; xÞ ð6Þ

The structure of convolution neural network is shown in Fig 2. Each filter is used to scan a

feature in the sequence. In order to understand the convolution neural network more intuitive,

we take out a 2 × 8 filter (7) in the convolution layer from the model trained with the best per-

formance.

W ¼
0:1 0:2 0:3 � 0:5 0:1 0:3 � 0:1 0:2

0:2 � 0:1 0:2 � 0:7 0:1 � 0:3 � 0:2 0:4

 !

ð7Þ

W is used to detect the S2, a 8—dimension vector is obtained, as shown below.

r ¼ convðS2Þ ¼

0:06

0

0

0

0

0

0:61

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

Then, a max-overtime pooling operation with the pooling_length = 2 is applied, r becomes

Fig 2. The structure of convolution neutral network. The model uses 2 filters to obtain 2 feature maps,

then apply a max-overtime pooling operation over the feature map and take the maximum value as the feature

corresponding to the filter.

https://doi.org/10.1371/journal.pone.0188129.g002
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S3 (in the Eq 8), which known as a feature map detected by the filter W.

S3 ¼ poolðrÞ ¼

0:06

0

0

0:61

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

ð8Þ

LSTM stage. Although traditional RNNs have achieved significant results in speech recog-

nition and text generation, the problem of vanishing and exploding gradients has made it diffi-

cult to learn long-term dynamics. LSTM is a special recurrent neural network architecture and

provides a solution by incorporating memory units that allow the network to learn when to

forget previous hidden states and when to update hidden states given new information. It uses

purpose-built memory cells to store information. The classical structure of a LSTM cell [26] is

shown in Fig 3.

it ¼ sðWxixt þWhiht� 1 þWcict� 1 þ biÞ ð9Þ

ft ¼ sðWxf xt þWhf ht� 1 þWcf ct� 1 þ bf Þ ð10Þ

ct ¼ ftct� 1 þ ittanhðWxcxt þWhcht� 1 þ bcÞ ð11Þ

ot ¼ sðWxoxt þWhoht� 1 þWcoct þ boÞ ð12Þ

ht ¼ ottanhðctÞ ð13Þ

Components of a LSTM cell is explained by equations above. where σ is the logistic sigmoid

function, and i, f, o and c are respectively the input gate, forget gate, output gate, cell and cell

input activation vectors, all of which are the same size as the hidden vector h. The weight

matrix subscripts have the obvious meaning, for example Whi is the hidden-input gate matrix,

Wxo is the input-output gate matrix etc. The weight matrices from the cell to gate vectors (e.g.

Fig 3. Long short-term memory cell.

https://doi.org/10.1371/journal.pone.0188129.g003
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Wci) are diagonal, so element m in each gate vector only receives input from element m of the

cell vector. The bias terms (which are added to i, f, c and o) have been omitted for clarity.

In our model, the features from previous stage are passed to LSTM network as input. The

LSTM generates fixed length feature representation of the output represented by S4 from the

second convolution layer.

S4 ¼ LSTMðS3Þ ¼ ða1; a2; . . . ; anÞ

Activate and loss functions. In general, a sigmoid function demonstrates well mathemat-

ics behaviors such as real-valued, differentiable, having a non-negative or non-positive first

derivative, one local minimum, and one local maximum. So, in this work, we use it as the acti-

vation function of the network, see Eq 14.

o ¼ sigmoidðS4Þ ¼ 1=ð1þ e� S4Þ ð14Þ

A loss function measures how well a machine learning model fits empirical data. In this

study, a binary cross entropy [27]. is applied to assess the prediction performances, see Eq 15.

binary crossentropyðt; oÞ ¼ � ðtðlogðoÞ þ ð1 � tÞlogð1 � oÞÞ ð15Þ

Where t is the target and o is the output.

The whole process is implemented in Keras framework, a minimalist and highly modular

neural networks library. Keras is written in Python and capable of running on top of either

TensorFlow or Theano. It was developed with a focus on enabling fast experimentation, and

supported both CPU and GPU.

Results

Experiment setups

We used three kinds of datasets including balanced, unbalanced and multi-species to bench-

mark the performance of different models. For each dataset, 80%of them are chosen randomly

for training, the rest of them for testing. The final performance is given via the best of the k-

fold (k = 3, 5, 10) cross validations.

All the experiments use same parameters for the network. The input parameters and output

sizes of each layer are shown in Table 6.

Evaluation measures

To evaluate the performance of the proposed method, a couple of assessment measures are

used in this study. These criteria includes accuracy, sensitivity, specificity. There are defined in

Eqs from 16 to 18.

Accuracy ¼
TPþ TN

TPþ TN þ FPþ FN
� 100% ð16Þ

Sensitivity ¼
TP

TPþ FN
� 100% ð17Þ

Specificity ¼
TN

TN þ FP
� 100% ð18Þ

Where TP, TN, FN, and FP are the numbers of true positives, true negatives, false negatives,

and false positives, respectively. Among these measures, the sensitivity indicates the accuracy

Predicting DNA-binding proteins from sequences using a deep learning approach
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of predicting positive samples, the specificity indicates the accuracy of predicting negative

samples, and the accuracy is defined as the ratio of correctly predicted samples in test set.

Additionally, the area under a receiver operating characteristic curve (AUC) is also applied

to evaluate the performances. AUC is a robust overall measure because its calculation relies on

the complete ROC curve and thus involves all possible classification thresholds.

The results in equal data set

To demonstrate the ability of the proposed method for predicting DNA binding proteins, we

first evaluate it on the independent testing dataset by the k-fold (k = 3, 5, 10) cross validation.

In the k-fold cross-validation, protein sequences are randomly divided into k equal parts. In

each experiment, one part is kept for the testing set and the other k − 1 parts are used as the

training set. The accuracies for 3, 5 10-fold experiments are 87.5%, 92.8%and 93.1% respec-

tively. Then we use the best model of in the 5-fold experiment (see Fig 4) to test sequences

Table 6. The parameters and output sizes of each layer.

Layers Parameters Output_size

Input sentence_length = 1000 (128, 1000)

n_batches = 128

Embedding Layer input_dim = 21 (128, 1000, 128)

output_dim = 128

Convolution Layer 1 filters = 64 (128, 991, 64)

filter_length = 10

activation = relu

MaxPooling pooling_length = 2 (128, 496, 64)

Convolution Layer 2 filters = 64 (128, 492, 64)

filter_length = 5

activation = relu

MaxPooling pooling_length = 2 (128, 246, 64)

Lstm Layer lstm_output_size = 70 (128, 70)

Output activation = sigmoid (128, 1)

https://doi.org/10.1371/journal.pone.0188129.t006

Fig 4. Results of 5-fold cross validation.

https://doi.org/10.1371/journal.pone.0188129.g004
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from Arabidopsis and Yeast species [25], compare the accuracies with the ones with DNA

binder and LibSVM predictions, see Table 7. The results show that the prediction accuracies of

our model outperform LibSVM nearly by 8% and 4% for Arabidopsis and yeast species

respectively.

The results in realistic data set

For the realistic dataset, we calculate their accuracy, sensitivity, specifity and auc values

shown in Table 8 and draw the ROC curves for testing and validation datasets in Figs 5 and 6

respectively.

Table 7. The prediction accuracies across different models.

Model Test data set Accuracy

LibSVM Arabidopsis(200) 0.81

Yeast(200) 0.76

DNA Binder(10) Arabidopsis(200) 0.74

Yeast(200) 0.67

Ours Arabidopsis(200) 0.89

Yeast(200) 0.80

https://doi.org/10.1371/journal.pone.0188129.t007

Table 8. The results in the realistic data set.

Test data Acc Sensitivity Specifity Auc

Test data(76,748) 0.942 0.884 0.916 0.961

Validation data(584) 0.825 0.873 0.712 0.851

https://doi.org/10.1371/journal.pone.0188129.t008

Fig 5. The ROC of the test set.

https://doi.org/10.1371/journal.pone.0188129.g005

Predicting DNA-binding proteins from sequences using a deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0188129 December 29, 2017 11 / 18

https://doi.org/10.1371/journal.pone.0188129.t007
https://doi.org/10.1371/journal.pone.0188129.t008
https://doi.org/10.1371/journal.pone.0188129.g005
https://doi.org/10.1371/journal.pone.0188129


From the results, we can see that our model works well for both of class imbalanced and bal-

anced datasets with the competitive ROC behaviors, which is a very hard situation for tradi-

tional machine learning methods.

Results in multi-species dataset

To further verify the generality of our method across species, we train three models for

human, mouse and rice species, then use these models to test others. Table 9 shows the results

across different species.

From the results, human model works well in both itself and mouse, and vice versa. The

rice model works well for itself, but lower accuracy in human and mouse. These results coin-

cide the fact that human has close genetic relationship with mouse, is far from the rice.

Fig 6. The ROC of the validation set.

https://doi.org/10.1371/journal.pone.0188129.g006

Table 9. The results in multi-species dataset.

Train set Test set Accuracy

human(11,092) human(2,772) 0.8294

mouse(1,952) 0.839

rice(1,800) 0.739

mouse(7,814) human(2,772) 0.798

mouse(1,952) 0.7473

rice(1,800) 0.7479

rice(7,202) human(2,772) 0.75

mouse(1,952) 0.719

rice(1,800) 0.918

https://doi.org/10.1371/journal.pone.0188129.t009
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Performance comparisons with different feature extraction methods

We also compare the performances of our deep learning model with other feature extraction

methods on both of the equal datasets and realistic datasets.

Three kinds of feature extraction methods, including 188D [28], Auto Covariance(AC) [29]

and Conjoint triad(CT) scores [30] are used, and the linear regression, support vector machine,

random forests are applied to test the performances of those features.

The 188D extracted the sequence characteristics according to the composition, distribution

and physiochemical properties of amino acids and then formed a 188-dimension vector to rep-

resent the raw sequence. The AC method took into account the interactions between amino

acids within the entire sequence, and represented each sequence by a vector of AC variables

describing the average interactions between residues. The CT method divided all amino acids

into seven categories and regarded three consecutive amino acids as a unit, and represented

each sequence by a 343-dimension vector of the frequencies of triad types appearing in the

amino acid sequence.

The performance comparisons using the same training and testing datasets are summarized

in Tables 10 and 11 respectively. For the equal dataset, our model outperforms 2% of the best

known previous results by the combination of 188D and SVM, and more than 10% by the

average of all others. For the realistic dataset, our model performs similar accuracy with the

best (188D+RF) of others, but outperforms its sensitivity and AUC by 0.2627, and 0.1511

respectively. This suggests that the proposed model is more reliable and robust.

Table 10. Performance comparisons on the equal dataset.

Method Accuracy

188D LR 0.7607

SVM 0.9078

RF 0.8776

AC LR 0.6789

SVM 0.7993

RF 0.8360

CT LR 0.7080

SVM 0.8565

RF 0.8588

Our model 0.9284

https://doi.org/10.1371/journal.pone.0188129.t010

Table 11. Performance comparisons on the realistic dataset.

Method Accuracy Sensitivity Specificity Auc

188D LR 0.8940 0.1442 0.5560 0.5651

SVM 0.9500 0.6057 0.9029 0.7989

RF 0.9581 0.6213 0.9801 0.8099

AC LR 0.8922 0.0220 0.5690 0.5100

SVM 0.9255 0.3296 0.9495 0.6637

RF 0.8919 0.0308 0.5949 0.5141

CT LR 0.8925 0.0898 0.5745 0.5408

SVM 0.9219 0.3230 0.8969 0.6592

RF 0.8920 0.0290 0.6055 0.5133

Our model 0.942 0.884 0.916 0.961

https://doi.org/10.1371/journal.pone.0188129.t011
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Performance comparisons with low-redundancy training sets

We train the models on the low-redundancy versions of the equal and realistic datasets, and

compare the performances with 188D+SVM method. The results are shown in Tables 12 and

13.

For the low-redundancy version of equal dataset, the accuracy is lower 3.86% than full ver-

sion and slight higher than 188D+SVM method. When the model is applied to Arabidopsis

and yeast datasets, the accuracies are 85% and 78% respectively, which are slight lower than

ones in the full model.

For the low-redundancy version of realistic dataset, its model works worse than the full

model, but better than the 188D+SVM method over all the measures.

These results suggest that the sequence redundancy in the training dataset does not

decrease the performances, while somehow increase the power of prediction capability because

deep learning requires huge volume of data to fit its model and provides mechanisms (espe-

cially the dropout technology) to overcome model over-fitting.

Discussion

In computer vision area, recent research [31] reveals that networks depth is of crucial impor-

tance, for example on the challenging ImageNet, models were exploited with a depth sixteen

[31] to thirty [32]. In order to compare the effects of different depths of networks and lengths

of filters, we have designed two other models. The first contrastive model is a single layer CNN

with the filter length 5. The second one has two layers CNN with the filter length 5 of the first

CNN layer.

The Fig 7 shows that the model with two layers CNN can speedup the convergence of loss

functions, while the model with large filter length can get higher convergence of loss functions.

The prediction accuracy demonstrates similar behaviors, see Fig 8.

During the experiments, we found that the performances of the neural networks are some-

how driven by data rather than the structures designed artificially. For small datasets, deep

learning doesn’t have a more excellent performance than traditional machine learning meth-

ods. With the rapidly growth of protein sequence data, the advantage of deep learning can be

reflected increasingly. Meanwhile the speed of computing is an indispensable problem. GPUs

are often used to accelerate the computational speed for this situation.

A most recent work predicted DNA-binding proteins interacting with ssDNA (single-

stranded DNA) or dsDNA (double-stranded DNA) using OAAC (overall amino acid composi-

tion) features, dipeptide compositions, PSSM (position-specific scoring matrix profiles) and

Table 12. The results in low-redundancy equal data set.

Method Accuracy

full model 0.928

low-redundancy model 0.8849

188D+SVM 0.8745

https://doi.org/10.1371/journal.pone.0188129.t012

Table 13. The results in low-redundancy realistic data set.

Method Accuracy Sensitivity Specificity Auc

full model 0.942 0.884 0.916 0.961

low-redundancy model 0.8638 0.5138 0.8461 0.7129

188D+SVM 0.8435 0.3340 0.7063 0.6502

https://doi.org/10.1371/journal.pone.0188129.t013
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split amino acid composition (SAA) [33]. Testing by SVM (support vector machine) and RF

(random forest) classification model, their method can achieve the accuracy of 88.7% and

AUC of 0.919. Our method achieve the accuracy of 94.2% and AUC of 0.961 on the realistic

data set. Moreover, the deep learning approach can speedup the procedures of trivial feature

selection and enable scientists put more efforts on biological analysis.

All the source codes used in this study are available at the figshare server (https://doi.org/

10.6084/m9.figshare.5231602.v1). A user-friendly web-server for predicting DNA binding pro-

teins is accessible at http://119.23.251.26/WebServer/.

Fig 7. Loss comparisons in different models.

https://doi.org/10.1371/journal.pone.0188129.g007

Fig 8. ACC comparisons in different models.

https://doi.org/10.1371/journal.pone.0188129.g008
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Conclusion

Computational biologists are often be struggling to successfully extract meaningful features

and choose an appropriate machine learning algorithm in predicting spatial structures or func-

tions of biological sequences. The deep learning framework capable of learning features auto-

matically and training models in a back propagation way is making a big success towards these

fields. In this paper, we presented a deep learning based approach for predicting DNA binding

functions of proteins only using primary sequences. The two layers of CNN plus LSTM net-

works allow for an increase in learning power and contain more potential for motif refine-

ments in both of local connectivity and long-term dependence.

Compared with DNA binder and LibSVM, the proposed method shows a state-of-the-art

performance on both of the equal and realistic data sets. It also demonstrates substantial gener-

ality across multi-species testing. Moreover, the method outperforms most of the existing fea-

ture extraction methods plus a successful machine learning algorithm in terms of accuracy,

specificity, sensitivity and AUC. This comprehensive investigation of the deep learning model

in predicting DNA binding functions of proteins might yield a competitive tool for future pro-

teomics studies. The proposed deep learning approach would have many other potential appli-

cations, such as protein remote homology detection [34], miRNA prediction [35], etc.
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