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Abstract: A theory that can best explain the facts of a phenomenon is more likely to advance
knowledge than a theory that is less able to explain the facts. Cancer is generally considered a
genetic disease based on the somatic mutation theory (SMT) where mutations in proto-oncogenes
and tumor suppressor genes cause dysregulated cell growth. Evidence is reviewed showing that the
mitochondrial metabolic theory (MMT) can better account for the hallmarks of cancer than can the
SMT. Proliferating cancer cells cannot survive or grow without carbons and nitrogen for the synthesis
of metabolites and ATP (Adenosine Triphosphate). Glucose carbons are essential for metabolite
synthesis through the glycolysis and pentose phosphate pathways while glutamine nitrogen and
carbons are essential for the synthesis of nitrogen-containing metabolites and ATP through the
glutaminolysis pathway. Glutamine-dependent mitochondrial substrate level phosphorylation
becomes essential for ATP synthesis in cancer cells that over-express the glycolytic pyruvate kinase
M2 isoform (PKM2), that have deficient OxPhos, and that can grow in either hypoxia (0.1% oxygen)
or in cyanide. The simultaneous targeting of glucose and glutamine, while elevating levels of non-
fermentable ketone bodies, offers a simple and parsimonious therapeutic strategy for managing
most cancers.

Keywords: mutations; IDH1; glycolysis; glutaminolysis; mitochondrial substrate level
phosphorylation; ketogenic metabolic therapy; metastasis; oncogenes; chimpanzees; fermentation;
respiration; evolution

1. Introduction

Cancer is a systemic disease involving multiple time- and space-dependent changes
in the health status of cells and tissues that ultimately lead to malignant tumors [1,2].
Dysregulated cell growth, i.e., neoplasia, is the biological endpoint of the disease [3].
Tumor cell invasion into surrounding tissues and their spread (metastasis) to distant organs
is the primary cause of morbidity and mortality of most cancer patients [4–7]. Data from
the American Cancer Society showed that the number of people dying in the US from
cancer in 2013 was 580,350, and in 2020 it was 606,520, an increase of 4.3% [8,9]. The US
population increase over this same period was 4.5%, indicating no real progress in cancer
management. Cancer is predicted to overtake heart disease as the leading cause of death in
Western societies. Is the failure to reduce the cancer death rate due to an incorrect theory
on the origin of the disease?

2. Scientific Theories

A scientific theory is simply an attempt to explain the facts of nature. Reality is based
on replicated facts, whereas interpretation of the facts is based on credible theories. The
heliocentric theory of Copernicus, Galileo, and Keppler was able to explain better the
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movements of celestial bodies than was the geocentric theory of Ptolemy. The germ theory
of Louis Pasteur was able to explain better the origin of contagious diseases than was
the miasma “bad air” theory of Hippocrates and Galen. The Darwin–Wallace theory of
evolution by natural selection was able to explain better the origin of species than was
the theory of special creation [10]. In none of these examples could a hybrid theory be
envisioned. A theory that can best explain the facts of a phenomenon is more likely to
advance knowledge than is a theory less able to explain the facts. The provocative question
before us is whether the Mitochondrial Metabolic Theory (MMT) can explain better the
origin and management of cancer than can the current Somatic Mutation Theory (SMT).

3. The Somatic Mutation Theory of Cancer

According to the SMT, cancer is a complex genetic disease that arises from inherited or
random somatic mutations in proto-oncogenes or in tumor suppressor genes [11–13]. While
many mutations have been found in various tumors, the so-called driver gene mutations
are considered most responsible for causing the disease [11,14]. Although the SMT is
the dominant scientific explanation for the origin of cancer, numerous inconsistencies
have emerged that seriously challenge the credibility of this theory [15–17]. The major
inconsistencies include:

(1) The absence of gene mutations and chromosomal abnormalities in some can-
cers [17–21]. For example, Greenman et al. found no mutations following extensive
sequencing in 73/210 cancers [13], whereas Parsons et al., found no mutations in the P53,
the PI3K, or the RB1 pathways in the Br20P tissue sample of a glioblastoma patient [22].
Cancer cells with no mutations should not exist according to the SMT.

(2) The identification and clonal expansion of numerous driver gene mutations in a
broad range of normal human tissues [23–27]. If driver genes cause cancer according to
the SMT, then how is it possible that so many driver genes are found in normal human
tissues that do not express cancer? No explanation has been presented on how the SMT can
account for, (a) malignant tumors that have no mutations, or (b) normal cells that express
driver mutations, but do not develop tumors [14].

(3) The general absence of cancers in chimpanzees despite having about 98% gene
and protein sequence identity with humans even at the BRCA1 locus [28–31]. Despite
anatomical differences between the breasts of humans and chimpanzees, breast cancer
has never been documented in a female chimpanzee [31]. As DNA replication would be
similar in normal tissue stem cells in chimpanzees and humans, the rarity of cancer in all
chimpanzee organs undermines the “bad luck” hypothesis of Tomasetti and Vogelstein
that cancer risk is due to random mutations arising during DNA replication in normal,
noncancerous stem cells [32]. The rarity of cancer in primitive humans and in chimpanzees
suggests that environmental factors (diet and lifestyle), rather than genetic mutations, are
largely responsible for cancer [31,33]. It is important to remember that nothing in either
general biology or in cancer biology makes sense except in the light of evolution [34,35].

(4) Theodor Boveri, the person most recognized as the originator of the SMT [36,37],
never directly studied cancer and was highly apologetic for his general lack of knowledge
about the disease. Indeed, Boveri stated: “I have no personal experience worth mentioning in
any of the numerous specialized fields of tumour research. My knowledge comes almost exclusively
from books. Given this, it is inevitable that I am unaware of many reports in the literature, that
I overestimate the significance of many known facts and that I do not set enough store by others.
But this article will doubtless contain even more serious defects, as is so often the case when an
author makes an incursion into a field with which he is unfamiliar” [38]. Most importantly,
Boveri also mentioned that defects in the cytoplasm could just as well be responsible for
cancer as defects in the nucleus. The distinguished British geneticist C. D. Darlington also
emphasized the importance of the cytoplasm in the origin of cancer [39].

The most compelling evidence against the SMT comes from the nuclear/cytoplasm
transfer experiments showing that growth-regulated cells can be produced from tumori-
genic nuclei, as long as the tumorigenic nuclei are localized in the cytoplasm containing
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normal mitochondria [40,41] (Figure 1). Moreover, recent studies show that normal mito-
chondria can down-regulate multiple oncogenic pathways and abnormal growth in glioma,
melanoma, and metastatic breast cancer cells [42–46]. These findings indicate that normal
mitochondrial function can suppress dysregulated cell growth regardless of the number of
gene or chromosomal abnormalities that might be present in the tumor nucleus. Although
the somatic mutations present in the cancer nuclei of developing frogs and mice did not
cause dysregulated cell growth, they did abort development suggesting an inhibitory lethal
effect on the proliferation of normal cells [40]. If nuclear encoded driver genes were respon-
sible for dysregulated cancer cell growth, then the results from the nuclear/mitochondrial
transfer experiments would be opposite to the results shown in Figure 1. When viewed
collectively, these findings imply that the nuclear somatic mutations found in many cancers
cannot be the primary cause of the disease and seriously challenge the SMT as a credible
explanation for the origin of cancer [14].

Despite these glaring inconsistencies, the SMT is presented as if it were a settled issue
in most current college textbooks of genetics, biochemistry, and cell biology, as well as
in the National Cancer Institute in stating that, “Cancer is a genetic disease—that is, it is
caused by changes to genes that control the way our cells function, especially how they grow and
divide” (12 October 2017) [40]. The view of cancer as a genetic disease has become a “silent
assumption”, so completely accepted that it is no longer questioned. Could the continued
acceptance of the SMT as an explanation for the origin of cancer be based more on dogmatic
ideology than on rational thought [40,47]? If nuclear somatic mutations cannot be the origin
of cancer, then how do cancer cells arise?
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Figure 1. Role of the nucleus and mitochondria in the origin of tumors. Normal cells are shown in 
green with nuclear and mitochondrial morphology indicative of normal gene expression and 
OxPhos function, respectively. Tumor cells are shown in red with abnormal nuclear and mitochon-
drial morphology indicative of genomic instability and abnormal OxPhos function, respectively. 
“(1) Normal cells beget normal cells with regulated growth. (2) Tumor cells beget tumor cells with dysregu-
lated growth. (3) Transfer of a tumor cell nucleus into a normal cytoplasm begets normal cells that have 
regulated growth, despite the presence of the tumor-associated genomic abnormalities. (4) Transfer of a normal 
cell nucleus into a tumor cell cytoplasm begets dead cells or tumor cells with dysregulated growth”. The 
general reproducibility of the findings across a broad range of tumor types, animal species, and 
experimental techniques is notable in light of major concerns regarding the irreproducibility of sci-
entific results published in prestigious journals [40,48,49]. “The results of these experiments are profound 
in showing that nuclear genomic defects alone cannot account for the origin of tumors and that normal-func-
tioning mitochondria can suppress tumorigenesis”. Original diagram from Jeffrey Ling and Thomas N. 
Seyfried with permission [41]. 

  

Figure 1. Role of the nucleus and mitochondria in the origin of tumors. Normal cells are shown
in green with nuclear and mitochondrial morphology indicative of normal gene expression and
OxPhos function, respectively. Tumor cells are shown in red with abnormal nuclear and mitochon-
drial morphology indicative of genomic instability and abnormal OxPhos function, respectively.

“(1) Normal cells beget normal cells with regulated growth. (2) Tumor cells beget tumor cells with dysregulated
growth. (3) Transfer of a tumor cell nucleus into a normal cytoplasm begets normal cells that have regulated
growth, despite the presence of the tumor-associated genomic abnormalities. (4) Transfer of a normal cell
nucleus into a tumor cell cytoplasm begets dead cells or tumor cells with dysregulated growth”. The general
reproducibility of the findings across a broad range of tumor types, animal species, and experimental
techniques is notable in light of major concerns regarding the irreproducibility of scientific results
published in prestigious journals [40,48,49]. “The results of these experiments are profound in showing
that nuclear genomic defects alone cannot account for the origin of tumors and that normal-functioning
mitochondria can suppress tumorigenesis”. Original diagram from Jeffrey Ling and Thomas N. Seyfried
with permission [41].

4. The Mitochondrial Metabolic Theory of Cancer

According to the MMT, cancer arises from a gradual disruption of ATP synthesis
through oxidative phosphorylation (OxPhos) leading to compensatory ATP synthesis
through substrate level phosphorylation. It is defective OxPhos that ultimately causes most
of the genomic changes in cancer, not the reverse. Although Otto Warburg is rightfully
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credited with the original discovery of cancer as a mitochondrial metabolic disease [50,51],
he was unaware of information now available that more strongly supports the linkage
between OxPhos deficiency and the origin of cancer (discussed later). The disruption of
OxPhos leads to the accumulation of reactive oxygen species (ROS), which are mutagenic
and carcinogenic [52–56]. The genomic instability and somatic mutations seen in most
cancers arise as a consequence of the chronic production of ROS and acidification of the mi-
croenvironment [15,55,57–61]. In other words, the somatic mutations arise as downstream
effects rather than as causes of cancer. The information summarized in Figure 1 shows
that nuclear genomic mutations alone cannot be the origin of dysregulated cell growth,
i.e., the signature phenotype of cancer. Could this information change opinions on the
importance of mutations in the origin cancer? It is our view that the MMT can explain
better the hallmarks and facts of cancer than can the SMT.

The MMT is the only theory to provide a credible explanation for the “oncogenic
paradox” that has perplexed the cancer field for decades [62–64]. Albert Szent-Gyorgyi first
described the oncogenic paradox as a specific process (malignant transformation) that could
be initiated by a plethora of unspecific events (radiation, asbestos, viral infections, rare
inherited mutations, irritation, inflammation, chemicals etc.) [62]. Siddhartha Mukherjee
also struggled to understand the paradox in stating on page 285 of his book: “What
beyond abnormal, dysregulated cell division, was the common pathophysiological mechanism
underlying cancer?” [64]. We solved the paradox in showing how the protracted loss of
OxPhos, following mitochondrial damage, is the common pathophysiological mechanism
responsible for the oncogenic paradox and the origin of cancer (Figure 2).
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Figure 2. Cancer as a Mitochondrial Metabolic Disease. Cancer can arise from any number of unspecific influences (risk
factors) that would alter the number, structure, and function of mitochondria thus affecting energy production through
OxPhos. Unspecific cancer risk factors can include, age, viral infections, the Ras oncogene, rare inherited mutations, chronic
inflammation, intermittent hypoxia, radiation exposure, chemical carcinogens etc. [2,65–68]. Any of these risk factors could
cause chronic damage to OxPhos thus increasing the production of reactive oxygen species (ROS), which would ultimately
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link to the six major hallmarks of cancer [2,12,68]. The process by which each of these unspecific risk factors can chronically
damage OxPhos was described previously in detail [16,66,69,70]. Excessive ROS, mostly generated from OxPhos dysfunction,
are carcinogenic and mutagenic and would cause significant damage to lipids, proteins, and nucleic acids in both the
mitochondria and the in the nucleus [71]. Nuclear genomic instability, including the vast array of somatic mutations and
aneuploidy, would arise because of ROS damage together with extracellular acidification and inflammation through a
bidirectional interaction between the provocative agent and cells within a tissue [1,2,57,72,73]. Indeed, mutations in the p53
tumor suppressor gene and genomic instability have been linked directly to OxPhos deficiency and mitochondrial ROS
production in cancer stem cells [55,74]. Fermentation metabolism and ROS formation underlie the hyperproliferation of
tumor cells. A gradual reduction in OxPhos efficiency would elicit a mitochondrial stress response through retrograde
(RTG) signaling [69,75–77]. RTG activation would cause persistent expression of various oncogenes, e.g., Hif-1a and c-Myc,
that upregulate receptors and enzymes in both the glycolysis and the glutaminolysis pathways [75,78–82]. Oncogenes
become facilitators of fermentation metabolism. ATP synthesis through mSLP (Q effect) will compensate for lost ATP
synthesis through OxPhos or from PKM2 expression in glycolysis [83,84]. The path to carcinogenesis will occur only in
those cells capable of sustaining energy production through substrate level phosphorylation, (SLP). Cells unable to replace
OxPhos with SLP, e.g., CNS neurons or cardiomyocytes, would die and rarely become tumorigenic. Despite the shift from
respiration to SLP, the ∆G’ATP hydrolysis remains fairly constant at approximately −56 kJ, indicating that the energy from
SLP compensates for the reduced energy from OxPhos. When respiration becomes unable to maintain energy homeostasis,
the RTG will initiate oncogene up-regulation and tumor suppressor gene inactivation. Protracted RTG activation becomes
necessary to maintain the viability of incipient cancer cells. Genomic instability will arise as a secondary consequence of
protracted mitochondrial stress from disturbances in the intracellular and extracellular environments. Metastasis arises
from respiratory damage in cells of myeloid/macrophage origin either directly or after fusion hybridization with epithelial-
derived tumor cells [4,85]. Tumor progression and degree of malignancy is linked directly to ultrastructure abnormalities
(mitochondrial cristolysis) and to the energy transition from OxPhos to substrate level phosphorylation (Warburg effect
and Q effect) [83]. The T signifies an arbitrary threshold when the shift from OxPhos to SLP becomes irreversible. This
scenario links all major cancer hallmarks to an extrachromosomal and epigenetic respiratory dysfunction and can explain
the oncogenic paradox [70]. Reprinted with modifications from [68,83].

Since no inherited cancer mutation has been found that is 100% penetrant, inher-
ited cancer mutations are also considered secondary effects and not primary causes of
cancer [66,86–88]. If an inherited or somatic mutation were to be found in all cancers, it
could be considered a primary cause of cancer. Such mutations, however, have not been
found. Inherited cancer mutations could cause cancer if they compromise OxPhos function,
making OxPhos dysfunction the primary cause of cancer. While mtDNA mutations have
been found in many cancers [89], we were unable to find a single pathogenic mutation
in the fully sequenced mtDNA of five independently-derived mouse brain tumors [90].
These findings indicate that mtDNA mutations alone cannot be the origin of all cancers.
The mtDNA mutations are considered secondary risk factors and can be linked to cancer
origin only if they also disrupt OxPhos function [91]. A chronic disruption of ATP synthesis
through OxPhos would induce, by necessity, a compensatory energy production through
the process of substrate level phosphorylation in both the cytoplasm and in the mitochon-
dria. As normal mitochondrial function maintains cellular differentiation, the rewiring of
energy metabolism from respiration to fermentation would cause dedifferentiation and
dysregulated proliferation [2,40,50,51,58]. While aerobic fermentation (Warburg effect)
is considered another emerging hallmark of cancer [12], the replacement of abnormal
mitochondria with normal mitochondria will also reverse this hallmark [44,46,92]. In
other words, OxPhos sufficiency will reverse the Warburg effect [44,93]. Hence, the energy
transition from respiration to fermentation can explain the major hallmarks of cancer,
as described by Hanahan and Weinberg (Figure 2).
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A chronic loss of OxPhos will activate the mitochondrial stress response or the ret-
rograde (RTG) signaling system [75–77]. Activation of this system stabilizes Hif-1α and
upregulates the expression of c-Myc, key oncogenes necessary for the upregulation of
substrate level phosphorylation through the glycolysis and the glutaminolysis pathways,
respectively [83]. As plasma membrane pumps are perpetual consumers of ATP, no cell can
survive for very long without constant synthesis of ATP for the pumps [94]. The transition
from ATP synthesis through OxPhos to ATP synthesis through fermentation thus becomes
essential for cell viability. Moreover, the energy transition from OxPhos to fermentation
will cause a cell to enter its “default” state. Proliferation is the evolutionary conserved
default state of metazoan cells, once freed from active control [3,17]. The mitochondrial
OxPhos system provides the active control necessary for maintaining the quiescent or dif-
ferentiated state. The protracted replacement of ATP synthesis through OxPhos with ATP
synthesis through substrate level phosphorylation will cause the cell to enter its default
state of proliferation [62]. Szent-Gyorgyi described how unbridled proliferation, driven by
fermentation metabolism, was the common phenotype of all cells before oxygen entered the
atmosphere some 2.5 billion years ago [62]. Based on the concepts of evolutionary biology,
the transition from respiration to fermentation becomes the most logical explanation for
the first three hallmarks of cancer involving dysregulated cell growth (Figure 2).

The acidification of the cancer microenvironment, arising from the excretion of fer-
mentation end products, e.g., lactate and succinate, will initiate angiogenesis. This process,
however, can be bi-directional leading to an escalating situation of biological chaos [40,95].
Stabilization of Hif-1α is ultimately responsible for angiogenesis, i.e., the fourth hall-
mark [82,83,96,97]. As mitochondria control apoptosis [98], evasion of apoptosis would
be an expected outcome of dysfunctional mitochondria and can account for the fifth can-
cer hallmark. While the rewiring of energy production from OxPhos to substrate level
phosphorylation can easily explain the first five cancer hallmarks, how might this energy
rewiring be linked to metastasis, the sixth major cancer hallmark?

Emerging evidence indicates that metastasis involves transformation of myeloid cells
or fusion hybridization between macrophages and transformed epithelial cells [4,99–107].
Macrophages and myeloid cells are mesenchymal cells that are already programed to
migrate through tissues, to intravasate blood vessels, to function in the circulation, and to
extravasate blood vessels for involvement in tissue repair and wound healing [4,108–110].
Similar to macrophages, many metastatic cancer cells are immunosuppressive and express
phagocytic behavior [100,111–113]. The absence of metastasis in crown-gall plant cancers,
despite expressing aerobic fermentation (Warburg effect), is due to the absence of a cellular
immune system (macrophages and lymphocytes) in plants [4,7]. Macrophages can acquire
mitochondria with dysfunctional OxPhos through various fusion hybridization events with
neoplastic stem cells in an acidic and hypoxic microenvironment [101,114] (Figure 3). Radi-
ation therapy can also facilitate tumor cell-macrophage/microglial fusion-hybridization
thus producing highly invasive metastatic cells, as an unintended consequence [115,116].
It is also interesting that glutamine is a major energy metabolite for cells of the immune
system including macrophages [117–119]. This fact could account in part for the glutamine
dependency of metastatic cancer cells [120–123]. As macrophages are immunosuppres-
sive, metastatic cells with macrophage properties would be powerful suppressors of the
immune system. These properties could contribute to the failure of some immunothera-
pies [124,125]. The transition from respiration to fermentation can also explain the drug
resistance of metastatic tumor cells [126,127]. The drug resistance of tumor cells is due in
large part to the replacement of energy synthesis from OxPhos to fermentation [2]. Hence,
the control of metastasis can be improved with better knowledge of macrophage biology.
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Figure 3. Fusion-hybrid hypothesis for cancer cell metastasis. According to the fusion hybrid hypothesis, metastatic cancer
cells can arise following fusion-hybridization between neoplastic epithelial cells and myeloid cells (macrophages). The
fusion hybrid hypothesis originated with the work of Aichel in 1911 and was expanded by the Pawelek and the Munzarova
groups [105,128–132]. Macrophages are known to invade in situ carcinoma as if it were an unhealed wound [95,109,133].
This creates a protracted inflammatory microenvironment leading to fusion hybridization between the neoplastic epithelial
cell and the mesenchymal macrophage. Mitochondrial damage becomes the driver for the neoplastic transformation of
the epithelial cell and of the fusion hybrids. Inflammation damages mitochondria leading to enhanced fermentation and
acidification of the microenvironment. The gradual replacement of normal macrophage mitochondria with dysfunctional
mitochondria in the hybrid cell cytoplasm leads to rogue behavior in cells that naturally possess the capability to, (1) move
through tissues, (2) suppress the immune system, (3) enter (intravasate), and to exit (extravasate) the circulation. In addition
to explaining the “seed-soil” hypothesis of metastasis, the fusion hybrid hypothesis can also explain how metastatic
cells can re-capitulate the epithelial characteristics of the primary tumor at secondary micro-metastatic growth sites [4,85].
Furthermore, this hypothesis can explain the phenomenon of mesenchymal epithelial transition without invoking a mutation
suppression mechanism. See text for more details. Modified from [85,134].

The macrophage/myeloid origin of metastasis, based on the mitochondrial metabolic
theory, should be compared with the epithelial mesenchymal transition (EMT) and mes-
enchymal epithelial transition (MET) for the origin of metastasis, based on the somatic
mutation theory [4,12]. It is unclear how random somatic mutations could be responsible
for metastasis, as the metastatic cascade is a non-random phenomenon that is common to
many cancer types [5]. Each part of the cascade involves an ordered regulation of evolu-
tionary conserved biological processes. Moreover, the metastatic behavior of cells can occur
in the absence of mutations [7,135,136]. The EMT/MET hypothesis has yet to explain how
random somatic mutations could transform an epithelial cell into a biologically distinct
mesenchymal cell (EMT), and then have these random mutations be suppressed or re-
versed to allow a transition of the mesenchymal phenotype back to an epithelial phenotype
(MET) [12,134]. We consider these fantastical biological transitions as inconsistent with
evolutionary biology [85]. In summary, the mitochondrial metabolic theory can explain
better the facts of metastasis than can the somatic mutation theory.
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5. Bidirectional Interactions Involving the Tumor Microenvironment

Bidirectional interactions between the microenvironment and cells in tissues could
also alter mitochondrial function and thus the path to neoplasia [57,58]. In contrast to
inflammation arising from sepsis and lipopolysaccharides (LPS), which induces acute mi-
tochondrial failure and cell death, the inflammation associated with the origin of cancer is
chronic. Chronic inflammation will produce protracted mitochondrial damage [69,137–139].
Injury or damage to the mitochondrial electron transport chain can arise from persistent
nitric oxide expression in the inflamed microenvironment [139,140]. It is interesting that
nitric oxide can inactivate cytochrome c and produce excess ROS without reducing oxygen
consumption rates [140]. Andre Nel and colleagues showed how ultrafine particles exacer-
bate oxidative stress and mitochondrial damage while depleting intracellular glutathione
levels in macrophage and epithelial cell lines [69,141]. Nina Bissell’s group together with
Bierie and Moses reviewed information showing how chronic inflammation in the mi-
croenvironment activates transforming growth factor beta (TGF-β) [69,142–144]. Yoon
and colleagues showed that TGF-β induces protracted mitochondrial ROS production,
which damages respiratory control and enhances senescence in lung epithelial cells [145].
Seoane et al. showed how nuclear genomic instability directly correlated with mitochon-
drial ROS production [73], while Fosslien described how gradients of TGF-β could alter
mitochondrial ATP generation in the morphogenetic field [58,69]. Chronic inflammation,
which enhances expression of nitric oxide and TGF-β will damage respiration [69,70]. Most
cells suffering respiratory damage will die. According to the MMT, tumors arise only
from those cells capable of increasing fermentation in order to compensate for insufficient
respiration. Enhanced fermentation prevents cellular senescence [69,146,147]. Although it
is clear that inflammation links damaged respiration to the origin of cancer, further studies
are necessary to better define how neoplasia can arise through the bidirectional linkage
between abnormalities in the microenvironment and respiratory insufficiency within cells.
Viewed collectively, these findings indicate that chronic inflammation in the microenvi-
ronment is linked to respiratory damage and genomic instability. Additional linkages
between respiratory damage, ROS production, and the hallmarks of cancer are described
in Figure 2.

Besides the MMT and SMT, the origin of cancer has been described under the tissue or-
ganization field theory (TOFT), which also addresses bidirectional interactions in tissue mor-
phogenetic fields [40]. Readers are referred to the excellent work of C. Sonnenschein and
A. Soto for a comparative analysis of the TOFT and SMT of carcinogenesis [3,17,148–151].
According to these investigators any conclusion regarding data interpretation is valid
under the SMT because no alternative concept is ever disproved and abandoned. The
lack of data fit with the SMT is attributed to the unfathomable complexity of biology. Put
simply, something can be anything and its opposite when viewed under the SMT [17].

6. Mitochondrial Substrate Level Phosphorylation in Cancer

A foundational principle in biological evolution is that structure determines func-
tion. Abnormalities in structure will cause abnormalities in function. As mitochondrial
structure is intimately connected to OxPhos, abnormalities in the structural integrity of mi-
tochondria and in mitochondrial associated membranes (MAM) will compromise OxPhos
function [83,152–160]. We recently reviewed evidence showing that abnormalities in mito-
chondria number, structure, and function have been documented in most major human
cancers including those from bladder, mammary, colorectal, nervous system, kidney, blood
(lymphomas), liver, lung, skin, bone, ovary, pancreas, prostate, retina, and salivary glands,
among others [83]. These abnormalities, together with evidence that cancer cells can grow
and survive in cyanide and in hypoxia (0.1% oxygen) indicate that OxPhos “cannot” be
responsible for sufficient ATP synthesis in most cancer cells [83,161–167]. Although aerobic
glycolysis is linked to malignancy in most tumors [168,169], the amount of ATP synthesized
through glycolysis can be ambiguous in cancer cells. We reviewed information showing that
many malignant cancers express the pyruvate kinase 2 isoform (PKM2), which produces
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pyruvate with little ATP synthesis in the last step of glycolysis [83,84,170]. The high glucose
consumption in cancer cells is used more for the synthesis of growth metabolites through
glycolysis and the pentose pathway than for the synthesis of ATP [84,170–172]. Glucose
carbons are major contributors to the pentose phosphate pathway and to serine synthesis
through one carbon metabolism [171,173–175]. We also described how the accumulation
of lipid droplets in cancer cells is the manifestation of defective OxPhos [83]. Although
fatty acids cannot be used as a fuel in tumor cells with defective OxPhos, they can enhance
glucose and glutamine fermentation through a range of mechanisms [83,156,176–179].
Furthermore, we described how measurements of oxygen consumption rates (OCR) in
cultured cancer cells can be misinterpreted as ATP synthesis through OxPhos, i.e., OCR
does not necessarily indicate ATP synthesis through OxPhos [83,140,180,181]. It should
be recognized that ATP synthesis is the common requirement for tumor cell growth and
survival regardless of the cellular or the genetic heterogeneity found within tumors [83].
If OxPhos and glycolysis are not the origin of most ATP synthesis in tumors, then where
would cancer cells obtain the energy necessary for their survival and growth?

We described how mitochondrial substrate level phosphorylation (mSLP) in the
glutamine-driven glutaminolysis pathway can compensate for reduced ATP synthesis
through both OxPhos and glycolysis [83,182]. The succinate-CoA ligase reaction in the TCA
cycle can produce sufficient ATP for cancer cell growth and viability while maintaining the
adenine nucleotide translocase in forward mode, thus preventing the reverse-operating
F0-F1 ATP synthase from depleting cytosolic ATP reserves [83,182,183]. It is important
to emphasize that dissipation of the protonmotive force and reversal of the F0-F1 ATP
synthase will occur following an OxPhos reduction of ~50% [184,185]. The F0-F1 ATP
synthase operates in forward mode, i.e., generating ATP, only when mitochondria are
sufficiently polarized. It would not be possible for the F0-F1 ATP synthase to generate ATP
under a loss of ETC operation on the order of 45–50% [93,182]. Such a situation would
cause ATP hydrolysis thus pumping protons out of the matrix. It is the reversal of the
ATP synthase that gives mitochondrial substrate level phosphorylation a critical role in
providing ATP within the matrix under OxPhos deficiency.

The glutaminolysis pathway can produce high-energy phosphates through the sequen-
tial metabolism of glutamine -> glutamate -> alpha-ketoglutarate -> succinyl CoA -> succinate
(Figure 4). Glutamine is the only amino acid that can generate significant ATP synthesis
through mSLP in the glutaminolysis pathway [182]. With the exception of glutamate and
glutamine, the catabolism of most other amino acids would expend high-energy phosphates
during metabolic inter-conversions before becoming succinyl-CoA and cannot therefore
effectively replace glutamine for ATP synthesis. Glutamine is the obligate nitrogen donor
in at least three independent steps for purine synthesis including the phosphoribosylpy-
rophosphate amidotranferase, the phosphoribosylformylglycinamidine synthetase, and
the GMP synthetase [182]. Glutamine is also important in two independent enzymatic
steps for pyrimidine synthesis, i.e., the carbamoyl phosphate synthetase II step and CTP
synthetase step [182,186,187]. Glutamine-derived glutamate is also the primary nitrogen
donor for the synthesis of non-essential amino acids including asparagine [186]. This is
interesting because asparagine has been considered a growth metabolite for GBM and
other tumors [182,188,189]. The glutamine: fructose-6-phosphate amidotransferase reaction
transfers the amide nitrogen of glutamine to form glucosamine-6-phosphate, a precursor for
N-linked and O-linked glycosylation that is needed for hexosamine synthesis [182,190]. Al-
though some have suggested that glutamine can be metabolized to lactate through the malic
enzyme to produce NADPH for lipid biosynthesis [78,191], most other findings, however,
indicate that little glutamine is metabolized to lactate in cancer cells [162,182,192–194]. We
consider succinate, not lactate, as the end product of the glutaminolysis pathway [83,182].

As Q is the letter designation for glutamine, we have described glutamine-driven ATP
synthesis in cancer cells as the Q effect to distinguish it from that involving the aerobic
fermentation of glucose, i.e., the Warburg effect [83,182]. Both the Warburg effect and the
Q effect are downstream effects of compromised OxPhos function (Figure 2). Hall et al.,
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also showed that aerobic glycolysis becomes elevated in proportion to the V600EBRAF-
induced OxPhos dysfunction in melanoma cells thus linking the Warburg effect directly
to OxPhos dysfunction in these cells [93]. In other words, aerobic glycolysis is an effect
and not the cause of OxPhos dysfunction ruling out teleological arguments for a purpose
of glycolysis in cancer [195,196]. Unfortunately, the role of glutaminolysis and mSLP in
cellular energy metabolism was unknown to Warburg, as this information was discovered
only after, or towards the end of his career [83,197–200]. Warburg did not envision amino
acid (glutamine) fermentation as a second major compensatory energy source to OxPhos
in his theory of cancer. We consider glutamine-driven mSLP as a primary mechanism for
ATP synthesis in tumor cells that express ultrastructural abnormalities in mitochondrial
cristae, that overexpress PKM2, and that can grow in cyanide or in hypoxic (0.1% oxygen)
environments.

mSLP is the metabolic hallmark of tumor cell proliferation whether growth is either
in vivo or in vitro [83]. Indeed, Chen et al. showed that ATP synthesis through mSLP
could compensate for ATP syntheses deficiencies in either glycolysis or OxPhos [201].
mSLP has been documented as a source of ATP synthesis in cancer cells [120,202–204].
The Crabtree effect can induce aerobic lactate fermentation in non-tumorigenic cells that
proliferate in vitro but does not occur in normal cells that proliferate in vivo [83,205]. The
activation of immune cells in vitro can induce aerobic fermentation (Warburg effect) as an
artifact of the abnormal environment [206,207]. It is important to recognize that aerobic
fermentation does not occur in proliferating non-transformed cells grown in vivo, for
example, in regenerating liver cells, in normal colon cells, or in proliferating T-Cells and
B-Cells [207]. Non-fermentable fatty acids and butyrate are used as respiratory fuels for
liver and colon regeneration, whereas glucose respiration drives proliferation of T-Cells and
B-Cells [182,207–210]. Warburg also described how aerobic fermentation could confuse the
issue of cancer cell metabolism and should not be considered as a test for cancer cells [51].
Support for Warburg’s position that aerobic glycolysis (fermentation) confuses the issue
of cancer metabolism came from the studies of R. J. O’Connor who misinterpreted the
connection of oxygen consumption to cell division in the early chick embryo [50,51,83,211].
It should also be recognized that “anaerobic” fermentation, not “aerobic” fermentation,
is largely responsible for cell division in the early embryo [50,51]. Confusion over the
association of OxPhos with oxygen consumption rates and a general failure to recognize
the role of mSLP as a compensatory energy mechanism can explain in large part how some
investigators might consider OxPhos as functional and responsible for ATP synthesis in
tumor cells [83]. Hence, recognition of mSLP, as the missing link in the MMT of cancer, will
refocus the cancer field on mitochondrial OxPhos dysfunction as the origin of cancer.

7. Cancer Management Based on the MMT

If a capability is necessary for tumor growth, then the inhibition of this capability
should be essential for an effective management of cancer [1,12]. The necessary capability
for cancer cells, based on the MMT, is the fermentation metabolism needed for the synthesis
of growth metabolites and ATP through the glycolytic and glutaminolysis pathways [83].
In contrast to a plethora of opinions on the origin and behavior of cancer cells [212], we
view cancer as a relatively simple disease dependent almost exclusively on the availabil-
ity of glucose and glutamine for survival. In short, no cancer cell can survive for very
long without growth metabolites and ATP. We recently showed how the simultaneous
targeting of the glycolysis and the glutaminolysis pathways can significantly improve
progression free and overall survival in orthotopic syngeneic GBM mouse models and in a
long-term survival patient with an IDH1(R132H)-mutant GBM [123,213]. We consider the
IDH1(R132H) as a “therapeutic mutation” due to its ability to improve progression free and
overall survival in glioblastoma patients [213]. We described how the IDH1(R132H) muta-
tion can act synergistically with ketogenic metabolic therapy (KMT) to simultaneous target
both the glycolysis and glutaminolysis pathways (Figure 4). It is possible that additional
somatic mutations might be found that also have therapeutic potential in targeting the gly-
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colysis and glutaminolysis pathways. In contrast to unacceptably toxic Rube Goldberg-type
therapeutic strategies based on the SMT [124,125,214], the simplest and most parsimonious
non-toxic strategy is to simply restrict availability of the two fuels that are necessary and
sufficient for cancer cell growth and survival, i.e., glucose and glutamine [1,83,123,213].
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Figure 4. Glutamine-driven mSLP as a major source of ATP synthesis in cancer cells and inhibition by the therapeutic
IDH1(R132H) mutation. ATP synthesis through mSLP at the succinate-CoA ligase reaction (SUCL) in the glutaminolysis
pathway (red) can compensate for inefficient ATP synthesis through OxPhos in tumor cells with mitochondrial abnor-
malities [83]. mSLP can also compensate for inefficient ATP synthesis through glycolysis in cancer cells that express the
cytoplasmic PKM2 isoform, which produces less ATP than the PKM1 isoform [84]. These bioenergetic compensations will
hold the ∆G’ATP hydrolysis at −56 kJ/mole, thus maintaining cancer cell viability in either the presence or the absence or
oxygen. Oxygen consumption in cancer cells is used more for production of ROS, which are carcinogenic and mutagenic,
than for ATP synthesis. Moreover, mSLP will maintain the forward operation of the adenine nucleotide translocase thus
preventing depletion of cytosolic ATP reserves from the reverse operation of the F0-F1 ATP synthase [84,182]. Release of
succinate to the cytoplasm can help stabilize Hif-1α, thus linking lactic acid fermentation through glycolysis to glutamine
fermentation through glutaminolysis. Ketogenic metabolic therapy (KMT) will reduce availability of glucose to the gly-
colytic and the PPP pathways while diverting CoA from succinate to acetoacetate under the metabolism of ketone bodies
(β-hydroxybutyrate and acetoacetate) thus indirectly reducing ATP synthesis through the SUCL reaction. The therapeutic
IDH1 mutation will further reduce ATP synthesis through mSLP by increasing synthesis of 2-hydroxyglutarate (2HG) from
α-ketoglutarate and thus reduce the succinyl CoA substrate for the SUCL reaction [83,215]. Besides its potential effect in
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reducing glutaminolysis, 2-hydroxyglutarate can also target multiple HIF1α-responsive genes and enzymes in the glycolysis
pathway thus limiting synthesis of metabolites and one-carbon metabolism needed for rapid tumor growth [83,182,216,217].
The down regulation of Hif1-α-regulated lactate dehydrogenase A (LDHA), through the action of both KMT and the IDH1
mutation, would reduce extracellular lactate levels thus reducing microenvironment inflammation and tumor cell invasion.
The simultaneous restriction of glucose and glutamine, while elevating circulating ketone bodies, will stress the majority of
signaling pathways necessary for maintaining tumor cell viability [123,182]. See text for additional details. KMT = ketogenic
metabolic therapy; 2HG = 2-hydroxyglutarate; BDH = β-hydroxybutyrate dehydrogenase; FAD = flavin adenine din-
ucleotide; GLSc = glutaminase, cytosolic; GLSm = glutaminase, mitochondrial; GLUD = glutamate dehydrogenase;
GOT2 = aspartate aminotransferase; KGDHC = α-ketoglutarate dehydrogenase complex; LDH: lactate dehydrogenase;
NME = nucleoside diphosphate kinase; OXCT1 = succinyl-CoA:3-ketoacid coenzyme A transferase 1; PC = pyruvate
carboxylase; PDH = pyruvate dehydrogenase; PEP = phosphoenolpyruvate; PKM2 = pyruvate kinase M2; SDH: succinate
dehydrogenase; SUCL = succinate-CoA ligase. Reprinted with modifications from [83,213].

The simultaneous restriction of glucose and glutamine for the metabolic manage-
ment of cancer can be best achieved using a “press-pulse” therapeutic strategy [1]. This
management strategy was derived from the concepts of paleobiology and evolutionary
adaptation [218–220]. N. Arens and I. West described how the simultaneous occurrence of
“press-pulse” disturbances was considered the mechanism responsible for the extinction
of organic populations during prior evolutionary epochs [218]. In adapting this concept
to cancer management, “press” disturbances would eliminate the weakest cancer cells,
while growth-restricting the heartiest cancer cells. In contrast, a “pulse” disturbance is an
acute treatment that would kill most, but not all cancer cells. It is only when both the press
and the pulse disturbances are used simultaneously that mass extinction of all cancer cells
becomes possible [1]. As a prototype example, we used ketogenic metabolic therapy (KMT)
as a press and the pan glutaminase inhibitor DON (6-diazo-5-oxo-L-norleucine) as a pulse
to manage the growth of preclinical glioblastoma [123]. KMT restricts glucose availability
while elevating ketone bodies and thus induces a competition between normal cells and
tumor cells for glucose [221]. Ketone bodies and fatty acids are non-fermentable and cannot
replace glucose in cells with defective mitochondria. Ketone body elevation under fasting
(nutritional ketosis) can allow blood glucose to reach extremely low levels (0.5 mM or
9 mg/dL without adverse effects [222]. Ketone bodies also suppress glucose consumption
in the brain, i.e., the largest consumer of glucose in the body [223,224]. Additionally, KMT
will reduce inflammation in the tumor microenvironment thus restricting tumor cell in-
vasion [1,115,225,226]. Glucose restriction will inhibit tumor cell growth, as the glucose
carbons are needed for the synthesis of growth metabolites through the pentose phosphate
and glycolysis pathways. DON will restrict availability of the glutamine nitrogen and the
glutamine carbons that are necessary for the synthesis of nitrogen-containing metabolites
and the synthesis ATP through mSLP in the glutaminolysis pathway. Hence, the simultane-
ous restriction of glucose and glutamine, while under KMT, will reduce acidification in the
tumor microenvironment and will target both the glycolysis and glutaminolysis pathways
that are essential for tumor cell growth and survival.

The success in dealing with environmental stress and disease is dependent on the
integrated action of all cells in the organism according to R. Potts of the Smithsonian
Institution of Human Origins [219,220]. This integrated action depends on the flexibility
of each cell’s genome, which responds to both internal and external signals according to
the needs of the organism. Adaptability to abrupt environmental change is a property
of the genome, which was selected for in order to ensure survival under environmental
extremes [35,227]. More specifically, only those cells possessing flexibility in nutrient uti-
lization will be able to survive under nutrient stress. Environmental forcing has selected
for genomes that are most capable of adapting to change in order to maintain metabolic
homeostasis [10,219,220,227]. The genomes of most cancer cells, however, contain nu-
merous types of pathological mutations, chromosomal rearrangements, and aneuploidy.
These genomic defects, together with mitochondrial dysfunction, will prevent the flexibility
needed for rapid adaption to nutrient stress. Simply stated, the genomic defects in cancer
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cells will prevent the adaptive versality needed to survive physiological and nutrient stress.
Hence, press-pulse therapeutic strategies should be highly effective in providing long-term
management and possible resolution of most cancers [1].

According to the SMT, tumor cells have a growth advantage and are more fit than
normal cells. This view is not only inconsistent with Darwin’s theory of evolution but is
also inconsistent with Potts’ theory of adaptive versatility [1,35,219,227]. Dysregulated cell
growth should not be considered an advantage over regulated cell growth, as the regulated
growth rate of regenerating liver cells is faster than that of most tumor cells [50,228,229].
Moreover, the rapid growth of regenerating liver cells is dependent on fatty acid-driven
OxPhos rather than on glucose-driven fermentation [209,210]. In contrast to cancer cells,
little lactate is produced in regenerating liver cells. Indeed, glucose inhibits the growth of
regenerating liver cells [209,229]. These findings in regenerating liver, as well as those in
proliferating cells from the gut and immune system (mentioned above), do not support
suggestions that aerobic glycolysis is common to all types of proliferating cells. It is clear
that fermentation-dependent tumor cells do not have a growth advantage over OxPhos-
dependent regenerating liver cells.

The resistance of tumor cells to drug treatments can make them appear more fit
than normal cells. Drug resistance is due in large part to the fermentation metabolism
that drives dysregulated growth thus facilitating cancer cell survival in hypoxic envi-
ronments [126,127]. As long as tumor cells have access to glucose and glutamine they
can appear as more fit than normal cells. A whole-body transition from glucose-driven
metabolism to ketone body-driven metabolism will produce a powerful press disturbance
on any tumor cell dependent on glycolysis for growth. Moreover, ketone body metabolism
enhances the ∆G’ATP hydrolysis in normal cells from −56 kJ/mole to −59 kJ/mole, thus
providing normal cells with an energetic advantage over tumor cells, which are limited to
energy generation through fermentation [213,227,230,231]. Based on the tenets of evolu-
tionary biology and on the concepts of the MMT, tumor cells are not more fit and do not
have a growth advantage over normal cells. It is important to mention again that nothing
in cancer biology makes sense except in the light of evolution [35].

Finally, it is interesting to reflect on the closing comments from Warburg’s seminal
1956 paper [50]. “If the explanation of a vital process is its reduction to physics and chemistry,
there is today no other explanation for the origin of cancer cells, either special or general. From
this point of view, mutation and carcinogenic agent are not alternatives, but empty words, unless
metabolically specified. Even more harmful in the struggle against cancer can be the continual
discovery of miscellaneous cancer agents and cancer viruses, which, by obscuring the underlying
phenomena, may hinder necessary preventive measures and thereby become responsible for cancer
cases.” The underlying phenomenon in our view is the near exclusive dependence on the
fermentation metabolism of glucose and glutamine for the growth and the survival of most,
if not all cancers. Cancer management and prevention will be improved significantly once
these concepts become more widely recognized and accepted.

8. Conclusions

Information is reviewed showing that the MMT can explain better the facts of cancer
than can the SMT. Most tumor cells, regardless of their tissue origin or genomic abnormal-
ities, are largely dependent on fermentation metabolism through the glycolysis and the
glutaminolysis pathways for the synthesis of growth metabolites and ATP. No tumor cell
can grow or survive without metabolites or energy. The simultaneous targeting of these
pathways offers a non-toxic therapeutic strategy for effectively managing most cancers.
The simplest and most parsimonious strategy for managing cancer under the MMT is to
restrict availability of glucose and glutamine while placing the whole body in a state of
nutritional ketosis.
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