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Abstract

Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant
analysis. A probability generating function was used to explain observed miniHimar transposon insertion patterns, and gene
essentiality calls were made by transposon insertion frequency analysis (TIFA). TIFA incorporated the observed genome and
sequence motif bias of the miniHimar transposon. The gene essentiality calls were compared to: 1) previous genome-wide
direct gene-essentiality assignments; and, 2) flux balance analysis (FBA) predictions from an existing genome-scale
metabolic model of Shewanella oneidensis MR-1. A three-way comparison between FBA, TIFA, and the direct essentiality calls
was made to validate the TIFA approach. The refinement in the interpretation of observed transposon insertions
demonstrated that genes without insertions are not necessarily essential, and that genes that contain insertions are not
always nonessential. The TIFA calls were in reasonable agreement with direct essentiality calls for S. oneidensis, but agreed
more closely with E. coli essentiality calls for orthologs. The TIFA gene essentiality calls were in good agreement with the
MR-1 FBA essentiality predictions, and the agreement between TIFA and FBA predictions was substantially better than
between the FBA and the direct gene essentiality predictions.
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Introduction

Transposon mutant analysis has been extensively used to

generate genome-wide mutant libraries and to define gene

essentiality [1,2]. With the introduction of parallel sequencing,

transposon-based methods have developed into phenotype infor-

mation gathering tools, rather than forward genetic screens with

the aim to isolate individual mutant strains. Tn-seq, and closely

related methods such as Bar-seq or DNA shearing [3], investigate

mutant fitness at a genomic scale by counting the abundance of a

mutant-specific DNA sequence before and after a short compet-

itive growth period [4,5]. In Bar-seq the unique piece of DNA is

located between known flanking sequences and can be sequenced

directly [6]. In Tn-seq, a type IIS restriction enzyme that cuts

outside its recognition sequence is used to extract transposons from

the mutant genomes, including a flanking sequence (17 bp for

miniHimar) that is used to map the location of the transposon

insertion.

Transposon insertion sequencing has been used to identify

essential genes in an increasing number of microorganisms from a

wide range of ecological niches [7]. Of particular significance is the

application of Tn-seq to infectious agents in order to identify

essential genes that could serve as targets for therapy [8–12].

However, fitness due to disruption of coding sequences is not the

only type of data that has been obtained from this method. When

transposon mutant libraries were generated to genome-saturating

conditions, the essentiality related to disruption of non-coding

regions was identified [13,14], facilitating the identification of non-

coding regulatory elements. In S. oneidensis, himar and Tn5

transposons have been used to identify a number of mutants and

elucidate cellular physiology [15–17]. Barcoded genome-wide

mutants of S. oneidensis have been created with the himar

transposon and their individual fitness evaluated in a large number

of growth conditions using microarrays [18]. The creation of

tagged transposon mutant libraries has also enabled systems-level

analyses of S. oneidensis, such as mass-spectrometry based

metabolite profiling of mutants [19] and computational inference

of gene regulatory networks based on fitness data [20].

Transposon mutagenesis-based gene essentiality measurements

are exceptionally informative for the validation of genome-wide

modeling techniques. The genome-wide scale and low-cost nature

of disposable single gene knockout libraries provide powerful
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datasets to evaluate the performance of genome-scale network

reconstructions [21], as well as to enrich genomic information

currently used for automated network reconstructions [22–24].

The presented transposon insertion frequency analysis (TIFA)

improves on the more direct interpretation in which presence of

an insertion in the gene core is interpreted as sufficient evidence of

nonessentiality, and absence of insertions is interpreted as

essentiality [18,25]. The need for a more sophisticated approach

has been recognized by others, with recent estimations of gene

essentiality using hidden Markov models (HMM) [26,27]. TIFA

distinguishes itself from an HMM approach by considering

insertional biases in sequence preference and genomic location

for each insertion. The insertional biases of the miniHimar
transposon in S. oneidensis were investigated using an existing

dataset [28]. TIFA determines the likelihood of the number of

experimentally observed insertions in each gene and utilizes a

probability generating function that accounts for observed

insertional biases of the miniHimar transposon. The thus

determined gene essentiality for growth on Shewanella Basal

Medium (SBM) under aerobic conditions was used to investigate

the stoichiometric and thermodynamic constraints on the existing

MR-1 metabolic model [29], simulating aerobic growth on SBM.

Results

miniHimar transposon insertions frequencies are location
and sequence biased

The miniHimar transposon has a strong preference to insert

inside a TA sequence [30]. The flanking sequences of the

chromosomal transposon insertion library confirmed this prefer-

ence, with just over 95% of the mutations located inside a TA

sequence. We discarded the remaining ,5% of insertions and

investigated the TA inserted transposons in more detail (Fig. 1). A

potential bias in the chromosomal insertion position was investi-

gated by plotting the insertion frequency as a function of

chromosomal location (Fig. 1A). Because the exact same insertion

may have occurred in several independent colonies, the number of

insertions was estimated from the number of TA locations that had

not been inserted (Material and Methods). The locational bias was

Author Summary

Metabolic modeling techniques play a central role in
rational design of industrial strains, personalized medicine,
and automated network reconstruction. However, due to
the large size of models, very few have been comprehen-
sively tested using single gene knockout mutants for every
gene in the model. Such a genetic test could evaluate
whether genes that for a given condition are predicted to
be essential by a model, are indeed essential in reality (and
vice versa). We developed a new probability-based
technology that identifies the essentiality of genes from
observed transposon insertion data. This data was
acquired by pooling tens of thousands of transposon
mutants, and localizing the insertion locations all at once
by using massive parallel sequencing. We utilized this gene
essentiality data for the genome-scale genetic validation of
a metabolic model. For instance: our work identified
nonessential genes that were predicted to be essential for
growth by an existing metabolic model of Shewanella
oneidensis, highlighting incomplete areas within this
metabolic model.

Figure 1. Evaluation of transposon insertion bias. (A) Scatter plot of the genome location dependent insertion probability. Each data point
represents a genomic window of 20,000 nucleotides, which was shifted by 2,000 nucleotides for each consecutive evaluation. The insertion
probability gradually decreased from the origin of replication. The solid line is a best fit of ax2+b|x|+c, where a, b and c are equal to 0.0032, 0.0081 and
0.1615, respectively, and x is the location in the genome. (B) Boxplot of flanking sequence dependent insertion probability distribution showing that
several motifs contained significantly more insertions than others. (C) Relative occurrence of nucleotides in the two flanking positions of inserted TA
sites.
doi:10.1371/journal.pcbi.1003848.g001
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quantified by fitting an absolute value second order polynomial

through the observed frequency data (Fig. 1A). The insertion

frequency showed an approximate 25% symmetrical bias towards

the origin of replication compared to the midpoint of the

chromosome. Presumably, this bias is the result of the presence

of multiple partial copies of an actively replicating circular

chromosome [31] near the replication fork, leading to a higher

physical copy number of genes closer to the origin of replication.

The effect of the two flanking nucleotides on either side of the

target dinucleotide was investigated in detail using genes that

contained no fewer insertions (p.0.1) than expected from the

binomial distribution prediction (Fig. 1B). The dataset was

subdivided into 136 sections, each section corresponding to a

unique combination of the two flanking nucleotides prior and the

two nucleotides following a TA location. The two complementary

strands of the genome result in two possible sequence orientations,

with each sequence on the plus strand matching a complementary

sequence on the minus strand. Sixteen sequences are palindromic,

resulting in a total of (256-16)/2+16 = 136 unique sequences. For

each of the 136 unique sequence combinations, the occurrences

and insertion events were determined as before. The insertion

probability was sequence dependent, with 3% of the probabilities

differing significantly from the mean probability (Fig. 1B).

To determine if the flanking nucleotides affected the insertion

probability independently, we assumed that the number of

insertions for each flanking sequence was the product of the

independent contributions of the nucleotides. Thus, each of the

136 determined insertion frequencies was given by pseq jð Þ~ P
4

i~1
pij ,

where pseq jð Þ is the observed insertion probability for a given

flanking nucleotide combination j, and pij are the contributions of

the individual nucleotides in the combination. Using weights that

were inversely proportional to the variance for each sequence

insertion probability pseq jð Þ, nonlinear x2-fitting was used to

calculate the parameter pij. Assuming multinomial variance, the

observed probabilities differed significantly from a linear model (x2

test, p,0.01), indicating that the contribution of the flanking

nucleotides on the insertion probability were not independent.

Fig. 1C shows the linear approximation of the nucleotide

contributions, and although the linear approximation indicated

that the TATATG sequence had the highest insertion probability,

the independent contributions underestimated the insertion

probability for this sequence by 30%. In addition, there were

three sequences for which an even higher experimental insertion

probability than the experimental value for the TATATG was

found. Visual inspection of the experimental sequence probabil-

ities suggested that the preferred consensus sequence was

TATAxA. Just TA enrichment alone was not sufficient, exempli-

fied by the barely average insertion probability associated with

AATATT. The highest experimental insertion probability was

associated with TATATA (p = 0.53), and the smallest probability

was associated with GTTAAC (p = 0.057), indicating an approx-

imate tenfold spread in insertion preference.

Essential gene calls
Transposon mutagenesis results in the random disruption of

genes, often reducing or eliminating gene function. In principle,

transposon mutagenesis therefore reports on gene essentiality. The

essentiality of a gene can be investigated by comparing the number

of observed mutations in a gene to the number of expected

insertions. A transposon probability model was formulated that

accounted for the observed sequence and location specific biases.

For each gene, the expected number of insertions was estimated

using a probability generating function with the sequence specific

probabilities that were weighted by the genome locational specific

bias. Using this probability model, the number of expected

insertions was calculated for each gene and compared to the

observed number of insertions (Fig. 2). Genes were called essential

if the combined probability of finding as few as, or fewer insertions

than observed, was less than one over the number of genes in the

dataset i.e. we accepted one false positive in our essential gene

selection. To establish the exact cutoff value, the marginal

probabilities for each nonessential gene to be found essential by

chance for a given cutoff value were summed, and the cutoff value

was adjusted until the marginal probabilities summed to exactly

one. Monte Carlo sampling was used to confirm this result, and

the same cutoff value was retrieved (Text S1). The transposon

insertion distribution was visualized as a histogram of the

difference between the expected and observed number of

insertions, scaled by the standard deviation calculated on the

probability generating function. Monte Carlo sampling generated

a very similar distribution (Fig. 2). The right hand side of this

distribution is of particular interest, as an elongated tail in the

observations could suggest genes with significantly more insertions

than expected. Only three such genes were observed (SO3264,

SO4100, SO4785), indicating that TIFA formed a good descrip-

tion of the observed transposon insertion behavior. The poorer fit

on the left hand side of the distribution could be the result of

mutants with a lower than wild type fitness. Clones with a reduced

fitness are more likely to escape detection due to their lower

absolute abundance, yielding fewer observed insertions in nones-

sential genes that show reduced fitness upon deletion. Some genes

with slow growing mutant phenotypes could have been called

essential as a result. For 50 of the 273 identified essential genes a

fitness value larger than zero was observed. To investigate if

mutants with insertions in genes that were called essential grew

more slowly than other clones, the nonessentiality probability was

plotted against fitness (Fig. 3A). Although the average fitness of

clones with insertions in essential genes was lower than fitness of

clones with insertions in nonessential genes, the spread was very

large, indicating that slow growth was an insufficient explanation

for all detected insertions in essential genes. The insertion locations

were plotted together with the positions of conserved domains and,

to investigate the potential for reinitiation of transcription and

translation downstream of the transposon, estimates of the strength

Figure 2. Observed and Monte Carlo simulated transposon
insertions. The normalized deviation of expectation of insertions are
shown for TIFA essential (red), nonessential (green) and unknown (blue)
genes. The solid line represents the average outcome of 1000 Monte
Carlo simulations, flanked by one standard deviation (dotted lines).
doi:10.1371/journal.pcbi.1003848.g002
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of ribosomal binding sites associated with alternative start codons

inside the genes (Figure S1).

Nonessential gene calls
Following identification of essential genes with a nonessential

gene insertion model, the nonessential genes were identified with

an essential gene insertion model. The insertion frequency in

essential genes was approximated by multiplying the TA location-

specific insertion probabilities with the ratio of the observed

insertions in essential genes by the expected number of insertions

for nonessential genes. The expected number of insertions for each

gene was calculated using this essential gene model, and each gene

that contained significantly more insertions than expected, was

called nonessential. Following the earlier logic, a cutoff value was

used that allowed for a single false-positive nonessential gene

identification. This method identified 2,216 genes as nonessential.

No essentiality call could be made for 1,722 genes, and three genes

(SO2148, SO3175 and SO3872) were identified as both essential

and nonessential. Hence, the number of insertions in these three

genes was significantly fewer than could be expected for

nonessential genes, yet significantly more than could be expected

for essential genes. For example, closer inspection of SO3872

revealed that insertions were concentrated in the second quartile

and most showed a reduced fitness (Fig. 3B). Two additional

insertions in the latter half of the gene showed high fitness, and no

other insertions were present. There was very good sequence

support for the gene assignment based on the sequence alignment

with the arylsulfate sulfo-transferase pfam PF05935 [32]. Con-

ceivably, only the beginning and second half of the gene were

essential for the production of a functional protein, and start

codons around the midpoint of the gene with associated ribosomal

binding sites of moderate projected strength [33], suggested that

translation may be reinitiated within the gene resulting in separate

expression of the second half of the gene (Fig. 3B). More generally,

essential genes could have nonessential regions such as a

regulatory site which may be highly inserted, and be adjacent to

uninserted regions necessary for the essential gene role, which

could cause a dual essential-nonessential identification. Gene

Figure 3. (A) 50 out of 273 essential genes were associated with a fitness value. The circumference of the circles represents the logarithmic
read counts of each insertion, and the color of the circles represents the gene location of the insertion: first 10% (magenta), last 10% (cyan), and
middle 80% (black). 22 essential genes contained $2 insertions in the middle. The spread in fitness and read counts was very large, suggesting
different causes for the existence of insertions in essential genes. (B) Transposon insertion locations, fitnesses, and projected ribosome binding site
(RBS) strengths associated with intra-gene start codons. Black dots show all TA locations, and top row diamonds show the observed insertions with
color coded fitness. The bottom diamonds represent alternative start codons in each gene. The color scales logarithmically with the associated RBS
strengths. Each couple of rows represents the RBS strengths of all intra-gene start codons for both possible insertion orientations for each mutant,
with the first row representing no insertion.
doi:10.1371/journal.pcbi.1003848.g003
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essentiality calls that were performed in previous work on the bases

of absence or presence of insertions [18] were compared to TIFA

calls in detail (Table 1 and Dataset S1). Seventy eight essential

gene calls and 1,958 nonessential gene calls were in agreement.

Eighty one genes that were previously identified as nonessential

(including two orthologs to essential genes in E. coli) were

identified as essential by TIFA, 36 of which contained no

insertions in our dataset. Fifty one of the genes previously

identified as essential were identified as nonessential by TIFA,

and contained an average of 10 insertions per gene.

Essential genes are inserted more frequently at the very
end of a gene

The number of TA sequences and the number of detected

insertions were tallied for each gene percentile to investigate if the

positions of insertions inside (essential) genes were biased (Fig. 4).

No percentile showed a difference in relative insertion frequency

prior to identification of essential genes (Fig. 4A). Analysis of just

the nonessential and essential genes revealed a substantial increase

of insertions in the last 2–3% of essential genes. Essential genes

were almost twice as likely to contain insertions in the last 2%

nucleotides, but insertion frequencies were still only half of the

frequencies observed in nonessential genes (Fig. 4B). Nonetheless,

the increased insertion frequency at the very end of essential genes

provides quantitative support for the omission of insertion data

from the last 2% of genes. Previously, much larger areas of genes

were excluded from insertion analysis, arguing that insertions in

the distal parts of genes may not be effective in eliminating gene

function [4]. No relative increase in insertion frequency was

observed at the beginning of genes.

Validation of the genome scale MR-1 model essentiality
predictions

The ability to identify essential and nonessential genes with

TIFA was utilized to validate essentiality predictions of an

existing genome-scale metabolic model of S. oneidensis MR-1

that had been manually curated previously [29]. The MR-1

model includes 774 reactions, 783 gene and 634 unique

metabolites. Flux balance analysis (FBA) was used to infer gene

essentiality for genes that were present in the MR-1. The

transposon mutants were selected under aerobic conditions on SB

media, and FBA predicted 209 essential genes and 574

nonessential genes in the MR-1 model for these conditions.

The annotations of thirteen genes in the MR-1 model were

obsolete, which reduced the comparison of FBA to TIFA

predictions to 770 genes. TIFA was able to determine essentiality

for 481 genes (62%) of this set (Table 2) providing a compre-

hensive evaluation of the network essentiality predictions.

Of the 273 identified essential genes identified by TIFA, 75 were

present in the MR-1 model. Fifty seven of the included 75 genes

were correctly predicted essential, and 374 of the 406 FBA-

nonessential genes that were present in the MR-1 model and were

identified as nonessential by TIFA (Fig. 5). FBA essentiality

predictions were insensitive to the 1% biomass production cutoff,

with 1% growth resulting in the same knockout predictions as no

growth (Text S1). The TIFA essentiality calls were fairly sensitive

to the essentiality cutoff. If for instance the lower 2.5% likelihood

of gene nonessentiality had been used as essential gene cutoff

instead (Fig. 5a), twice as many genes (623) would have been

identified as essential suggesting that only half of the essential

genes were called. However, the number of false positive would

have been much larger (54 genes, calculated from marginal

probabilities), and the agreement between FBA and TIFA
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prediction was indeed substantially better when using the stringent

cutoff (Fig. 5a).

Genes falsely predicted nonessential
False nonessential FBA predictions could be caused by an

array of pleiotropic effects, such as the built-up of a toxic

metabolite resulting from the removal of a downstream reaction

in a pathway. More directly, false nonessential predictions may be

caused by a combination of incorrect gene-reaction association,

lax thermodynamic constraints, and over-inclusion of metabolic

reactions. Such an overly inclusive metabolic network could also

arise as a result of the absence of, or an incomplete gene

regulatory layer. Blocked reactions, which cannot carry flux

under any circumstances, point to the most easily interpretable

shortcomings of the network. Eleven of the 18 FBA-nonessential,

TIFA essential genes were associated with such blocked reactions

(Text S1). These reactions were evidently also not required for

biomass formation by the model, indicating that the biomass

equation was not sufficiently inclusive to test all essential genes, or

in reality unused reactions provided an alternative route to

essential biomass. In addition, because the reactions were

blocked, TIFA suggested that the MR-1 model requires

modifications to unblock these TIFA essential reactions. In the

case of aconitase (E.C. 4.2.1.3), the discrepancy between the MR-

1 model and the TIFA essentiality data highlighted the need for a

comprehensive gene expression and protein activity regulation

simulation in metabolic models. In the MR-1 model, acnB
(SO0432) and acnD (SO0343) were independently assigned to the

aconitase reaction (OR relationship), resulting in a nonessential

prediction for acnB. However, an acnB deletion strain was

Figure 4. Insertion frequency within genes. Genes were evaluated in 0.2% gene increments. No insertion preference was observed in the
complete gene population (A). The same analysis was performed (1% increments) after essential (red) and nonessential (green) gene identification
(B). The last ,2% at the 39 end of essential genes were inserted more frequently.
doi:10.1371/journal.pcbi.1003848.g004

Table 2. Comparison of TIFA gene essentiality and FBA predictions.

TIFA essential TIFA nonessential

FBA-E FBA-N % True FBA-N FBA-E % True

Original MR-1 model 57 18 76 374 32 92

All metabolites can leave model 56 19 75 374 32 92

No thermodynamic constraints 33 42 44 384 22 95

Metabolites can leave, no thermodynamic constrains 33 42 44 384 22 95

TIFA essentiality calls compared to FBA predictions for the MR-1 model: using the original model (row 1); after removal of stoichiometric constraints on endpoint
metabolites (row 2); after removal of all thermodynamic constraints (row 3); and following the removal of the stoichiometric and thermodynamic constraints (row 4).
FBA-E: FBA essential gene predictions; FBA-N: FBA nonessential gene predictions.
doi:10.1371/journal.pcbi.1003848.t002
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unable to grow in the presence of oxygen [28], which was

consistent with transposon insertion data.

Genes falsely predicted essential
Genes that were falsely predicted essential by FBA could be

interpreted as resulting from missing reaction in the network,

insufficiently permissive thermodynamic constraints, errors in

gene-to-reaction relationships, an overly inclusive (essential)

biomass equation, or an incorrect regulatory layer. However,

pleiotropic effect cannot explain these discrepancies. Of the 2216

TIFA identified nonessential genes, 374 genes were correctly

predicted to be nonessential and only 32 were incorrectly

predicted essential by FBA (Fig. 5). Of the incorrectly essential

predictions, SO1498 and SO3745 would have been correctly

predicted nonessential if the two biomass components lipopoly-

saccharide (LPS) and glycogen were not included in the biomass

equation. LPS may indeed not be required for growth [34]. The

transporter for ammonia, amtB (SO0760) may only become

essential at very low ammonia concentrations [35]. A detailed

comparison between TIFA and FBA essentiality is shown in Text

S1.

Network constraints and scale
The observed discrepancies between TIFA and the model

predictions were further investigated by: 1) allowing metabolites to

freely leave the network, and 2) by removing the thermodynamic

constrains from the model. Lifting of stoichiometric constraints on

endpoint metabolites resulted in a marginal deterioration of

essential gene predictions, and no change in nonessential gene

predictions (Table 2), suggesting that blockage of reactions due to

stoichiometric constraints on endpoint metabolites was not

important in FBA gene essentiality predictions for the MR-1

model. Removal of the thermodynamic constraints resulted in a

substantial deterioration of essential gene predictions and a very

marginal improvement of nonessential gene predictions (Table 2),

confirming the importance of correct thermodynamic constraints

in gene essentiality predictions. In comparison to a model of

central metabolism of S. oneidensis MR-1 [36] that was

formulated for elementary mode analysis, the much larger scale

MR-1 model improved gene essentiality predictions substantially.

Only one gene (SO3547) of the previously eight genes falsely

predicted essential (SO0424, SO0323, SO0538, SO1926,

SO2629, SO3547, SO0274, and SO3517) was still predicted

incorrectly, demonstrating the previously observed enhanced

predictive capabilities of more complete networks [37]

TIFA essentiality and FBA predictions are in relative close
agreement

A direct comparison between TIFA and the previously made

direct essentiality calls (DECs) that were based on the presence/

absence of insertions in the 80% core sequence of genes [18] is

shown in Table 1. Note that FBA gene essentiality predictions for

the DEC dataset had to be computed for LB medium instead of

SBM. Due to the richer composition of LB, 18 genes fewer were

FBA essential, eleven of which could be explained by the presence

of tryptophan and pyrimidine in LB (Dataset S1).

One would expect that the FBA prediction agree more with the

TIFA essentiality calls than with the original MR-1 essentiality

calls, if 1) TIFA identifications are an improvement over the

original direct method, and 2) FBA predicts gene essentiality

correctly more often than not. A three-way comparison between

the TIFA essentiality calls, DECs, and FBA predictions was used

to investigate the relative agreement between the FBA predictions

and the two essential gene identification methods. A gene-by-gene

comparison is included as supplementary data (Dataset S1).

Because all TIFA predictions that could be alternatively explained

by polar operon effects had been removed, the number of

comparisons between TIFA and FBA were substantially fewer

than between the DEC essentiality calls and FBA (Fig. 6). The

overall performance of TIFA, expressed as percent correct

predictions (combined true essential and true nonessential

predictions divided by all essentiality predictions), was much

higher than for DEC: 90% vs 79% (Fig. 6), indicating that TIFA

calls were indeed better. To investigate the potential influence of

Figure 5. Comparison of gene essentiality between TIFA calls and FBA predictions. Genes were grouped in 40 bins based on their
cumulative probability values. The blue bars represent the genes not present in the MR-1 model. The red and green bars represent the FBA essential
and FBA nonessential genes. Genes with a lower cumulative probability value are more likely to be essential, and genes with a higher cumulative
probability value are more likely to be nonessential. The leftmost bar in (A) shows the number of genes with a cumulative probability value of less
than the cut-off value (TIFA essential, allowing for 1 false positive). The rightmost bar in (B) shows the number of genes with a cumulative probability
of more than the nonessential cut-off value (TIFA nonessential, allowing for 1 false positive).
doi:10.1371/journal.pcbi.1003848.g005
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polar effects on the essential gene predictions, the TIFA calls that

had previously been removed from the dataset because their

essentiality could be explained alternatively by polar effects, were

compared to the essential gene TIFA calls. Note that polar effects

are only a problem for essential, and not for nonessential gene

calls. The correct prediction percentage of the discarded essential

gene predictions was 69% (Fig. 6, 43/(43+19)), which was only

slightly lower than the 76% (Fig. 6, 57/(57+18)) for the retained

TIFA comparisons. This suggested that polar effects may not

result in many false essential gene assignments if these assignments

had been used. This was not surprising given that for a polar effect

to occur, a downstream neighboring gene in the same operon had

been identified as essential.

Genes that were exclusively identified as essential by DEC were

wrong more often than not (40% correct essential gene

predictions, (Dataset S1). Genes exclusively identified as essential

using TIFA, had a correct prediction percentage of 68%, which

was only slightly lower than the 76% for all TIFA essential gene

predictions (Dataset S1). Genes exclusively identified as nonessen-

tial by TIFA were in equally good agreement with FBA

predictions as the entire TIFA nonessential gene calls (92%

compared to 91% agreement). DEC nonessential gene assign-

ments were in 87% agreement with FBA predictions, and

exclusive DEC nonessential gene assignments were only 74% in

agreement with FBA predictions. In summary, the TIFA gene

essentiality calls (both essential and nonessential gene calls) were in

much closer agreement with the FBA model predictions than the

DEC essentiality calls, providing strong support for TIFA as a

better method for gene essentiality calls (Dataset S1).

Discussion

Tn-seq is a powerful and readily available technology for the

genome-wide evaluation of metabolic networks. The observed

transposon insertion pattern suggested that 28.6% of essential

genes were occasionally inserted, and that insertions in essential

genes were not limited to the periphery of genes as was previously

presumed [18]. Conversely, several genes that did not contain

insertions were not identified as essential. Both TIFA, and the

previously developed HMM models, are able to identify essential

genes containing insertions, but unlike the current HMM models,

TIFA explicitly corrects for the observed transposon insertional

biases. Note that the confidence associated with an essentiality call

was depended on the number of TA locations within a gene. For

genes that contained only a handful of TA sites, essentiality could

not be established, even if no insertions were found. Hence, to

establish essentiality in very short or GC rich genes, a very large

mutant library is required. Conversely, genes with many TA

locations could be called essential, even if they contained a

significant number of insertions. With the current library size,

essentiality of 1725 (41%) of the genes could not be called. The

observed transposon insertion pattern was in close agreement with

Monte Carlo insertion simulations that utilized location specific

insertion probabilities. The absence of insertional ‘‘hotspots’’ in

comparison to the Monte Carlo simulations was interpreted as

validation for the essential gene assignments. The data used for

this study was generated from a transposon that was transcrip-

tionally terminated. As a consequence, essentiality could only be

determined for a subset of the genes that were identified as

essential by TIFA (,70%, Table 1, 273/(273+120)). A substantial

number of genes (120) contained sufficiently few insertions to be

identified as essential (Table 1), but the lack of viability could

alternatively be explained by the presence of an adjacent

downstream essential gene in the same operon. Note that

experimental operon predictions from RNA-seq data [38] could

improve the here used computational operon projections. Alter-

natively, utilization of an unterminated read-through transposon

would eliminate polar gene essentiality experimentally. The TIFA

essential gene predictions agreed fairly well with direct essentiality

calls for MR-1[18], but were in closer agreement with essentiality

expectations from E. coli orthologs (Dataset S1) and FBA

predictions of the MR-1 model. In addition, many genes that

had been previously identified as essential based on the absence of

insertions often contained many insertions in our dataset. TIFA

was able to provide transposon insertion-based essentiality calls for

481 of the 770 (62%) non-obsolete genes in the MR-1 model, and

was thereby able to perform a comprehensive validation of the

MR1 model. For example: the 32 genes incorrectly predicted

essential by FBA, suggested that the current MR-1 model was

incomplete. And, the 11 TIFA essential genes associated with

blocked reactions suggested that some essential reactions in the

MR-1 model could not be used, again indicating that the current

MR-1 network was incomplete. In addition, FIFA data demon-

strated that thermodynamic constraints on the reaction direction-

alities greatly improved FBA gene essentiality predictions.

Materials and Methods

Transposon insertion data
A detailed description of the transposon experiment that

generated the data used for this work was published previously

[28]. Briefly, a single-mutant library of S. oneidensis was generated

with the miniHimar transposon under kanamycin selection on

Schewanella Basal Medium (SBM, which is a well-defined rich

medium), plates under aerobic conditions [39]. The fitnesses of the

pooled clones were evaluated under aerobic conditions using SBM

as previously described [4]. Samples of the pooled library were

collected before and after a short growth period. The raw

sequence data for each sample was mapped to the genome, was

filtered to only retain sequences that occurred at least eight times,

Figure 6. Three-way comparison between FBA predictions and TIFA and DEC essentiality calls. (A) Comparison between FBA and TIFA.
(B) Comparison between FBA and direct gene essentiality calls (DEC). The sectors of the comparison matrix show the intersections of FBA essential
genes (E), FBA nonessential genes (N) and genes not in the MR-1 model (NA) with TIFA and DEC calls for essential genes (E), nonessential genes (N)
and uncalled genes (U). The TIFA essential gene calls that could be alternatively explained by polar operon effects are shown in brackets.
doi:10.1371/journal.pcbi.1003848.g006
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and that could be mapped uniquely. For TIFA, the data of all four

samples were combined to assess the viability of insertional

mutants under the condition that were used to generate the

library. The fitness values used in the manuscript were calculated

from the aerobic treatment data only. Gene fitness was calculated

as the median fitness of all clones that were inserted into the same

gene (Text S1).

Estimation of miniHimar insertion probabilities
The probability of an insertion occurring r times at a given

location was approximated by the Poisson distribution: p~e{l lr

r!
,

which reduces to p~e{l for r = 0, where l is the insertion

probability m/n with m the number of colonies, and n the number

of TA sites in the genome. This yielded the probability of finding

at least one insertion for a given location: l~1{e
m

=n , and the

total number of observed insertions insobs~n 1{e
m

=n
� �

. The

number of colonies in the library was estimated by substituting the

number of unique sequences in the library insobs, the number of

TA sites (n) in the genome, and the mean insertion probability p.

The same approach was followed for determining the sequence-

specific insertion probabilities, limiting the analysis to the fraction

of TA locations with a given flanking motif (Text S1).

Identification of essential genes
Assuming equal insertion probability for each TA site, the

probability of observing at least the number of experimentally

inserted locations in a gene is given by the cumulative probability

of the binomial distribution, b(s, pe) which equates to:

Pr Xƒtð Þ~
Pt
0

S

i

� �
peð Þi 1{peð Þs{i

, where pe is the insertion

probability for a TA site, s is the total number of TA sites in a

gene, and t the number of observed mutations. A probability

generating function was used if equal insertion probability could

not be assumed. The general form of G(x) for each gene was

written as: G xð Þ~P
s

i
pixz 1{pið Þð Þ~P X~0ð ÞzP X~1ð Þxz

P X~2ð Þx2z � � �zP X~sð Þxs, where s is the number of TA

locations in a gene, and pi the specific probability for the insertion

location. In the power series expansion of G(x), the coefficient of xt

is the probability P(X = t). The cumulative probability of observing

up to t insertions in s possible TA locations was expressed as

G xð Þ~P
s

i
pixz 1{pið Þð Þ~P X~0ð ÞzP X~1ð ÞxzP X ~2ð Þx2

z � � �zP X~sð Þxs. The transposon insertion expectation for a

gene was calculated as E sð Þ~
Ps
r~1

rP x~rð Þ with a variance of

Var sð Þ~
Ps
r~1

r2P x~rð Þ{E2. The normalized deviation of expec-

tation (NDE) is given by: NDE~ Obs{Expectedð Þ=
ffiffiffiffiffiffiffiffi
Var
p

.

FBA essentiality calls
Transposon gene deletion simulations were performed for two

different media conditions: LB for the dataset from Deutschbauer

[18], and SBM for the dataset from Brutinel [28]. Because both

mutant libraries were generated under aerobic conditions, FBA

predictions were made for aerobic conditions. To prevent artifacts

resulting from unrealisticly large redox exchanges with the media,

nutrient uptake rates were limited to the concentrations in the

media (Text S1 for details). The low concentration of metals in

both media were therefore unable to sustain dissimilatory metal-

reducing growth. Genes were designated FBA essential if removal

resulted in ,1% biomass production relative to wild type [40]

Using zero biomass production as alternative cutoff [41,42]

resulted in identical predictions, suggesting that prediction were

insensitive to the cutoff value (Text S1 for details), which was

consistent with previous observations for E. coli networks [40,42].

Computationally zero growth was assessed as a biomass produc-

tion of ,1e-6 to eliminate the influence of computational noise.

Databases and software
The S. oneidensis MR-1 metabolic model was previously

reconstructed from the original genome annotation [29], which

was used in this study for comparison (NCBI, NC_004347.1).

Genes that were removed in later annotations (NC 004347.2) were

not used. In addition, all TA loci in areas where two genes

overlapped were excluded from the dataset. The essentiality of

4,214 genes in the S. oneidensis genome was investigated by TIFA.

The S. oneidensis essentiality and fitness predictions were

performed in MATLAB (MathWorks, Natick MA), by using the

COBRA toolbox [43] in combination with the linear optimization

routine (simplex algorithm) from the CPLEX software suite (IBM,

Armonk NY). Operon calls for S. oneidensis were taken from

ProOpDB [44] and only the terminal genes on operons were used

for fitness analysis. Essentiality calls were made for all terminal

genes. In addition, upstream genes on the operon were used if they

were evaluated as nonessential by using TIFA, or if the directly

downstream gene was called nonessential by TIFA. TIFA, genome

and Monte Carlo analyses were performed with custom MATLAB

and Python (http://www.python.org/) scripts. Unless otherwise

indicated, significance was evaluated at p,0.05.

Supporting Information

Dataset S1 Gene by gene comparison of essentiality,
fitness and operon calls.

(XLSX)

Figure S1 Properties of essential genes inserted in the
gene core 80%. Of the 273 TIFA identified essential genes, 50

genes contained insertions with associated fitness values. 28 of the

50 contained only insertions in the beginning (10%) and/or in the

end (10%), and/or a single insertion in the middle of the gene. Of

the remaining 22 genes the insertion location with associated

fitness (top diamonds), TA sequences (black diamonds), conserved

protein domains (red line segments) and intra gene start codons

with associated ribosomal binding site (RBS) strengths (bottom

diamonds) are shown. Fitness values outside the visualized range

were shown at the extreme ends of the scale. RBS strength was

shown logarithmically from 20.03 to 4.3, lower values were

omitted. For each gene, the first row underneath the line

represents the RBS strengths associated with intra gene start

codons of the uninserted gene. Each successive couple of rows

represents the RBS strengths of all downstream start codons for

each insertion. Two rows are shown for each mutant because the

orientation of insertions was unknown. All downstream RBS

strengths are shown because a transposon insertion could alter

the RBS strength for downstream intra gene start codons.

Mutations in three genes (SO4432, SO3185 and SO4669) caused

substantially slower growth rates. Insertions in five genes

(SO4391, SO0148, SO3873, SO4068 and SO3084) could not

be explained from the presented data. For the rest of the genes,

insertions were mostly outside conserved protein domains, and

the few insertions in conserved domains corresponded to slow

growth (SO2545). Insertions in ten genes (SO3178, SO1441,

SO3993, SO3874, SO4283, SO2133, SO1442, SO4359,

SO0730, and SO2544) may have resulted in a functional protein
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by reinitiating transcription and translation after transposon

insertion.

(PDF)

Text S1 Additional methods and results. Supplemental file

contains a detailed description of the TIFA method, the Monte

Carlo analysis used for the validation of TIFA, and the calculation

of fitness values. The supplement contains several additional

results.

(PDF)
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