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    Tuberculosis is the predominant cause for mortal-
ity from chronic pulmonary bacterial infections 
worldwide causing nearly two million deaths 
yearly. Tuberculosis has become more serious as 
a consequence of the global AIDS epidemic and 
the emergence of multidrug-resistant  Mycobacte-
rium tuberculosis  ( Mtb ), the causative agent of tu-
berculosis ( 1 ). Natural transmission of  Mtb  occurs 
predominantly via inhalation of aerosols contain-
ing small numbers of bacteria that are deposited in 
the distal airways of the lung ( 2 ). The pathogens 
are phagocytosed by pulmonary M � , which serve 
as a sanctuary for  Mtb  ( 3 ). Virulent  Mtb , which 

reside in M � , initially evade elimination by the 
immune system via preventing apoptosis and in-
hibiting maturation of the phagosome – lysosome 
organelle of the host M �  ( 4, 5 ). The net eff ect is 
to diminish entry of bacterial proteins into the class 
II MHC antigen-processing pathway ( 4 ) and to 
create a protected intracellular milieu where ba-
cilli remain metabolically active and replication 
competent ( 6 ). For M �  infected with virulent 
H37Rv, necrosis characterized by cytolysis is the 
dominant form of cell death, which aff ords a pro-
tective milieu for  Mtb  ( 7, 8 ). Thus, subversion of 
cell death toward necrosis is of considerable ad-
vantage for the pathogen. 
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of macrophage death 

  Minjian   Chen ,  1    Maziar   Divangahi ,  1    Huixian   Gan ,  1    Daniel S.J.   Shin ,  1   
 Song   Hong ,  2    David M.   Lee ,  1    Charles N.   Serhan ,  2    Samuel M.   Behar ,  1   
and  Heinz G.   Remold   1   

  1 Department of Medicine and Division of Rheumatology, Immunology, and Allergy and  2 Center for Experimental Therapeutics 

and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women ’ s Hospital 

and Harvard Medical School, Boston, MA 02115   

 Virulent  Mycobacterium tuberculosis  ( Mtb ) induces a maladaptive cytolytic death modality, 

necrosis, which is advantageous for the pathogen. We report that necrosis of macrophages 

infected with the virulent  Mtb  strains H37Rv and Erdmann depends on predominant LXA 4  

production that is part of the antiinfl ammatory and infl ammation-resolving action induced 

by  Mtb . Infection of macrophages with the avirulent H37Ra triggers production of high 

levels of the prostanoid PGE 2 , which promotes protection against mitochondrial inner 

membrane perturbation and necrosis. In contrast to H37Ra infection, PGE 2  production is 

signifi cantly reduced in H37Rv-infected macrophages. PGE 2  acts by engaging the PGE 2  

receptor EP2, which induces cyclic AMP production and protein kinase A activation. To 

verify a role for PGE 2  in control of bacterial growth, we show that infection of prostaglan-

din E synthase (PGES)  � / �   macrophages in vitro with H37Rv resulted in signifi cantly higher 

bacterial burden compared with wild-type macrophages. More importantly, PGES  � / �   mice 

harbor signifi cantly higher  Mtb  lung burden 5 wk after low-dose aerosol infection with 

virulent  Mtb . These in vitro and in vivo data indicate that PGE 2  plays a critical role in 

inhibition of  Mtb  replication. 
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acid (AA) from the sn-2 position of membrane phospho-
lipids ( 28 ). AA and its functionally diverse and biologically 
active eicosanoid products have been implicated in the regula-
tion of programmed cell death in several cell types ( 29, 30 ). 
The lipoxins are AA metabolites generated by 5- and 15-lipoxy-
genases (5- and 15-LO) ( 31 ). Lipoxins modulate chemokine and 
cytokine expression, stimulate monocyte traffi  cking, and en-
hance M �  engulfment of apoptotic leucocytes ( 32 ). However 
the role of 5-LO products of AA such as lipoxins and leukotri-
ene B 4 , which amplifi es PMN chemotaxis and production of 
granule products ( 33 ), has not been elucidated in modulating the 
death modality of M � . 

 Prostanoids are lipid mediators generated from AA by the 
enzymatic action of the cyclooxygenases (COX) 1 and 2 to 
form the intermediate PGH 2 , with subsequent metabolism to 
specifi c prostanoid species (e.g., PGD 2 , PGE 2 , PGF 2 �  , PGI 2 , 
and thromboxane) by prostaglandin synthases ( 34, 35 ). The 
functions of these prostanoids are defi ned by an array of spe-
cifi c receptors. In the case of PGE 2 , diff erential expression of 
four distinct EP receptors defi nes the intracellular pathways 
that are activated by PGE 2  and results in specifi c functions that 
might either promote or inhibit infl ammation. For example, 
in the lung, PGE 2  either promotes vasodilatation and increases 
vascular permeability or increases bronchodilatation ( 36 ). 
A recent study describes a noninfl ammatory function of PGE 2 , 
up- or down-regulation of programmed cell death, which in-
dicates that the mechanisms of PGE 2  activation are complex 
and context dependent ( 37 ). 

 Mice with a deleted 5-LO gene have increased IL-12, 
IFN- � , and NO synthase 2 levels compared with WT mice 
after pulmonary  Mtb  infection. 5-LO  � / �   mice also have sig-
nifi cantly lower  Mtb  burdens and survive longer than WT 
animals after respiratory  Mtb  infection ( 38 ). Importantly, ad-
ministration of a stable LXA 4  analogue was suffi  cient to re-
verse the increased resistance of 5-LO  � / �   mice to  Mtb  infection. 
The fi nding that  Mtb  infection signifi cantly increases AA pro-
duction via activation of cPLA 2 - �  ( 27 ) and that 5 LO  � / �   
mice are signifi cantly more resistant to  Mtb  infections ( 38 ), 
raised the question of whether eicosanoid production is in-
volved in macrophage necrosis and inhibition of apoptosis 
induced by virulent  Mtb . We hypothesize that stimulation of 
lipoxin by virulent  Mtb  inhibits macrophage apoptosis, pro-
motes necrosis, and represents a mechanism that allows  Mtb  
to evade elimination by the innate immune system. We there-
fore investigated how lipoxins and prostanoids aff ect the out-
come of  Mtb -driven M �  death with respect to apoptosis and 
necrosis as a novel pathogenic mechanism that regulates the 
innate immune response in  Mtb  infection. 

  RESULTS  

 Virulent  Mtb  trigger production of LXA 4  in M �  

 We demonstrated that inhibition of cPLA 2  abrogates apopto-
sis in  Mtb -infected M � , which could be restored by reconsti-
tution of AA, the predominant product of cPLA 2  ( 27 ). These 
fi ndings suggest that products synthesized from AA, namely 
the eicosanoids, regulate programmed M �  death induced 

 A common mechanism of necrosis is induction of mito-
chondrial permeability transition (MPT), which is manifested 
as accelerated cell death with plasma membrane disintegration. 
It is thought that a pore opens in the inner mitochondrial 
membrane allowing water and other molecules to pass through. 
Opening of this permeability transition pore can be triggered 
by multiple stimuli and leads to dissipation of the mitochondrial 
inner membrane potential ( �  �  m ) ( 9 ). Irreversible induction of 
MPT leads to mitochondrial damage associated with mito-
chondrial swelling and subsequent necrosis of the cell. In vitro 
M �  infected with virulent H37Rv causes the catastrophic irre-
versible MPT that commits the M �  to necrosis ( 10 ). 

 The active nature of this necrosis induction by virulent 
 Mtb  is clearly revealed after infection of M �  with mutants of 
 Mtb . Although host M �  support growth of virulent  Mtb  ( 3 ), 
innate immune mechanisms are activated that limit pathogen 
survival after infection with  Mtb  mutants having altered viru-
lence. These responses include induction of apoptosis, a slow 
cell death modality which leaves the plasma membrane intact 
and is observed after infection of M �  with attenuated  Mtb  
( 11 – 13 ). This M �  death modality limits exploitation of the 
intracellular growth environment through direct microbici-
dal eff ects and by sequestering bacilli in apoptotic bodies. Indeed, 
apoptosis both enhances antigen presentation by DC ( 14 ) and 
facilitates effi  cient pathogen killing ( 15 – 18 ). 

 Two pathways are described that lead to this highly regu-
lated form of cell death ( 19 ). First, the extrinsic apoptotic 
pathway implicates binding of the ligands TNF and FasL 
to their receptors that trigger apoptosis ( 20 ). Second, the in-
trinsic apoptotic pathway involves the mitochondria, which 
release cytochrome  c  and other factors from the mitochondrial 
intermembrane space that promote apoptosis ( 21, 22 ). 

 We demonstrated previously that mitochondria play an es-
sential role to determine whether  Mtb -infected M �  undergo 
cytolytic necrosis or apoptosis ( 8 ). Apoptosis induced by the 
mitochondrial pathway commences with Ca 2+  release from the 
ER that leads to an increase of Ca 2+  in the mitochondria as 
well as translocation of BAX into the mitochondria and BAK 
activation ( 23 ). Permeabilization of the mitochondrial outer 
membrane then proceeds via formation of a proteolipid pore 
and subsequent escape of proteins from the mitochondrial in-
termembrane space into the cytosol. More specifi cally, upon 
mitochondrial outer membrane permeabilization proapoptotic 
factors, including cytochrome  c , are released from the mito-
chondrial intermembrane space into the cytosol. There, cyto-
chrome  c  forms a complex with Apaf-1, leading to activation 
of caspase-9 that, in turn, activates executioner caspases such as 
caspase-3, -6, and -7, which are instrumental in the induction 
of apoptosis ( 19, 24 ).  

 Infection with the attenuated  Mtb  H37Ra, which has a 
mutation in PhoP which inhibits ESX-1 function ( 25 ), pre-
dominantly prevents necrosis and leads to sequestration and 
decimation of the intracellular bacteria ( 8, 26 ).  

  Mtb -induced apoptosis and antimycobacterial activity of 
human M �  requires the activity of cPLA 2 - � , a group IV cyto-
solic PLA 2  (cPLA 2 ) ( 27 ) which catalyzes the release of arachidonic 
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The production of LXA 4  was measured over time in superna-
tants from M �  infected with virulent and avirulent  Mtb . Viru-
lent H37Rv induce signifi cantly higher levels of LXA 4  production 
(1 nM;  Fig. 1 B ). Similar results are observed with another vir-
ulent strain (Erdmann strain [not depicted]). In contrast, when 
M �  are infected with avirulent H37Ra, production of LXA 4  
reaches  � 0.4 nM at 4 and 6 h after infection but is then subse-
quently down-regulated to  � 0.2 nM at 12 h. The amount of 
LXA 4  production induced by H37Rv correlates with the mul-
tiplicity of infection (MOI;  Fig. 1 C ). In contrast, the amount 
of LXA 4  production after H37Ra infection was not increased 
when the MOI was raised. 

 These fi ndings raised the question of whether M �  infected 
with virulent  Mtb  negatively regulate COX2 expression. 
Infection of M �  with the virulent H37Rv induced little ac-
cumulation of COX2 mRNA and COX2 protein compared 
with infection with the mutant  Mtb  strain H37Ra, suggesting 
that H37Rv infection inhibits COX2 expression ( Fig. 1, D 
and E ). These fi ndings suggest that infection with virulent  Mtb  
induces the production of LXA 4  in suffi  cient quantities to in-
hibit COX2 production, which represents an important mani-
festation of bacterial virulence. 

 The virulent  Mtb  strain H37Rv inhibits prostanoid 

production by the host M �  

 COX2, the inducible PGH synthase, is required for prostanoid 
synthesis ( 40 ). To study whether inhibition of COX2 expression 
by H37Rv had any functional consequences, we measured pros-
tanoid production by  Mtb -infected M � . PGE 2  levels of  < 1 nM 
were detected in supernatants of H37Rv-infected M �  during 
the fi rst 48 h of infection. In contrast, levels of PGE 2  were pro-
duced by M �  infected with H37Ra, which increased over time 
and could be correlated with the MOI ( Fig. 2, A and B ).  Infec-
tion with H37Ra also signifi cantly induced production of the 
prostanoids PGF 2 �   ( Fig. 2 C ) and TXA 2  (not depicted). In con-
trast, the virulent  Mtb  strain H37Rv failed to induce signifi cant 
prostanoid production ( Fig. 2, A – C ). To determine whether 
these fi ndings were not confounded by altered bacterial uptake, 
survival, or replication, we measured bacterial counts. 72 h after 
infection, the bacterial burden was similar between M �  infected 
with H37Rv and H37Ra (unpublished data). 

 Thus, virulent  Mtb  suppress COX2 expression in infected 
M � , which leads to a global inhibition of prostanoid produc-
tion. Although prostanoid synthesis is signifi cantly inhibited by 
H37Rv, the amount that is produced is likely to be an impor-
tant counterbalance to LXA 4  because M �  exposed to 1 nM 
LXA 4  are highly sensitive to PGE 2  and respond to  � 1 – 2 logs 
lower PGE 2  concentrations than M �  not exposed to LXA 4  
with a protective response against necrosis (Fig. S1, available at 
http://www.jem.org/cgi/content/full/jem.20080767/DC1). 

 PGE 2  suppresses mitochondrial inner membrane 

perturbation (MPT) and necrosis in M �  infected 

with virulent  Mtb  

 Virulent H37Rv induce rampant necrosis. In contrast, avirulent 
H37Ra fail to induce M �  necrosis ( 7, 8, 12 ). The observation 

by  Mtb . Two groups of eicosanoids are of special interest 
because of their opposing eff ects, the prostanoids that are 
derived by the COX pathway ( 34 ) and the lipoxins, a distinct 
class of LO-derived products which promote termination of 
infl ammation ( 39 ). 

 The identifi cation of PGE 2  and LXA 4  in infected M �  su-
pernatants was established from the diagnostic ions present in 
their liquid chromatography tandem mass spectrometry (LC-
MS-MS) spectra ( Fig. 1 A ).  We extended these studies by per-
forming ELISA assays on H37Rv- and H37Ra-infected M � . 

  Figure 1.     LXA 4  and COX2 production of human M �  infected with 

H37Rv and H37Ra.  (A) LC-MS-MS of endogenous PGE 2  (top) and LXA 4  

(bottom) produced by H37Ra- (MOI 10) and H37Rv- (MOI 10) infected 

human M � , respectively, at 24 h. The spectrum is a representative LC-MS-

MS ( n  = 3). The prominent ions and relative intensity matched with au-

thentic PGE 2  and LXA 4  under these LC-MS-MS conditions. (B) LXA 4  

production in human M �  infected with H37Rv and H37Ra (MOI 10:1) at 

0 – 48 h. Differences in LXA 4  concentrations in supernatants from H37Ra- 

and H37Rv-infected M �  are statistically signifi cant (*, P  <  0.002;  n  = 3). 

(C) LXA 4  accumulation at 48 h in M �  supernatants infected with H37Ra 

and H37Rv (MOI 2, 5, and 10:1). The differences in LXA 4  production in-

duced by H37Ra and H37Rv are statistically signifi cant at all MOIs (P  <  

0.01;  n  = 3). (D) COX2 mRNA accumulation in M �  infected with H37Ra or 

H37Rv (MOI 10:1; uninfect, uninfected). (E) Production of COX2 protein in 

M �  infected with H37Ra and H37Rv (MOI 10:1) at different time points. 

In all studies, n represents the number of independent experiments and 

the error bars represent SE. Black lines indicate that intervening lanes 

have been spliced out.   
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cated in experiments with mouse M �  (unpublished data). 
Addition of exogenous PGE 2  also inhibited necrosis measured 
by 7-AAD staining of H37Rv-infected M � . Specifi cally, 
addition of 1  μ M PGE 2  to H37Rv-infected M �  decreased the 
number of 7-AAD – positive M �  after 48 h from 29  ±  1 to 17  ±  
1% after infection with H37Rv (background 2.2  ±  0.5%; MOI 
10:1; P  <  0.01;  n  = 3). Other prostanoids, such as PGD 2 , 
PGF 2 �  , PGI 2 , and TXA 2 , and leukotriene LTB 4 , had little or 
no eff ect on prevention of necrosis ( Fig. 3 C ). 

 We next confi rmed the role of PGE 2  in protection against 
 Mtb  infection-induced necrosis using a loss-of-function ap-
proach. In this study, we reasoned that  Mtb -induced PGE 2  pro-
duction is a default pathway for the innate immune response, 
which may be interrupted in H37Rv infection. Thus, infection 

that infection of M �  with H37Rv induces LXA 4  and inhibits 
COX2 and prostanoid production, whereas H37Ra infection 
fails to induce LXA 4  but stimulates COX2 and prostanoid 
production, led to the hypothesis that H37Rv-induced LXA 4  
production may foster M �  necrosis via inhibition of PGE 2  
production. Conversely, H37Ra infection may stimulate PGE 2 -
mediated inhibition of LXA 4  and prevent M �  necrosis. By 
determining the release of the cationic dye DiCO 6 (3) from 
mitochondria, a correlate of M �  necrosis ( 41 ), we fi rst inves-
tigated whether prostanoids block induction of H37Rv-in-
duced necrosis. Indeed, increasing micromolar concentrations 
of PGE 2  signifi cantly decreased cationic dye release from the 
mitochondria of human M �  infected with virulent H37Rv 
(MOI 10) after 24 h ( Fig. 3, A – C ).  These results were dupli-

  Figure 2.     Prostanoid production of M �  infected with  Mtb .  (A) PGE 2  

production of human M �  0 – 48 h after infection with H37Ra and H37Rv 

(MOI 10:1). Differences in PGE 2  concentrations in supernatants from 

H37Ra- and H37Rv-infected M �  are statistically signifi cant (*, P  <  0.002; 

 n  = 3). (B) PGE 2  production by M �  infected with H37Ra and H37Rv (MOI 

2:1 – 10:1). The differences in PGE 2  production induced by H37Ra in com-

parison to H37Rv are statistically signifi cant at all MOIs (*, P  <  0.01;  n  = 3). 

(C) Quantifi cation of PGE 2 , PGF 2 �  , and PGD 2  in 48-h supernatants from 

human M �  (5  ×  10 6  /ml) infected with H37Ra and H37Rv (MOI 10:1; *, 

P  <  0.002;  n  = 4). Data are presented as means  ±  SE. In all studies,  n  repre-

sents the number of independent experiments.   

  Figure 3.     Effect of exogenous prostanoids produced by  Mtb -in-

fected M �  on H37Rv-induced mitochondrial cationic dye release.  

(A) PGE 2  blocks DiOC 6 (3) release from mitochondria of human M �  in-

fected with H37Rv (MOI 5:1; 48 h). A fl uorescence-activated cell sorter 

diagram is shown. (B) Down-regulation of cationic dye release by increasing 

concentrations of PGE 2  (2 – 10  μ M) is statistically signifi cant at all PGE 2  

concentrations (P  <  0.01;  n  = 6). (C) Effect of 1  μ M of various prostanoids 

on H37Rv-induced mitochondrial DiOC 6 (3) release of M � . Only PGE 2  inhibition 

of cationic dye release from the mitochondria is statistically signifi cant 

(*, P  <  0.007;  n  = 3). PGF 2 �   has borderline activity. The concentration of 

LTB 4  is 0.1  μ M. (D) H37Ra (MOI 5:1)-induced DiOC 6 (3) release from mito-

chondria of WT and PGES  � / �   mouse M �  infected in the absence and 

presence of 1  μ M PGE 2 . At 48 h, cationic dye release from the mitochon-

dria was measured (*, P  <  0.006;  n  = 5). (E) 1  μ M PGE 2  does not alter 

H37Ra- and H37Rv-induced cytochrome  c  release from the mitochondria 

(not signifi cant;  n  = 3). Data are presented as means  ±  SE. In all studies, 

 n  represents the number of independent experiments.   
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analogue added to H37Ra-infected M �  dramatically inhib-
ited both COX2 protein and PGE 2  production induced by 
H37Ra ( Fig. 4 B ). Silencing of the 5-LO gene ( Fig. 4 C , left) 
in M �  infected with the virulent H37Rv inhibited H37Rv-
induced LXA 4  production ( Fig. 4 C , right) and reduced ne-
crosis ( Fig. 4 D ), demonstrating that 5-LO activity is required 
for LXA 4  production by H37Rv-infected M � . Finally, in-
hibition of LXA 4  synthesis in H37Rv-infected M �  by 5-LO 
gene silencing led to PGE 2  production ( Fig. 4 E ). These re-
sults not only provide additional proof that LXA 4  suppresses 
PGE 2  production but demonstrate that the induction of 

of microsomal prostaglandin E synthase (mPGES)  � / �   M �  de-
fi cient of PGE 2  production with H37Ra should mimic the vir-
ulent status in H37Rv infection and stimulate necrosis. As 
anticipated, PGES  � / �   M �  ( 42 ) are unable to produce PGE 2  
after infection with avirulent H37Ra and show a concomitant 
phenotypic switch to susceptibility to necrosis after infection 
( Fig. 3 D ). These results demonstrate that PGES activity in-
hibits  Mtb -induced necrosis. Addition of exogenous PGE 2  to 
H37Ra-infected PGES  � / �   M �  restored the avirulent pheno-
type with striking inhibition of necrosis and confi rms that PGE 2  
is a central mediator in cell death regulation of  Mtb -infected 
M �  ( Fig. 3 D ). 

 To ascertain that induction of human and mouse M �  necro-
sis by  Mtb  is caused by related mechanisms, we determined the 
amount of necrosis after infection with the same MOIs of H37Ra 
or H37Rv. The results show that both human and mouse M �  
have a similar necrosis response after infection (Fig. S2, available at 
http://www.jem.org/cgi/content/full/jem.20080767/DC1). 

 Defi ning the existence of distinct mechanisms that regulate 
necrosis and apoptosis, and having observed a PGE 2 -dependent 
modulation in the context of  Mtb  infection, we next investigated 
whether PGE 2  has a direct role in the regulation of M �  apopto-
sis. In this study, we assessed PGE 2 -stimulated cytochrome  c  
release from the mitochondrial intermembrane space ( 19 ), a 
correlate of apoptosis. Interestingly, we fi nd that PGE 2  does not 
modulate cytochrome  c  release in H37Ra or H37Rv-infected 
M �  ( Fig. 3 E ), nor does it cause cytochrome  c  release in absence 
of infection (not depicted). Thus, PGE 2  plays no role in the in-
duction of apoptosis. 

 Necrosis is positively regulated by LXA 4  through inhibition 

of prostanoid synthesis leading to mitochondrial inner 

membrane perturbation 

 In the mouse model of  Mtb  infection, LXA 4  production cor-
relates with reduced resistance against  Mtb  ( 38 ). Our data re-
veal a relationship between LXA 4  production and M �  necrosis 
after virulent  Mtb  infection in vitro. These observations col-
lectively suggest a functional contribution for LXA 4  in the in-
duction of necrosis. We reasoned that if LXA 4  production is a 
mechanism by which virulent H37Rv promote necrosis in in-
fected M � , addition of LXA 4  to M �  infected with nonvirulent 
H37Ra should confer a virulent phenotype with regard to 
 Mtb -induced necrosis. Indeed, LXA 4  signifi cantly enhanced 
cationic dye release from the mitochondria, a correlate of ne-
crosis, in H37Ra-infected M �  ( Fig. 4 A , left).  Importantly, 
LXA 4  administration in the absence of  Mtb  infection has no 
eff ect on M �  necrosis ( Fig. 4 A , left). Moreover, addition of 
LXA 4  to H37Ra-infected PGES  � / �   M � , which are unable to 
synthesize PGE 2 , does not increase cationic dye release from 
the mitochondria ( Fig. 4 A , right). These results suggest that in 
 Mtb -infected M � , LXA 4  acts by down-regulating PGE 2  syn-
thesis to induce necrosis. 

 To investigate whether induction of necrosis by LXA 4  is 
based on an inhibitory eff ect of LXA 4  on PGE 2  synthesis, we 
determined whether LXA 4  blocks synthesis of COX2, thus 
inhibiting generation of PGE 2 . Indeed, 10  � 9  M of stable LXA 4  

  Figure 4.     Effect of LXA 4  on  Mtb -infected M � .  (A, left) addition of 

10  � 9  M LXA 4  to H37Ra-infected human M �  (MOI 10:1) enhances mito-

chondrial cationic dye release (*, statistically signifi cant difference;  n  = 3; 

P = 0.04). (A, right) LXA 4  by itself is ineffective. Addition of 10  � 9  and 10  � 10  

M LXA 4  to PGES  � / �   mouse M �  infected with H37Ra (MOI 5:1) does not 

affect mitochondrial cationic dye release (not signifi cant;  n  = 3). 

(B, left) Production of COX2 protein by H37Ra (MOI 10:1)-infected M �  is 

inhibited by the addition of 10  � 9  M LXA 4 . Western analysis of M �  extracts. 

The actions of LXA 4  were mimicked by its metabolic stable analogue (not 

depicted). (B, right) PGE 2  production by M �  (*, P  <  0.001;  n  = 3). Black 

lines indicate that intervening lanes have been spliced out. (C and D) Tar-

geted silencing (t) of the 5-LO gene (C,  � 70% inhibition at t 50) abro-

gates production of LXA 4  by H37Rv-infected M �  compared with 

nontargeted (nt) silencing (D, left, 50 nM siRNA; P = 0.001;  n  = 3) and 

reduces mitochondrial cationic dye release after H37Rv infection (D, right; 

nt, nontargeted; P  <  0.04;  n  = 3). Black lines indicate that intervening 

lanes have been spliced out. (E) Targeted silencing of the 5-LO gene re-

constitutes production of PGE 2  after infection of M �  with H37Rv, indicat-

ing that block of PGE 2  production is caused by the action of LXA 4  (P  <  

0.003;  n  = 3). Data are presented as means  ±  SE. In all studies,  n  repre-

sents the number of independent experiments (*, statistically signifi cant).   
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 Pulmonary  Mtb  infection in mice is controlled by PGE 2  

 The fi ndings presented in the previous section indicate that 
infection with virulent  Mtb  leads to the induction of LXA 4  
and suppression of PGE 2 , which results in the necrotic death 
of infected M � . We therefore performed in vitro experi-
ments with M �  from WT and PGES  � / �   mice.  Fig. 6 A  
shows that after 4 d of H37Rv infection, the bacterial growth 
was comparable between WT and PGES  � / �   M � .  However, 
7 d after infection the bacterial burden was signifi cantly 
higher in PGES  � / �   M �  than in WT M � . These data sug-
gested that PGE 2  plays a major regulatory role in controlling 
bacterial growth in M �  and predicted that an alteration in 
the balance between PGE 2  and LXA 4  might change the 
in vivo outcome of infection. Indeed, 5-LO  � / �   mice are more 

LXA 4  by  Mtb  is a potential mechanism that prevents PGE 2  
production and leads to cell necrosis. 

 The prostanoid receptor EP2 is involved in protection 

of the mitochondrial inner membrane of  Mtb -infected 

M �  by PGE 2  

 The action of PGE 2  on the M �  is mediated by four distinct 
G protein – coupled E prostanoid (EP) receptors, referred to 
as EP1, EP2, EP3, and EP4 ( 43 ), and mice defi cient in the 
four PGE 2  receptors have been generated ( 44 – 47 ). All four 
receptors are expressed by human M �  ( Fig. 5 A ).  The EP1 
receptor is functionally connected to Gq, a G protein that 
increases Ca 2+  i . The EP2 and EP4 receptors activate G pro-
teins that activate adenylate cyclase leading to increased 
cAMP production. The EP3 receptor inhibits adenylate cy-
clase via Gi and reduces cAMP levels. To confi rm the cen-
tral role of PGE 2  and to more precisely determine its action 
via specifi c EP receptors in protection of the mitochondrial 
inner membrane from MPT, we determined the eff ect of 
exogenous PGE 2  on cationic dye release in WT M �  and 
M �  from homozygote EP1, EP2, EP3, and EP4  � / �   mice 
infected with H37Ra and H37Rv. M �  from WT, EP1, 
EP3, and EP4  � / �   mice responded to increasing exogenous 
PGE 2  concentrations with enhanced inhibition of cationic 
dye release induced by H37Rv. Cationic dye release from 
the mitochondria in EP2  � / �   M �  infected with H37Rv 
could not be inhibited even by high concentrations of PGE 2 , 
indicating that EP2 is the major PGE 2  receptor responsible 
for inhibition of mitochondrial cationic dye release. Identi-
cal results were obtained when the cells were infected with 
H37Ra ( Fig. 5 B ). 

 Stimulation of EP2 and EP4 receptors triggers activation 
of adenylate cyclase ( 48 ). EP2 is associated with activation 
of protein kinase A (PKA) ( 49 – 51 ). In contrast, signaling 
through EP4 mainly stimulates phosphatidylinositol-3 kinase 
(PI3K) – mediated processes ( 49, 52 ). To confi rm that the 
inhibition of mitochondrial cationic dye release is modu-
lated by stimulation of EP2, we examined the eff ect of the 
specifi c PKA inhibitor KT5720 ( 53 ) on PGE 2 -dependent 
inhibition of mitochondrial cationic dye release. We also 
confi rmed lack of involvement of the EP4-stimulated PI3K 
pathway by testing the eff ect of the PI3K inhibitor LY294002 
on mitochondrial cationic dye release ( 54 ). KT5720, at 
concentrations previously shown to protect cells from apop-
tosis (10  � 7  M [reference  53 ]), abrogated the protective ef-
fect of PGE 2  on M �  ( Fig. 5 C ). In agreement with the 
postulated hypothesis that H37Ra is unable to induce ne-
crosis in infected M �  because of induction of PGE 2  produc-
tion, addition of KT5720 to H37Ra-infected M �  signifi cantly 
augmented M �  necrosis ( Fig. 5 C ). In contrast, LY294002 had 
no eff ect ( Fig. 5 D ). KT5720 and LY294002 alone had no 
eff ect on mitochondrial cationic dye release induced by H37Rv. 
These results are consistent with a mechanism wherein EP2 
activation of PKA, rather than EP4 activation of PI3K, me-
diates the protective eff ect of PGE 2  on mitochondria of  Mtb -
infected M � . 

  Figure 5.     EP2 mediates PGE 2 -dependent protection against cat-

ionic mitochondrial dye release.  Data are presented as means  ±  SE. 

(A) EP1, EP2, EP3, and EP4 are constitutively expressed in human M � . 

Their expression is not increased by either H37Ra or H37Rv infection. 

(B) EP2  � / �   M �  fail to respond to PGE 2  by down-regulating DiCO 6 (3) re-

lease from the mitochondria infected with H37Rv (top) or with H37Ra 

(bottom), indicating that EP2 mediates the protective function of PGE 2 . 

M �  from EP1, EP3, and EP4   � / �   mice were equally responsive to 1  μ M 

PGE 2  (*, statistically signifi cant; P  <  0.01;  n  = 5). (C) The cAMP-dependent 

PKA inhibitor KT5720 abrogates inhibition of mitochondrial cationic dye 

release by PGE 2  (black columns; P  <  0.01;  n  = 3). Addition of KT5720 to 

H37Ra-infected (MOI 10:1) M �  enhanced M �  necrosis (gray columns; *, 

P  <  0.01;  n  = 3). (D) The PI3K inhibitor LY294002 does not abrogate inhibi-

tion of mitochondrial cationic dye release by PGE 2  (not signifi cant;  n  = 3). 

In all studies,  n  represents the number of independent experiments.   
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Our results demonstrate hitherto unappreciated disparate roles 
for LXA 4  and PGE 2  in the regulation of induction of host M �  
necrosis, a cell death leading to cytolysis. M �  infected with 
virulent  Mtb  that produce LXA 4  and reduced amounts of PGE 2  
undergo necrosis. In contrast, prevention of necrosis and con-
comitant induction of M �  apoptosis is associated with in-
creased PGE 2  production. Thus, the induction of LXA 4  and 
the resulting inhibition of PGE 2  production contribute to the 
virulence of  Mtb  and enhance its capacity to evade killing by 
the innate immune system. Indeed, the failure of PGES  � / �   
M �  to control H37Rv replication in vitro and the observation 
that PGES  � / �   mice have a 10-fold higher  Mtb  burden in their 
lungs compared with WT mice demonstrate the protective ef-
fect of PGE 2  against virulent  Mtb . Preferential synthesis of ei-
ther LXA 4  or of prostanoids is a critical branch point for the 
innate antimycobacterial response of the infected M �  ( Fig. 7 ).  

 Lipoxins are best described as potent negative regulators of 
acute infl ammatory processes ( 55 ), in part via inhibition of DC 
mobilization, inhibition of IL12 production ( 56 ), and PMN-
induced infl ammation in vivo. LXA 4  activities are multifold 
and include inhibition of PMN entry to sites of infl ammation, 
reduction of vascular permeability, promotion of monocyte 
infi ltration, and ingestion of apoptotic cells, perhaps including 
infected M �  by phagocytes ( 39 ). Moreover, lipid mediators 
that resolve infl ammatory events, including LXA 4 , stimulate 
phagocytosis of zymosan and of microbial organisms leading to 
de novo infection of phagocytes ( 56 ). The results suggest that 
the action of LXA 4  in reducing prostanoid production as part 
of the infl ammation-resolving program of LXA 4  is exploited 
by  Mtb  in the local environment. Thus, although temporally 
regulated dampening of the infl ammatory response is generally 
highly benefi cial to the host, our studies uncover a novel sce-
nario wherein LXA 4 -driven reduction of  “ proinfl ammatory ”  
PGE 2  synthesis functionally acts as an effi  cient mechanism used 
by pathogenic  Mtb . More specifi cally, LXA 4  counteracts the 

resistant to infection ( 38 ). Similarly, we would predict that 
in the absence of PGES, mice are more susceptible to infec-
tion. WT and PGES  � / �   mice were infected by the aerosol 
route with 100 virulent  Mtb  per lung. Similar numbers of 
bacteria were found in the lungs of both WT and PGES  � / �   
mice on day 1 after infection ( n  = 4/group). The bacterial 
burden in WT and PGES  � / �   mice was not diff erent 2 wk 
after infection (unpublished data). However, after 5 wk WT 
mice controlled the infection more effi  ciently compared 
with the PGES  � / �   mice, whose lungs contained more bac-
teria ( �  log 10 = 0.97; P = 0.0079;  Fig. 6 ). This diff erence 
was not observed in the spleen (unpublished data). To assess 
whether the balance between PGE 2  and LXA 4  is changed 
during the course of a mycobacterial infection in vivo, we 
next measured the levels of PGE 2  and LXA 4  in sera from 
WT mice infected with either virulent Erdmann strain or 
avirulent H37Ra. As it was observed in vitro, virulent bac-
teria induced remarkably more LXA 4  after 7 d of infection, 
whereas avirulent H37Ra induced more PGE 2 . This indi-
cates that PGE 2  signifi cantly contributes in vivo to protec-
tive responses against mycobacterial infection in the lung. 

  DISCUSSION  

 The central fi nding of this study is that in the local environ-
ment of an  Mtb  infection, M �  infected with virulent  Mtb  pref-
erentially synthesize LXA 4  and little, if any, PGE 2 . In contrast, 
M �  infected with avirulent H37Ra produce mainly pros-
tanoids, including PGE 2 , and only small amounts of LXA 4 . 

  Figure 6.     Mycobacterial burden of PGES  � / �   and WT M �  in vitro 

and in vivo.  (A) Mycobacterial burden after 4 h (inoculum), 4 d, and 7 d 

of PGES  � / �   and WT M �  in vitro infected with H37Rv (MOI 10:1). The dif-

ference in the bacterial burden was signifi cant at 4 and 7 d after infection 

(*, P  <  0.03). (B) 5 wk after aerosol infection, CFUs were determined by 

plating of homogenized lung tissue as indicated on the ordinate. The 

difference in mycobacterial burden in the lungs of PGES  � / �   versus WT 

mice is statistically signifi cant (*, P = 0.002; fi ve mice per group). 

(C and D) Induction of LXA 4  and PGE 2  production during the course of 

mycobacterial infection. WT mice were infected by aerosol exposure with 

virulent (Erdmann) or avirulent (H37Ra). LXA 4  (C) and PGE 2  (D) measured 

by ELISA in the sera at 7, 14, and 35 d after infection (*, P  <  0.01; three 

mice per time points). These results are representative of two independent 

experiments. The error bars represent SE.   

  Figure 7.     Infection of M �  with the virulent H37Rv predominantly 

induces LXA 4  production and block of COX2 and PGE 2  production, 

which might lead to necrotic cell lysis and spread of the infection.  

In contrast, M �  infected with avirulent H37Ra produce larger amounts of 

PGE 2  which blocks LXA 4  production and supports M �  apoptosis and con-

tainment of the  Mtb.  Predominant production of either PGE 2  or LXA 4  by 

M �  infected with H37Ra or H37Rv, respectively, is supported by the fact 

that PGE 2  inhibits LXA 4  production and vice versa.   
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is the predominant death modality of the host M �  infected 
with attenuated  Mtb  including H37Ra and secA2 mutants 
( 13 ). Apoptotic bodies are thought to provide a containment 
vessel for the bacilli as well as an effi  cient means for pathogen 
killing ( 15 ). Moreover, apoptotic bodies express specifi c cell 
surface receptors ( 61 ) that promote uptake and subsequent 
antigen presentation to DC ( 14 ). Virulent  Mtb  subvert apop-
tosis and induce plasma membrane lysis (necrosis), leading to 
dissipation of the pathogens and spread of the infection. 

 Thus, the fate of the infected M �  with regard to cell death 
modality is a critical determinant in an eff ective host defense 
response to  Mtb  infection. Our studies identify a novel mech-
anism wherein  Mtb  stimulates a pathway involved in the local 
resolution of infl ammation to subvert defense mechanisms 
against  Mtb . To our knowledge, this is the fi rst example of a 
pathway important in the resolution of infl ammation that is 
targeted by a pathogen to counteract the innate immune sys-
tem. Although it is tempting to advocate therapeutic targets 
of the lipoxin pathway for  Mtb  infection, further studies are 
required both to understand the mechanisms by which LXA 4  
production is activated via virulent  Mtb  and to determine the 
consequences of blocking the LXA 4  production in the course 
of an infection of M �  with  Mtb  for the host. 

 MATERIALS AND METHODS 
 Materials.   LY294002, KT5720, and propidium iodide (PI) were obtained 

from Sigma-Aldrich. DiOC 6 (3) (3,3 � -dihexyloxycarbocyanine iodide), rhoda-

mine-2 AM, goat anti – mouse IgG 1 , and anti – mouse COX1 antibodies were 

obtained from Invitrogen. PGE 2 , PGF 2 �  , PGD 2 , PGI 2 , LTB 4 , TXB 2 , and 

LXA 4 , sheep anti – 15-LO antibody, and mouse anti-COX2 antibody were ob-

tained from Cayman Chemical. 15-epi-16-phenoxy-parafl uoro-LXA 4 -methyl 

ester was a gift from Bayer-Schering Pharma AG. Anti –  	 -actin mAb was ob-

tained from Thermo Fisher Scientifi c. Mouse anti – 5-LO antibody, mouse 

IgG 1 , and mouse anti – cytochrome  c  mAb (7H8.2C12.6H2.B4) were obtained 

from BD. IMDM, RPMI-1640, Opti-MEM I reduced serum medium, Oligo-

fectamine, Hepes, and DTT were obtained from Invitrogen. Rabbit anti –

 annexin-1 polyclonal antibody, goat anti – rabbit IgG FITC conjugate, 

and HRP protein A were obtained from Invitrogen. Anti – phosphatidyl-serine 

mouse mAb (clone1H6) and rabbit IgG were obtained from Millipore. 

 Mice.   6 – 10-wk-old C57BL/6 mice were obtained from Jackson Immuno-

Research Laboratories. mPGES-1  � / �   mice (N5 backcross onto the C57BL/6 

background, 45) and EP1 (Ep1  � / �  ; reference  47 ), EP2  � / �   ( 48 ), EP3  � / �   

( 47 ), and EP4  � / �   mice ( 51 ) ( n   >  10 on C57BL/6 background, provided by 

B. Koller, University of North Carolina, Chapel Hill, NC) were bred locally. 

All procedures were approved by the Dana-Farber Cancer Institute Institu-

tional Animal Care and Use Committee. 

 Bacteria.   The virulent  Mtb  strain H37Rv and the attenuated H37Ra (Amer-

ican Type Culture Collection), prepared as described previously ( 8 ), were 

used in the in vitro experiments. The strains were grown in Middlebrook 7H9 

broth (BD) with BBL Middlebrook OADC Enrichment (BD) and 0.05% 

Tween 80 (BD) and resuspended in 7H9 broth at 5  ×  10  7  CFU/ml. Aggrega-

tion was prevented by sonication for 10 s. The bacteria were allowed to settle 

for 10 min. Bacteria in M �  were quantifi ed by lysis of the cells with 0.2% SDS 

in PBS. After neutralization of SDS with 50% FCS, 100  μ l of cell lysates of 

triplicate cultures were serially diluted 10-fold, plated on 7H10 agar plates 

(Remel), and colonies were counted after 21 d. Alternatively, the pooled cell 

lysates were inoculated into triplicate Bactec 12B vials. The number of bacte-

ria was determined with the Bactec model 460 TB system (BD). 

protective eff ects of PGE 2  by inhibiting COX2 expression, 
thereby causing necrosis in  Mtb -infected M � . Interestingly, 
LXA 4  on its own does not induce necrosis, indicating that 
the main function of LXA 4  is down-regulation of prostanoid 
production followed by mitochondrial inner membrane de-
stabilization. These results are consistent with studies demon-
strating that mycobacterial burden is signifi cantly reduced in 
5-LO  � / �   mice in comparison to WT mice ( 38 ) and suggest 
that LXA 4  negatively regulates antimycobacterial defense re-
sponses. It should be noted that the concentrations of LXA 4  
produced are not suffi  cient to aff ect infl ammatory events in 
other experimental systems, a feature which is almost certain 
to be benefi cial to the  Mtb  pathogen. Consequently,  Mtb  is 
able to escape from the necrotic M �  without adverse eff ects 
and is able to infect newly recruited M � . 

 The fi ndings in this paper argue that inhibition of PGE 2  
comprises a mechanism specifi c for virulent  Mtb , a distinctly 
noninfl ammatory role for this prostanoid in the regulated re-
sponse to this pathogen. Prostanoids, including PGE 2 , are the 
fi nal product of the PGH synthases COX1 and 2. PGE 2  has 
been extensively studied and is well known for its role in me-
diating cardinal features of infl ammation, including pain, vaso-
dilatation essential for the control of blood fl ow, and leukocyte 
diapedesis leading to edema and fever ( 34 ). We now show that 
the prostanoid PGE 2  protects against MPT and necrosis of 
M �  infected with virulent  Mtb . Our data are consistent with 
recently published fi ndings in several other experimental sys-
tems that document an inhibitory role of PGE 2  in cell death. 
This mechanism is clearly complex and can be mediated in 
those studies either by the EP2 receptor ( 57, 58 ) or the EP4 
receptor ( 59 ). Although we defi nitively confi rm the role of 
PGE 2  and more precisely defi ne its mechanistic activity by 
identifying EP2 as the crucial PGE 2  receptor, these fi ndings 
beg for further dissection of this important signaling pathway 
leading to increased M �  defense against  Mtb.  

 The mechanisms by which PGE 2  stimulates induction of 
apoptosis of  Mtb -infected M �  is not understood. Although 
PGE 2  stimulation of the EP4 receptor triggers activation of 
PI3K and of Akt ( 48 ), blockade of mitochondrial damage by 
PGE 2  critical for prevention of necrosis is mediated through 
the EP2 receptor. The EP2 subtype couples to G protein  �  s  
and triggers intracellular cAMP formation. cAMP activates 
the PKA pathway ( 45 ), which inhibits death in several cell 
types ( 58 ). PKA activation was found to block cell death by 
phosphorylation of the proapoptotic protein Bad ( 49, 50, 54 ), 
causing its inactivation, and also increases the expression of 
Bcl-2 involving the CREB (cAMP responsive element-bind-
ing) protein and inhibition of cell death ( 59 ). At present, we 
do not know which of these mechanisms is involved in the 
mitochondrial inner membrane stabilization by PGE 2  and in 
the inhibition of LXA 4  production. 

 The innate immune system is the fi rst line of defense 
against invading microbial pathogens and viruses ( 60 ). Apop-
tosis characterized by intact plasma membranes, formation of 
apoptotic bodies and DNA fragmentation is an important 
component of the innate immune defense against  Mtb  and 
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TTCAAATGAGATTGTGGGAAAATTGCT and AGATCATCTCTG-

CCTGAGTATCTT. Primer sequences for GAPDH were ACCACAG-

TCCATGCCATCAC and TCCACCACCCTGTTGCTGTA. 

 PI staining.   Adherent mPGES  � / �   spleen M  �   adherent were stained with 

2.5  μ g/ml PI in RPMI containing 10% FBS at 4 ° C for 10 min and washed 

with ice-cold PBS and H 2 O. Dried and mounted coverslips were examined 

using a fl uorescence microscope and photographed with a digital camera 

(DFC300; Leica). 

 siRNA transfection.   The 5-LO siRNA target sequence (AAATGCCA-

CAAGGATTTACCC) targeted against  NM_000698  and a scrambled con-

trol siRNA sequence (GCCCTCTATCGAATAAGACAA) designed with 

siRNA target fi nder (Ambion) ( 63 ) was used. The siRNAs were synthesized 

from DNA templates with the Silencer siRNA construction kit (Ambion) 

according to the manufacturer ’ s instructions. Cells were cultured in IMDM 

with 10% human AB serum, and the medium was changed 1 d before trans-

fection. All siRNAs were used at a fi nal concentration of 50 nM by diluting 

with Opti-MEM I reduced serum medium. To oligofectamine (1:200 dilu-

tion; Invitrogen), fresh IMDM containing 30% human AB serum (Gemini 

Bio-Products) was added to bring the serum concentration to 10%. After 72 

h of transfection at 37 ° C, the cells were infected with  Mtb . To examine the 

eff ect of siRNA transfection, cells were harvested and analyzed using North-

ern or Western blotting. 

 Statistics.   Results are expressed as mean  ±  SEM. The data were analyzed 

by using Excel Statistical Software (Microsoft) using the Student ’ s  t  test for 

normally distributed data with equal variances. CFU were log 10  transformed 

and analyzed using the Mann Whitney nonparametric  t  test. A p-value  < 0.05 

was considered statistically signifi cant. 

 Online supplemental material.   Fig. S1 shows sensitization of human M �  

with 1 nM LXA 4 , 1 h before infection with H37Ra (MOI 10:1) to decreas-

ing concentrations of PGE 2 . Fig. S2 shows FACS analysis of necrotic cells 

(7-ADD) in human and murine M �  cultures infected with MOI 10:1 and 

20:1 H37Rv and H37Ra for 72 h. 
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