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ABSTRACT
Background. Existing tools for chemometric analysis of vibrational spectroscopy data
have enabled characterization of materials and biologicals by their broad molecular
composition. The Rametrix

TM
LITE Toolbox v1.0 for MATLAB R© is one such tool

available publicly. It applies discriminant analysis of principal components (DAPC)
to spectral data to classify spectra into user-defined groups. However, additional
functionality is needed to better evaluate the predictive capabilities of these models
when ‘‘unknown’’ samples are introduced. Here, the Rametrix

TM
PRO Toolbox v1.0 is

introduced to provide this capability.
Methods. The Rametrix

TM
PRO Toolbox v1.0 was constructed for MATLAB R© and

works with the Rametrix
TM

LITE Toolbox v1.0. It performs leave-one-out analysis of
chemometric DAPC models and reports predictive capabilities in terms of accuracy,
sensitivity (true-positives), and specificity (true-negatives). Rametrix

TM
PRO is available

publicly through GitHub under license agreement at: https://github.com/SengerLab/
RametrixPROToolbox. Rametrix

TM
PRO was used to validate Rametrix

TM
LITE models

used to detect chronic kidney disease (CKD) in spectra of urine obtained by Raman
spectroscopy. The dataset included Raman spectra of urine from 20 healthy individuals
and 31 patients undergoing peritoneal dialysis treatment for CKD.
Results. The number of spectral principal components (PCs) used in building the
DAPC model impacted the model accuracy, sensitivity, and specificity in leave-one-
out analyses. For the dataset in this study, using 35 PCs in the DAPC model resulted in
100% accuracy, sensitivity, and specificity in classifying an unknown Raman spectrum
of urine as belonging to aCKDpatient or a healthy volunteer.Models built with fewer or
greater number of PCs showed inferior performance, which demonstrated the value of
Rametrix

TM
PRO in evaluating chemometricmodels constructedwithRametrix

TM
LITE.
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INTRODUCTION
Through advances in instrumentation, vibrational spectroscopy, including Raman
spectroscopy, has become rapid, portable, and inexpensive (Zarei, 2017; Crocombe,
2018), making it ideal for use in screening assays of biological fluids, cells, or other
materials. The spectrum obtained by Raman spectroscopy is representative of the
molecular composition of that sample but can be complex and difficult to deconvolute
into its molecular components. This is especially true of biological samples (Movasaghi,
Rehman & Rehman, 2007; Athamneh et al., 2014; Zu et al., 2015; Butler et al., 2016). The
differentiation between healthy and urine from patients with chronic kidney disease
(CKD) was done by a chemometric analysis of Raman spectra using principal component
analysis (PCA) and discriminant analysis of principal components (DAPC) (Fisher et
al., 2018). In a chemometric analysis, Raman spectra are treated as ‘‘fingerprints’’, and
multivariate statistical tools discover unique features and similarities among spectra
(Shinzawa et al., 2009; Gautam et al., 2015). Software packages such as CytoSpec

TM
(http:

//www.cytospec.com), Unscrambler
TM

(https://www.camo.com/unscrambler/), and others
include such tools. The Raman Chemometrics (Rametrix

TM
) LITE Toolbox (Fisher et

al., 2018) was created for MATLAB R© to further streamline the creation of Raman-based
chemometric screens. It offers tools for Raman spectral processing along with PCA, DAPC,
and other tools for spectral comparisons in an easy-to-use graphical interface. It is also
offered publicly through GitHub.

Here, the companion Rametrix
TM

PRO Toolbox v1.0 for MATLAB R© is introduced. It
is also offered publicly through GitHub and provides additional functionality to the
Rametrix

TM
LITE Toolbox. In particular, it evaluates DAPC models using a leave-one-out

procedure. Metrics are reported regarding the prediction accuracy of the model, including
sensitivity (true-positive rate) and specificity (true-negative rate). Rametrix

TM
PRO was

used to evaluate the chemometric DAPC models published in Fisher et al. (2018) that
classify Raman spectra of urine as belonging to healthy individuals (i.e., ‘‘healthy’’) or CKD
patients (i.e., ‘‘unhealthy’’).

MATERIALS & METHODS
Software and calculations
Raman spectra files (in .SPC format) were processed using the RametrixTM LITE Toolbox
in MATLAB r2018a (MathWorks; Natick, MA) as described previously (Fisher et al.,
2018). Briefly, spectra were (i) truncated to include a Raman shift range of 400–1,800 cm−1,
(ii) baselined using the Goldindec algorithm (Liu et al., 2015) (baseline polynomial order
= 3; estimated peak ratio = 0.5; smoothing window size = 5), (iii) vector normalized,
and (iv) scan replicates averaged for each patient. PCA and DAPC models were also built
using the Rametrix

TM
LITE Toolbox. Multiple DAPC models were produced by varying

the number of principal components (PCs) used in model construction.
The Rametrix

TM
PRO Toolbox v1.0 was used to perform leave-one-out analysis on

all DAPC models. Spectra classification for each left-out spectrum (i.e., ‘‘healthy’’ or
‘‘unhealthy’’) was predicted and compared to the actual classification. The averaged
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spectrum from each healthy individual or CKD patient was excluded from model
construction and predicted in the leave-one-out routine. Thus, the leave-one-out validation
was done with respect to individual specimens and individuals, not according to scan
replicates. Model accuracy was calculated as the percentage of spectra where classification
was predicted correctly. Sensitivity (i.e., the true-positive rate) and specificity (i.e., the
true-negative rate) were also calculated and reported as percentages.

Rametrix
TM

PRO also has the capability to calculate ‘‘random chance’’ values of
prediction accuracy, sensitivity, and specificity for any dataset. While this may be obvious
for datasets with only two possible classifications (i.e., ‘‘healthy’’ or ‘‘unhealthy’’), it is less
obvious for datasets with multiple potential classifications with unequal representation. In
these cases, the calculated accuracy, sensitivity, and specificity of leave-one-out validation
routines are best presented relative to their random chance values.

Public access
The Rametrix

TM
PRO Toolbox v1.0 is available through GitHub with an MIT license

agreement (https://github.com/SengerLab/RametrixPROToolbox). The dataset of
raw Raman spectra files used in the analysis here is also available for download
with the Rametrix

TM
PRO Toolbox on GitHub. In addition, the Rametrix

TM
LITE

Toolbox v1.0 and v1.1 is also available through GitHub (https://github.com/SengerLab/
RametrixLITEToolbox) under license agreement (Fisher et al., 2018).

Specimens collected
Voided urine specimens were collected from 20 healthy human volunteers on the Virginia
Tech campus and 31 patients with CKD Stage 4–5, undergoing peritoneal dialysis
therapy. Single specimens were collected from the healthy human volunteers (n= 20), and
multiple time-point specimens were obtained from the CKD patients (n= 118). Specimen
storage and scanning details are published elsewhere (Fisher et al., 2018; Senger et al.,
2019). Briefly, specimens were stored at −35 ◦C prior to analysis. They were thawed and
warmed to 37 ◦C and transferred to 1 mL glass vials (ThermoFisher Scientific; Waltham,
MA) for analysis by Raman spectroscopy.

Raman spectroscopy
Spectra were obtained using an Agiltron (Woburn, MA) PeakSeeker Raman spectrometer.
Scans were obtained from liquid phase samples using a 785 nm laser operated at 100 mW
with 10 s integration time. A total of 10 scans were obtained and averaged for each sample.

IRB approval
Informed written consent for the collection of urine specimens from healthy volunteers
on Virginia Tech campus was obtained under protocol VT15-703 from the Virginia Tech
Institutional Review Board. Informed consent for the collection of urine specimens from
patients with CKD was obtained under protocol RPP/177151.2 from Frenova (Fresenius
Renal Research, Waltham, MA, USA). All urine specimens were de-identified and assigned
a code upon collection.
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RESULTS
The leave-one-out analysis results, obtained with the Rametrix

TM
PRO Toolbox and the

urinalysis dataset (i.e., n= 20 ‘‘healthy’’ and n= 118 ‘‘unhealthy’’ specimens), are given in
Table 1. The analysis was repeated for DAPC models built using different number of PCs.
Typically, as the number of PCs is increased in DAPC model-building, the separation of
clusters improves. However, we find this can be misleading. As the number of PCs used
to build the DAPC model surpassed 40 (which contained approximately 99.89% of the
dataset variance), the prediction accuracy of the model decreased precipitously. For the
urinalysis dataset analyzed in this study, DAPC models built with 35–38 PCs returned
100% accuracy, sensitivity, and specificity in leave-one-out analyses. Simpler models (i.e.,
built from 2–10 PCs) returned 99% accuracy, 100% sensitivity, and 95% specificity for
identifying an unknown Raman spectrum of a urine specimen as coming from a ‘‘healthy’’
volunteer or ‘‘unhealthy’’ CKD patient. These far exceed the random chance accuracy,
sensitivity, and specificity values of 50%. These results suggest that Raman spectroscopy
and Rametrix

TM
technology can be used to classify effectively whether an unknown urine

specimen is from a healthy individual or a CKD patient.
DAPC model clustering results are shown in Fig. 1 for models built with 2, 10, 35,

and 70 PCs, respectively. PCA results, used to build the DAPC models, were presented
previously with Rametrix

TM
LITE results (Fisher et al., 2018). In DAPC plots, each data

point represents an entire Raman spectrum. Clustering is indicative of spectra recognized
as similar for well-functioning models. In Fig. 1, those samples classified correctly are
represented by circles, and those classified incorrectly are represented by triangles. Those
classified as from healthy individuals are in red, and those from unhealthy CKD patients are
in blue. The clustering between spectra of healthy and unhealthy specimens is apparent, as
are the mis-classifications by DAPCmodels. This is readily apparent in the model built with
70 PCs (Fig. 1D), where likely model over-fitting resulted in several mis-classifications.

DISCUSSION
The Rametrix

TM
PRO Toolbox v1.0 comes with distinct functions that work with the

Rametrix
TM

LITE Toolbox to validate DAPC spectra classification models. It generates a
DAPC classification for an ‘‘unknown’’ sample and applies leave-one-out analysis over an
entire spectral dataset. This process was used to evaluate DAPC models by blinding one
sample to DAPC model building and treating it as an unknown. An additional function of
Rametrix

TM
PRO generates random chance values of accuracy, sensitivity, and specificity,

which can be used to put leave-one-out results into better perspective. For example, if
accuracy, sensitivity, and specificity values are below expectations but exceed the random
chance values, it is likely that more samples are needed to improve model performance.
Thus, if random chance values are exceeded, the DAPC model is showing at least some
success at classifying samples.

The leave-one-out procedure of Rametrix
TM

PRO was demonstrated using the urinalysis
dataset described in our initial publication (Fisher et al., 2018) and described further here.
Comparing the predicted and known classifications for all specimens allowed calculation
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Table 1 ‘‘Leave-one-out’’ analysis of the urinalysis dataset using the RametrixTM PRO Toolbox.

Number of PCs
in DAPCmodel

Dataset variance
explained by PCs

Model
accuracy

Model
sensitivity

Model
specificity

1 47.03% 97% 100% 80%
2 78.92% 99% 100% 95%
3 89.16% 99% 100% 95%
4 93.89% 99% 100% 95%
5 95.93% 99% 100% 95%
6 97.23% 99% 100% 95%
7 97.90% 99% 100% 95%
8 98.36% 99% 100% 95%
9 98.78% 99% 100% 90%
10 99.01% 99% 100% 90%
15 99.52% 99% 100% 90%
20 99.70% 98% 100% 85%
25 99.79% 99% 100% 95%
30 99.83% 99% 100% 95%
35 99.87% 100% 100% 100%
40 99.89% 99% 99% 100%
45 99.91% 95% 94% 100%
50 99.93% 92% 91% 100%
55 99.94% 83% 81% 100%
60 99.95% 72% 67% 100%
70 99.96% 29% 17% 100%
80 99.97% 22% 8% 100%
90 99.98% 14% 0% 100%
100 99.99% 14% 0% 100%

of model accuracy, sensitivity, and specificity. Here, a ‘‘positive’’ result was the presence
of CKD, and a ‘‘negative’’ result was the absence of CKD (i.e., healthy). A ‘‘true’’ result
occurs whenmodel prediction matches the known classification, and a ‘‘false’’ result occurs
when these differ. Thus, the model accuracy is the percentage of true results (both positive
and negative) over the entire dataset, where a value of 100% means that predictions
for all specimens were correct. The model sensitivity (i.e., true-positive rate) gives the
percentage of true results that were predicted correctly. This also means the percentage of
urine specimens from CKD patients that were classified with the ‘‘unhealthy’’ label. The
model specificity (i.e., true-negative rate) gives the percentage of false results that were
predicted correctly. This value also represents the percentage of urine specimens from
healthy volunteers classified as ‘‘healthy’’.

While we admit the dataset size of this study is somewhat small (138 urine specimens), it
suggests that Rametrix

TM
can be used as a screening technology to identify individuals with

undiagnosed CKD. This study focuses on the analysis of urine specimens from CKD Stage
4–5 patients. Studies are underway that include a significantly larger number of patients
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Figure 1 Spectral clustering by DAPCwith predicted classifications.DAPC models were built with (A)
1 PC, (B) 10 PCs, (C) 35 PCs, (D) 70 PCs. Red denotes Raman spectra classified as healthy. Blue denotes
Raman spectra classified as unhealthy. Data points appearing as a circle were classified correctly. Data
points appearing as a triangle were classified incorrectly.

Full-size DOI: 10.7717/peerj.8179/fig-1

and include CKD Stages 1–5. Identifying early-stage CKD is critical for nephrologists to
prescribe treatments that can halt/slow CKD progression and save lives.

CONCLUSIONS
The Rametrix

TM
PRO Toolbox v1.0, introduced here and available through GitHub with

license agreement, enables leave-one-out evaluation of PCA and chemometric DAPC
models produced by Rametrix

TM
LITE. It can also calculate the random chance accuracy,

sensitivity, and specificity for any dataset. Raman spectroscopy is fast and inexpensive,
and Rametrix

TM
ensures that Raman spectral signatures of the hundreds of molecular

components are used in classifications. While the example in this manuscript focuses on
classification of urine specimens, the Rametrix

TM
LITE and PRO Toolboxes can be applied

to all studies involving chemometric data from Raman or other vibrational spectroscopy.
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