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ABSTRACT The wide spread of the novel COVID-19 virus all over the world has caused major economical
and social damages combined with the death of more than two million people so far around the globe.
Therefore, the design of a model that can predict the persons that are most likely to be infected is a
necessity to control the spread of this infectious disease as well as any other future novel pandemic. In this
paper, an Internet of Things (IoT) sensing network is designed to anonymously track the movement of
individuals in crowded zones through collecting the beacons of WiFi and Bluetooth devices from mobile
phones to triangulate and estimate the locations of individuals inside buildingswithout violating their privacy.
A mathematical model is presented to compute the expected time of exposure between users. Furthermore,
a virus spread mathematical model as well as iterative spread tracking algorithms are proposed to predict the
probability of individuals being infected even with limited data.

INDEX TERMS COVID-19, contagious map, tracking, modeling, virus spread, pandemic.

I. INTRODUCTION
COVID-19 is a novel virus that was first reported in Wuhan,
China on December 2019. Since then, and in just fewmonths,
the infections spread all over the globe and reached almost all
countries. By the time this paper is written, 106,221,177 per-
sons have been confirmed to be infected and 2,316,455 per-
sons died [1]. The pandemic outbreak had catastrophic social,
psychological and economical effects. In particular, The
United Nations (UN) [2] states that ‘‘The COVID-19 pan-
demic is far more than a health crisis: it is affecting societies
and economies at their core’’.

This novel corona virus mainly travels through fluid
droplets that cause person-to-person transmission [3]. The
relatively long incubation period of the virus was one of
the main causes of the fast outbreak causing the healthcare
system to collapse in several countries [4].

To avoid the dramatic impact of COVID-19, several
attempts have been conducted to understand and control the
pandemic spread [5]. The most common measures taken
by most of the countries include total or partial lock-
down, schools closure and social gathering prohibiting. Also,
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individuals are encouraged to follow hygienic and social
distancing measures. Although, such measures remain very
important, the daily growth of the number of infected persons
shows that they are not sufficient.

Several ideas have been proposed to make use of smart
cities [6], [7], Internet of Things (IoT) and Artificial Intel-
ligence (AI) [8], [9] to achieve early detection of outbreaks.
In particular, this can be done using IoT sensors and drones
equipped with infrared cameras. AI has also been used to
combat the pandemic by making disease surveillance [10],
risk prediction [11], medical diagnosis and screening.

Some work exploited deep learning techniques to detect
the symptoms of infections. For example, a three-dimensional
deep learning method, named COVNet based on volumet-
ric chest CT images, is investigated in [12]. Interpreting
pulmonary CT images using convolutional neural networks
(CNN), ResNet-18 was proposed in [13] to distinct the man-
ifestations of COVID-19 disease. However, a key character-
istic of COVID-19 is that it might be infectious even before
the appearance of symptoms, which makes prediction more
effective than detection.

Furthermore, to control the pandemic, some countries
made use of smart phone applications that track the move-
ment of individuals to warn the healthy ones with the
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proximity of suspected infected cases. However, the imple-
mentation of such applications is very challenging since it
requires permissions to GPS or Bluetooth access for every
subscribed user. In particular, according to [14], a flood of
COVID-19 applications are tracking us today and certain
number of them might be pervasive and invasive. Some of
these applications make use of mobile phones Bluetooth to
detect the proximity of other users such as ‘‘COVIDSafe’’
in Australia, ‘‘eRouska’’ in Czech, ‘‘StopCovid’’ in France,
‘‘CovidRadar’’ in Mexico, etc. In particular, Bluetooth is
used to swap encrypted tokens with nearby phones for prox-
imity tracking purposes. Another set of applications track
the phone’s locations using GPS or nearby cell towers such
as ‘‘ViruSafe’’ in Bulgaria, ‘‘GH COVID-19’’ Tracker In
Ghana, ‘‘Rakning C-19’’ in Iceland, etc. Another group uses
decentralized privacy-preserving proximity tracing (DP-3T)
protocol such as ‘‘Ketju’’ in Finland and ‘‘Swiss Contact
Tracing App’’ in Switzerland, etc.

Most of the other applications use combinations of these
techniques to track users such as ‘‘Stopp Corona’’, in Austria,
‘‘Corona-Warn-App’’ in Germany, ‘‘Aarogya Setu’’ in India,
‘‘HSECovid-19’’ in Ireland, ‘‘Immuni’’ in Italy, ‘‘Ehteraz’’ in
Qatar, etc. To identify individuals not respecting quarantine,
some other countries such as China are collecting personal
and private information such as citizens’ identity, location,
and even online payment history [14].

Consequently, there is no doubt that these applications can
be of great help in tracing the virus spread. But, with such
huge amount of private data, it is inevitable for some of these
contact-tracing apps to have data leaks which might create a
dramatic privacy problem [15]. Also, these apps might serve
as an excuse for abuse and disinformation for some countries.
One of the major challenges facing such applications is the
social stigma. In particular, many persons avoid using these
applications for two main reasons. The first is the lack of
transparency of some of these applications and the potential
malicious use of the collected private data [15]. The second,
as indicated in [16], [17], is that for many persons, shame can
be worse than the infection itself.

Therefore, the design of a transparent, anonymous and
private tracking system emerges as a necessity to be able
to collect the required data to track the virus spread. Most
of the above mentioned applications classify the users into
‘‘infected’’ or ‘‘not infected’’ or sometimes ‘‘potentially
infected’’. However, to the best of the author’s knowledge no
previous applications give the users the probability of being
infected even when never getting close to someone with a
confirmed infection. Therefore, in this paper, an IoT based
anonymous proximity tracking model is proposed. A math-
ematical model is designed to estimate the missing data.
A mathematical virus spread model is proposed to make use
of this data to find the probability of each person becoming
infected over time.

Note that although COVID-19 pandemic started almost a
year ago, the use of the proposed model is still very necessary
for the following reasons:

• The proposed model can track the virus spread and help
faster control of the pandemic in the coming period.

• With the scheduled public facilities reopening, the
spread has high chances of spiking again (which already
happened in several countries). Therefore, the use of the
proposed model is necessary for the follow-up during
this phase.

• As expected by the World Health Organization (WHO),
multiple second virus spread waves are occurring and
more might follow as well. Since such waves can cause
a number of infections larger even than the initial ones,
such model can be of great interest in avoiding large
virus spread.

• This model can also be used to track other pandemic
spreads after making the adequate configuration tunings.

• The pandemic is still spreading in several countries
where this model can be used to control it and slow it
down.

The main contributions of this work can be summarized as
follows:
• Design of a private pandemic proximity tracking system.
• Investigation of a mathematical model that can estimate
missing collected data to enable data augmentation.

• Design of a mathematical model and iterative algorithm
that can track the spread of the virus and provide the
probability of being infected, immune or contagious, for
each individual.

• Design of an iterative algorithm to approximate the
model configuration parameters for accurate predic-
tions.

The rest of this paper is organized as follows. The sys-
tem model is presented in Section II. Sections III and IV
investigate the proposed proximity tracking and virus spread
models. Simulation results are presented in Section IV to val-
idate and verify the findings of the paper. Finally, Section V
concludes the paper.

II. SYSTEM MODEL
The prediction of virus spread requires the collection of a
large amount of accurate tracking data. Therefore, several
applications have been designed to track users using differ-
ent technologies and methods. Some of these applications
are designed by small groups of coders (Such as COVID
Symptom app in UK) while others might have global oper-
ations and designed by governments (Such as Ehteraz app in
Qatar) and large corporates (For example, google and apple
smartphones have added exposure Notifications services that
can be enabled to allow contact tracing apps to notify the
user of his/her exposure to COVID-19). Due to the lack of
transparency, such applications might raise a lot of privacy
concerns [15].

As detailed in Fig. (1), the proposedmodel consists of three
layers:
• Data Collection Layer:This layer allows the anonymous
collection of the location and proximity data using low
cost IoT sensing network.
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FIGURE 1. Virus spread tracking model layers.

• Data validation and augmentation layer:Whenever the
tracking data is missing, the data is augmented using a
specially designed mathematical model. This might be
beneficial if a limited number of sensors are available
and the users cannot always be tracked. Also, by com-
paring the distribution of the average collected data with
the mathematical model, the data can be validated.

• Virus Spread Tracking Layer: By making use of the col-
lected and computed data, the time of exposure between
each pair of individuals is computed. Also, by defining
three exposure levels (High, medium and low), and by
fitting the system configuration parameters, a mathe-
matical model is proposed to compute the probability of
each person being infected, not infected or immune.

All three layers operate together to ensure low-cost, anony-
mous, efficient, transparent, private and accurate estimation
of infection tracking.

III. PROXIMITY TRACKING MODEL
A. DATA COLLECTION
The proposed pandemic tracking system is based on the
anonymous continuousmonitoring of users in public crowded
zones using IoT wireless sensor networks. The tracking is
performed to ensure the individual’s health safety while pre-
serving their privacy and without any required permission
form users. Sincemost of the smartphone users keep the Blue-
tooth and/or WiFi active even when going in public areas,
the smartphones will regularly send wireless beacons trying
to identify potential networks [18]. Therefore, by installing
low cost wireless devices such as ESP32 at locations that
are most likely to be visited by a large number of people
(supermarkets, train stations, bus stops, . . . ), both WiFi and
Bluetooth beacons can be automatically collected. These bea-
cons include the unique MAC addresses of the users that
can be used to build an anonymous movement tracking data.
In particular, collecting MAC addresses using Bluetooth and
WiFi smartphones beacons has already shown its efficiency
in tracking cars for traffic enhancement applications [18].

To guarantee accurate tracking, each set of sensors should
be placed in very specific locations according to the zones
architectures and characteristics. This network should focus
more on the crowded parts of zones such as cashiers where
it is very necessary to get accurate readings of the accurate
positions using wireless beacons triangulation (blue areas
in Fig. 2). For the non-crowded parts of the building, it would

FIGURE 2. IoT proximity tracking model.

be enough to just detect the presence of users using a single
sensing device (orange areas in Fig. 2). Even when adopting
such strategy in the design of the IoT sensing network, there
must be some dead-areas where none of the installed sensing
devices will have a reach (red areas in Fig. 2). Therefore,
the investigated mathematical model can predict these read-
ings using mathematical expectations.

Note also that the proposed individuals tracking system
need to cover a massive amount of public zones on large
widespread areas. Thus, the designed wireless sensor net-
works (WSNs) should incorporate low-cost, energy efficient
and robust devices that are setup in optimized locations.
Fortunately, advances in the development of small-sized and
low-cost sensors with wireless data transfer capabilities such
as ESP32, have led to their deployment in a wide-range of
fields prompting the design and development of WSNs that
are effective and reliable for such applications [19]. However,
the design, architecture and the localization of the WSN
nodes are beyond the scope of this paper.

B. MATHEMATICAL MODEL
Deriving a mathematical expression of the exposure time
between each pair of users is very crucial to get an efficient
tracking system. In particular, it is not always possible and
efficient to get the exact position of each person in all the
public zones at all times. Therefore, the proposed mathemat-
ical model can approximate the exposure time between two
users just by knowing that they are at the same zone. Also,
this exposure time can be approximated based only on the
probability of the users going into a specific public zone.
Note also that the derived mathematical model can also be
used to verify the validity of the reported data by comparing
the average distribution of the collected and derived exposure
times. However, such approaches are beyond the scope of this
paper.

Since the exposure time between two users has a direct
relation to the distance separating them, the distribution of
the distance between two randomly positioned users in a
zone is investigated in the sequel. This expression can be
used to approximate the amount of time each user spent in
close proximity to an infected person so that he/she can get
infected.

Assume two users A and B are randomly positioned in an
indoor public zone. The positions coordinates for the users A

51108 VOLUME 9, 2021



A. Gouissem et al.: Novel Pandemic Tracking Map: From Theory to Implementation

and B are denoted (XA,YA) and (XB,YB), respectively. The
public zone is assumed to have a rectangular shape with
dimensions DX ×DY . All the areas inside the public zone are
assumed initially to have the same average number of persons
passing by, i.e. there is no specific part of the building that is
more crowded than the others. Therefore, both the horizontal
coordinates XA and XB, and the vertical coordinates, YA and
YB can be be assumed to follow independent uniform random
distribution in [0,DX ] and [0,DY ], respectively.
The Euclidean distance between A and B denoted by rA,B

is an important metric that can reveal the approximate time of
exposure by analysing its distribution. This distance is given
by

rA,B =
√
(XA − XB)2 + (YA − YB)2 =

√
Z2
X + Z

2
Y , (1)

where ZX = |XA−XB| and ZY = |YA−YB|. Since XA and XB
are independent, it can be shown that the absolute value of the
difference between the horizontal coordinates of user A and B
(XA − XB) denoted by ZX is characterized by the probability
density function (PDF) fZX (z) and the cumulative distribution
function (CDF) FZX (z) expressed by

fZX (z) =

{
2
D2
X
(DX − z), if 0 < z ≤ DX

0, otherwise,
(2)

FZX (z) =


0, if z ≤ 0
1− (1− z

DX
)2, if 0 < z ≤ DX

1, otherwise.

(3)

Similarly, ZY = |YA−YB| has a PDF fZY (z) and CDFFZY (z)
expressed by

fZY (z) =

{
2
D2
Y
(DY − z), if 0 < z ≤ DY

0, otherwise,
(4)

FZY (z) =


0, if z ≤ 0
1− (1− z

DY
)2, if 0 < z ≤ DY

1, otherwise.

(5)

Since ZX and ZY are defined as functions of independent
variables (XA,XB;YA,YB), it follows that ZX and ZY are also
independent. Therefore, the CDF of rA,B denoted by Fr (x)
can be obtained as follows

Fr (x) =
∫∫

t2X+t
2
Y≤x

2
fZX (tX )fZY (tY ) dtX dtY (6)

where x denotes the distance threshold that satisfies x ≤√
D2
X + D

2
Y i.e. The distance between two persons in the

building cannot be larger than the largest diagonal of the
building itself.

Without loss of generality, DY is assumed to be smaller or
equal toDX . Consequently, depending onwhether x is smaller

or equal to DX , DY and
√
D2
X + D

2
Y , the integral in (6) can

have different expressions for three different cases. The first
case when 0 ≤ x < DY , the second case whenDY ≤ x ≤ DX
and the third case when DX < x ≤

√
D2
X + D

2
Y .

Theorem 1
The probability that two users A and B uniformly distributed
in a building of size DX × DY are separated by a distance
smaller than x is given by

P(DX ,DY , x)

0, if x ≤ 0
2
(
I3(x)−I3(0)

)
D2
XD

2
Y

, if 0 < x ≤ DY
2

D2
XD

2
Y

(
I3(DY )− I3(0)

)
, if DY < x ≤ DX

FZY
(√

r2 − D2
X

)
+

2
D2
XD

2
Y
×(

I3(DY )− I3(
√
x2 − D2

X )
)
, if DX < x ≤

√
D2
X + D

2
Y

1, if x >
√
D2
X + D

2
Y ,

(7)

where

I3(t) =
DX
3

√
x2 − t2(t(3DY − 2t)+ 2x2)+

DY t3

3

+DXDY x2 tan−1
( t
√
x2 − t2

)
− DY x2t −

t4

4
+

(xt)2

2
. (8)

Proof
See Appendix A.

Note that the derived expression of Fr (x) for the first case
in (7) is, generally, enough to evaluate the probability of
being close enough to get infected since the risk distances
are most of the times much smaller than DY . However, it is
also necessary to investigate the two other cases for two main
reasons. First, the second and third cases analysis might be
necessary in the case of the investigation of small crowded
parts of the building. Also, the derived distance distribution
can be used to verify the validity of the reported data by the
devices.

For the users distribution model to be accurate, it has to
take into account that a substantial amount of time is spent
in small crowded parts of the buildings such as the cashier
or metro ticket printer. Therefore, it is assumed that each user
spendsC t

R ratio of the time in the crowded part of the building
with dimensions assumed to be equal to CS

R percent of the
original building dimensions.1

Consequently, the probability that the distance rA,B
between a user A and a user B to be smaller than r in a zone
i with size DiX × D

i
Y is given by

Pi(r) = (1− C t
R)× P(D

i
X ,D

i
Y , r)+ C

t
R

×P(CS
RD

i
X ,C

S
RD

i
Y , r). (9)

Therefore, if the users A and B spend a duration T together
at the same zone i, the average exposure time within a dis-
tance smaller than r , i.e. the average amount of time they

1Only two areas are considered here. However, this system also applies to
a large number of areas with different crowding levels. The number of areas
with close crowding levels can be accurately estimated using the sensed data.

VOLUME 9, 2021 51109



A. Gouissem et al.: Novel Pandemic Tracking Map: From Theory to Implementation

spend close to each others with a distance smaller than r is
given by

T iD(r,T ) = T × Pi(r). (10)

The exposure time expression in (10) is a key parameter
defining the spread of the virus. Therefore, the next sections
tune this expression for each user and at each day depending
on his probability of joining zones. Then, this expression is
used to predict the probability of infection for each individual.

IV. VIRUS SPREAD MODEL
A. EXPOSURE RISK LEVELS
Several research papers have investigated how fluids carrying
pathogens travel from our respiratory tracts to infect other
persons [20]. These fluids originating from the mucous coat-
ing the lungs and vocal chords include large fluid droplets
visible at the naked eye or smaller aerosol particles. Ana-
lyzing the physics behind this transmission is very important
to understand how pathogens in general and corona virus in
particular spreads when having a direct contact with such
droplets coming from an infected person or just by touching
a contaminated surface.

In particular, particles ejected while sneezing, coughing,
talking, and even breathing have been shown to be able to
cause pathogen transmission [21]–[25]. Most of these works
focuse on large droplets that are generally expelled during
coughing [26]–[31] and sneezing [30], [32], [33]. Some oth-
ers investigated smaller particles emitted during sneezing and
coughing as well as during breathing [34]–[36] and talking
[35], [37], [38]. Despite their small size, these particles can
carry several types of respiratory pathogens [39]–[41].

Depending on the used assumptions, models and ways of
transmission, most of these studies confirm that these and
droplets can travel up to 1 m for some references and up to
2 m for some others. Therefore, in the latest WHO recom-
mendations for COVID-19, it is advised to keep a 1 m [42]
distance away from persons suspected to be infected. Also,
the Centers for Disease Control and Prevention recommends
a 2 m distance separation. [43].

Another recent article by a team from MIT [44] claims
that 2 m might not be enough and that there is another pos-
sible way of COVID-19 transmission. In fact, under the right
temperature and humidity conditions, a sneeze can release
not only droplets but also a gas that can travel much more
than 2 m. In particular, by analyzing the turbulent gas cloud
dynamics, properties of the exhaled gas and respiratory trans-
mission, it has been shown that the 1 m or 2 m separations
underestimate the distance the gas cloud and its pathogenic
load might travel. Also, it is stated that this cloud can travel
up to 7 or 8 m.

Consequently, as shown in Fig. 3, three risk level areas are
defined in this paper

• High risk level (HRL): where the distance between the
two users is smaller than r1 = 1 m. Area colored in red
in Fig. 3.

FIGURE 3. Contagious zones in a public zone.

• Medium risk level (MRL): where the distance between
the two users is between r1 = 1 m and r2 = 2 m. Area
colored in orange in Fig. 3.

• Low risk level (LRL): where the distance between the
two users is between r2 = 2 m and r3 = 7 m. Area
colored in green in Fig. 3.

B. EXPOSURE TIME
By using the three risk distances defined above, the probabil-
ity of infection of each person can be expressed as a function
of the time of exposure with each other person in the commu-
nity. Therefore, given that two users A and B spent T seconds
together in a public zone i, the terms T iHR(T ), T

i
MR(T ) and

T iLR(T ) are defined as the average time of exposure between
user A and user B in a high risk, medium risk and low risk
levels, respectively. From (10), it follows that the average
exposure times are given by

T iHR(T ) = T iD(r1,T ), T iMR(T ) = T iD(r2,T )− T
i
D(r1,T ),

T iLR(T ) = T iD(r3,T )− T
i
D(r2,T ). (11)

More precisely, the average times of exposure from time t1
to t2 in public zone, i, between user A and user B in
HRL, MRL and LRL are denoted as THRe (A,B, i, t1, t2),
TMRe (A,B, i, t1, t2), T LRe (A,B, i, t1, t2), respectively. To com-
pute these values, discrete time intervals of duration 1t are
considered. These intervals are used to introduce the proba-
bility of both users being together in zone i and to differentiate
between the arrival rate of each user in a particular time of the
day to a particular zone.

THRe (A,B, i, t1, t2) =
∑

t1
1t
<nt≤

t2
1t

PiA(nt )P
i
B(nt )T

i
HR(1t ),

TMRe (A,B, i, t1, t2) =
∑

t1
1t
<nt≤

t2
1t

PiA(nt )P
i
B(nt )T

i
MR(1t ),

T LRe (A,B, i, t1, t2) =
∑

t1
1t
<nt≤

t2
1t

PiA(nt )P
i
B(nt )T

i
LR(1t ),

(12)

where PiA(nt ) and P
i
B(nt ) denote the probability that user A

and user B are in zone i at time interval nt , respectively. Also,
PiA(nt ) is expressed as

PiA(nt ) = PA(nt )PiA, (13)
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where PA(nt ) denotes the probability that user A is in a public
zone at discrete time nt and PiA denotes the probability that
user A is in zone i given that he is in a public zone.
The probability PA(nt ) is a parameter that should reflect

how often an individual goes to public zones and the distri-
bution of this probability over the different times of the day.
Therefore, PA(nt ) is expressed by

PA(nt ) = PA × Pnt , (14)

where PA denotes the ratio of time user A spends in pub-
lic zones and Pnt denotes the ratio of people going to
public zones at the time interval nt that should satisfy∑

nt∈ same day(P
nt ) = 1. These parameters can be obtained

from real measurements or using surveys. However, in this
paper, these parameters are designed to follow realistic dis-
tributions.

Also, a user A does not have the same chances of visiting
all the public zones. In particular, each user has always a
preferred set of zones that are most probable to be visited.
Therefore, a preference vector of zones PAZ is defined for each
user A as the ordered list of zone indexes by preference.
Let Z denote the set of all NZ public zones user A might

go to. The probability of a user visiting the different zones in
Z is modeled as an exponentially decreasing discrete vector
controlled by a preference factor τP.2 i.e. given that user A is
in a public zone, his probability of being in his ith preferred
zone (zone PAZ (i)) is given by

P
PAZ (i)
A = C .e−i/τP . (15)

The sum of all PiA ∀ i ∈ Z should be equal to one since if
user A is in a public zone, it has to be in one of the zones in
Z. Therefore,

C =
1∑NZ

j=1 e
−i/τP

. (16)

C. DATA AUGMENTATION
The derived time of exposure expressions in (12) are based on
the random positions assumptions of users inside buildings,
the arrival rate of the users to the different buildings and
the arrival rate of users each time of the day to the public
zones. Using the wireless sensors, all these information can
be accurately collected to make an accurate computation of
the exposure time without the need of any of these statistical
models. However, some of this data might be occasionally
unavailable for any reason such as lack of equipment, con-
nectivity issues or reaching a connection dead-zone. In such
cases, the statistical models are used to replace the missing
data.

In particular, if the arrival rates to public zones during the
day for users A and B are available, but, the exact locations
are not, the statistical random positioning assumptions inside
the buildings can be used to compute T iHR. Similarly, if the

2The bigger is τP, the higher is the probability for the individual to visit
only limited number of zones.

wireless sensors detected that a user is in the building during
a period of time but the positions are available only for limited
time intervals, themissing positions can either be interpolated
if the missing time is short or positions’ statistical model can
be used instead.

This also applies to the arrival rates of the different users
which would have a gradually increasing accuracy while
running the system by learning the habits and preferences of
each user.

D. INFECTION MAP CONSTRUCTION
To analyse the spread of the virus based on the pairwise
time of exposure expressions defined in (12), four different
probabilities are defined for a user A at day d :
• Pd,AI : The probability of catching the infection at exactly
day d .

• Pd,ABI : The probability of being infected at day d .
• Pd,ABC : The probability of being contagious at day d .
• Pd,AIM : The probability of being immune at day d .
Let, δ1 denote the number of days from catching the infec-

tion to becoming contagious. Also, δ2 denotes the maximum
number of days an individual can remain contagious after his
infection.

First, lets assume, without loss of generality that only two
users, A and B, are potentially in zone i. Let tsd and ted denote
the time index for the begin and the end of day d , respectively.
Given that user B is confirmed to be contagious, the probabil-
ity that user A gets infected should be proportional to the time
of exposure. Also, this probability should bemore sensitive to
the time of exposure at high risk compared tomedium risk and
low risk. Furthermore, this probability should depend on the
amount of time of exposure needed to get infected. Therefore,
the probability that user A gets infected at day d in zone i
given that user B is infected is modeled by

Pd,A,i|BI = β1

(
1− e−

THRe (A,B,i,tsd ,t
e
d )

τ

)
+β2

(
1−e−

TMRe (A,B,i,tsd ,t
e
d )

τ

)
+β3

(
1− e−

TLRe (A,B,i,tsd ,t
e
d )

τ

)
, (17)

where β1, β2 and β3 are parameters that satisfy β1 + β2 +
β3 = 1, are proportional to the virus concentration and
reflect the effect of the exposure in HRL, MRL and LRL,
respectively. Since the concentration of the pathogen loaded
droplets in each zone of risk is proportional to the surface of
the investigated zone, these parameters have also to satisfy

β1πd21 = β2πd
2
2 = β3πd

2
3 . (18)

Consequently,

β1 =
1/d21

1/d21 + 1/d22 + 1/d23
, β2 =

1/d22
1/d21 + 1/d22 + 1/d23

,

β3 =
1/d23

1/d21 + 1/d22 + 1/d23
. (19)

Furthermore, the parameter τ is a very critical parameter
that reflects how much time a user has to stay in a conta-
gious zone to get infected. This parameter depends on several
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variables such as how much social distancing is applied, how
many persons are using facial masks, how frequently people
are disinfecting their hands, etc. Special techniques are pro-
posed in this paper to estimate τ using realistic reported data
as detailed in the sequel.

Note that the expression in (17) is based on virus droplets
concentrations for each zone and medical contagious inter-
pretations. However, such model is very hard to practically
verify as this would require bringing a group of people and
infecting them in purpose to analyze the effect of the time of
exposure in the contagious. Such scenario is therefore neither
practically nor ethically feasible to implement.

The probability in (17) takes into account only the infec-
tions that occur in zone i. Therefore, the probability of infec-
tion of userA given that userB is contagious at day d becomes
equal to the complement of the probability of not being
infected in any zone i ∈ Z. Consequently,

Pd,A|BI = 1−
∏
i∈Z

(1− Pd,A,i|BI ). (20)

To generalize the expression in (20) to the non conditional
case, the probability of B being contagious should be consid-
ered i.e.

Pd,AI = Pd,A|BI × Pd,BBC . (21)

To get the expression of Pd,BBC , the probability of being
immune is first investigated. In particular, since a user B
becomes immune at day d if he was infected at any day
from d0 (first day in the investigated period) till d − δ2,
the probability Pd,AIM is expressed as

Pd,AIM = 1−
d−δ2∏
dt=d0

(
1− Pdt ,AI

)
, (22)

Also, a user does not become contagious immediately after
getting the virus but after δ1 days and for as long as δ2
days. Furthermore, a user can be contagious only if not
immune. Consequently, the probability of being contagious
Pd,BBC becomes equal to

Pd,BBC =

(
1− Pd,BIM

)(
1−

d−δ1∏
dt=d−δ2

(
1− Pdt ,BI

))

=

d−δ2∏
dt=d0

(
1− Pdt ,BI

)(
1−

d−δ1∏
dt=d−δ2

(
1− Pdt ,BI

))
. (23)

Therefore, in a population of two users A and B, from (20),
(21) and (23), the probability of A getting infected becomes
equal to

Pd,AI =

(
1−

∏
i∈Z

(1− Pd,A,i|BI )
)
×

d−δ2∏
dt=d0

(
1− Pdt ,BI

)
×

(
1−

d−δ1∏
dt=d−δ2

(
1− Pdt ,BI

))
, (24)

FIGURE 4. Iterative infection probability computation flowchart.

Finally, to generalize the expression in (24) to a multi-user
scenario with a population P, the fact that A can get the
infection from multiple users has to be taken into account.
In fact, the probability of A not getting an infection at day d
is equal to the probability of not getting an infection from
any user B ∈ {P/A}. where {P/A} denotes the set of all
users in population P except user A, since a user cannot get
the infection from himself. Consequently, for the multi-user
scenario, (24) becomes

Pd,AI = 1−
∏

B∈{P}/A

[
1−

(
1−

∏
i∈Z

(1− Pd,A,i|BI )
)

×

d−δ2∏
dt=d0

(
1− Pdt ,BI

)(
1−

d−δ1∏
dt=d−δ2

(
1− Pdt ,BI

))]
. (25)

By analyzing the expression in (25), it can be seen that it
actually presents an iterative definition of the probability of
getting the infection at day d , Pd,AI based on all the probabil-
ities of getting the infection from day d0 till day d− δ1 for all
the users in P (see Fig. 4). This relation is made possible by
exploiting the high risk, medium risk and low risk exposure
times between each pair of users as indicated in (17).
In particular, the computation of time of exposure between

each pair of users in each public zone and in each risk zone
is performed using (12). These values are then used to design
and estimate a virus spread map. In particular, if a set of users
are confirmed to get the infection at day d∗, the proposed
model should be able to update the probability of any other
user in the community to be infected.
Furthermore, since a user stays infected for δ2 days,

the probability of being infected Pd,ABI is equivalent to the
probability of not being immune and getting the infection at
least once from day d − δ2 till day d . Therefore,

Pd,ABI =

(
1− Pd,AIM

)(
1−

d∏
dt=d−δ2

(
1− Pdt ,AI

))
. (26)

To transform the relation in (25) into a virus spread map,
the iterative algorithm in Alg. 1 is proposed. The inputs of
this algorithm are the set of confirmed infections at each day
d denoted by C(d), the set of confirmed non infected persons
at each day d denoted by N(d) and the movement tracking
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map denoted M of all the users (or their distances distribu-
tions) that allow the computation of the times of exposure
as detailed in (7) and (12). The outputs of the algorithm are
the probability of getting the infection, being infected, being
immune and being contagious for each user A and for each
day d in the investigated period D.
During the initialization phase of Alg. 1 from line 3 to

line 13, the initial and last days d0 and de are first identified
from the investigated periodD. Then, since every person can
catch a confirmed infection only once, line 9 makes sure that
each user is confirmed to be not infected for all the days
preceding his day of infection. Also, if a user A is infected
at day d , the probability of his infection Pd,AI is updated to 1
(line 8). Similarly, if he is not infected, his probability of
infection is updated to 0 (line 11).

During the second phase of the algorithm, a loop is created
from day d0 + δ1 till de. In particular, since the investigated
period is from d0 till de, the first infection couldn’t happen
before d0. Therefore, the first contagion cannot happen before
d0+δ1. For each day in this loop, the set of users with known
(K) and unknown (U) probability of infection are defined.
The set U is always defined as the total population except the
users that either have confirmed infection C(d) or confirmed
non-infection N(d) at that particular day (line 15 of Alg. 1).
However, the set of users with known probabilities K is
defined as the full population set P (line 19 Alg. 1) except
in the first iteration where the only known set is the union of
C(d) and N(d) (line 17 Alg. 1).
Consequently, for each day d and for each user A in the

set of individuals with unknown infection probabilities U,
the probability of getting the infection Pd,AI is computed as
in (25). The obtained result is then used to evaluate the prob-
ability of being immune Pd,AIM as in (22), then the probability
of being contagious Pd,ABC as in (23) and finally to compute the
probability of being infected Pd,ABI as in (30). All this is done
by replacing replacing P with K.

E. PARAMETERS FITTING
Several parameters are used in the configuration of the
proposed model. For an accurate prediction and infection
detection, an accurate estimation of these parameters has
to be performed. Fortunately, most of them can be directly
extracted from the collected data. However, the most critical
parameter that needs special attention is the virus spread
factor τ which reflects the efficiency of the social distancing
and the viral control strategy. Therefore, it is very difficult to
evaluate and estimate as it may vary from time to time and
from country to country.

Consequently, two methods are presented to estimate the
spread factor τ either based on the average number of users
infected by a single person denoted by R0 or based on the
curve of active cases over time.

1) INFECTION SPREAD BASED ESTIMATION OF τ
The reproduction number of an infectious disease denoted R0
is a parameter widely used to evaluate the speed of spread of

Algorithm 1 Virus Spread Map Construction (VSMC)
1: Input: C,N andM
2: Ouput:Pd,AI ,Pd,ABI ,P

d,A
BC and Pd,AIM , ∀A ∈ P, d ∈ D

3: d0← min(D), de← max(D)
4: for d = d0 : de do
5: for A ∈ P do
6: if A ∈ C(d) then
7: Add A to N(dt ), ∀ dt ∈ {d0 : d − 1}
8: Update Pd,AI ← 1
9: Update Pdt ,AI ← 0, ∀ dt ∈ {d0 : d − 1}

10: end if
11: if A ∈ N(d) then Update Pd,AI ← 0 end if
12: end for
13: end for
14: for d = d0 + δ1 : de do
15: U← {P / {C(d) U N(d)}}
16: if d = d0 + δ1 then
17: K← {C(d) U N(d)}
18: else
19: K← P
20: end if
21: for A ∈ U do
22: Compute Pd,AI usingM as in (25) by replacingP

with K.
23: Compute Pd,AIM by replacing P with K in (22).
24: Compute Pd,ABC by replacing P with K in (23).
25: Compute Pd,ABI by replacing P with K in (30).
26: end for
27: end for

viruses. It is equal to the average number of persons that will
get the disease directly from one infected individual during
all his infection period. Its values can reach up 18 for very
contagious diseases such as measles, and it is around 3 for
COVID-19.

Therefore, the objective in the sequel is to derive an ana-
lytical expression of R0 that can be used to fit τ so that R0
matches the reported values. To compute R0, the investigated
population has to first be assumed to start with only one
confirmed infected person B. The average number of infected
persons due to B over the investigated period can be therefore
considered as R0.
In case B got the infection at day d0, the probability that B

is contagious at day d in (23) becomes

Pd,BBC =

{
1, if d0 + δ1 < d ≤ d0 + δ2
0, otherwise.

(27)

Consequently, and since only B is considered as the source
of contagion, the probability that A getting the infection at
day d becomes

Pd,AI =


1−

∏
i∈Z(1− P

d,A,i|B
I ) if d0 + δ1 < d

≤ d0 + δ2,
0, otherwise.

(28)
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It follows that the probability that A is immune at day d is
given by

Pd,AIM = 1−
min(d−δ2,d0+δ2)∏

dt=d0

(
1− Pdt ,AI

)
. (29)

From (30) and by combining the probability of being
immune in (29) and the probability of getting the infection
in (28), the probability of A being infected due to B at day d
becomes

Pd,ABI =

(
1− Pd,AIM

)(
1−

d∏
dt=d−δ2

(
1− Pdt ,AI

))

=

min(d−δ2,d0+δ2)∏
dt=d0

(
1− Pdt ,AI

)(
1−

∏
dt∈dI

(
1− Pdt ,AI

))
,

(30)

where dI = [d − δ2, d] ∩ [d0 + δ1, d0 + δ2].
From (30), it follows that the probability that A got infected

at any time because of B is equal to the probability of being
infected at any day d. i.e. the complement of the probability
that A was never infected3

PABI = 1−
d0+2δ2∏
d=d0+δ1

(1− Pd,ABI ). (31)

Finally, R0 becomes the expectation of PABI over all the pop-
ulation P i.e.

R0 =
∑

A∈{P/B}

(
1−

d0+2δ2∏
d=d0+δ1

(1− Pd,ABI )
)
. (32)

It is true that the exact value of τ is not available but
form (17) it can be noted that increasing τ makes users need
more time to get infected. Therefore, increasing τ reduces
the expected number of active cases. Consequently, R0 is a
decreasing function of τ and therefore a bisection algorithm
similar to Alg. 1 can be used to get the required R0.

2) Active Cases Based Estimation of τ
Estimating a single spread factor for all the investigated
duration might be challenging as this factor might change
over time. Therefore, an iterative algorithm is proposed in
this part to estimate τ so that to match with the actual active
cases numbers. In particular, the probability of a user A
being infected at day d denoted by Pd,ABI is computed in (30).
Therefore, the expected number of active cases at day d is
given by

N̄A(d) =
∑
A∈P

Pd,ABI =
∑
A∈P

(
1− Pd,AIM

)

×

(
1−

d∏
dt=d−δ2

(
1− Pdt ,AI

))
(33)

3Note that the first day A can get the infection is d0 + δ1. Also, since B
remains contagious till d0+δ2, if A gets infected at day d0+δ2, user Amight
remain infected till day d0 + 2 δ2.

Estimating τ separately for each day might result in a
very unstable prediction for many reasons such as the sudden
variation in the number of tests and identifying new full
groups of infected persons. Therefore, the investigated period
D is divided into a set of Nd days each. The fitting is then
performed so that the expected number of cases at the end of
each considered group is as close as possible to the reported
one. Consequently, the fitting is performed for a vector of
spread factors denoted τv of length equal to the number of
day groups NdG = ceil( length(D)

Nd
).

Algorithm 2 ActiveSpreadFactorEstimation(ASFE)
1: Input: C,N andM
2: Ouput:τv,P

d,A
I ,Pd,ABI ,P

d,A
BC and Pd,AIM , ∀A ∈ P, d ∈ D

3: d0← min(D), de← max(D), NdG← ceil( length(D)
Nd

)
4: for g = 1 : NdG do
5: Dg =

(
d0 + (g− 1)Nd

)
:

(
min

(
d0 + g Nd − 1, de

))
6: [τv(g), .,P] ← Bisect(τmin = 0.1, τmax =

100, vmin = NaN , vmax = NaN , x = 0.5, itr =
0, dv = Di, P)

7: end for

To estimate the adequate τv, the Active Spread Factor Esti-
mation (ASFE) algorithm is presented in Alg. 2. The ASFE
algorithm starts by defining the first and last investigated days
d0 and de as well as the number of day groups NdG (line 3).
for each group g from 1 to NdG, the set of investigated days
is defined by

Dg =
(
d0 + (g− 1)Nd

)
:

(
min

(
d0 + g Nd − 1, de

))
. (34)

For each set Dg, the bisection (Bisect) algorithm in Alg. 3 is
used to estimate τv(g) and the set of probabilities P. Where
P denotes the probabilities of infection, being infected, being
immune and being contagious for all the investigated period
and for all the investigated population. Note that to predict
the infections in a group of days Dg, all the probabilities
starting from day d0 are used as stated in (25). However,
only the probabilities in the days that belong to Dg change
in P. Therefore, P is created iteratively group by group using
the Bisect algorithm. The Bisect algorithm is called with the
minimum and maximum potential spread factors and their
corresponding errors are set to NaN to make sure that the
algorithm computes their errors in the beginning.

The Bisect algorithm makes use of the function [v,P] ←
Eval(dv,P, τ ) that calculates all the probabilities P given the
initial P and the spread factor τ during the set of days dv as in
Alg. 1. The expected number of active cases at the end of the
investigated group of days NA is computed as the expectation
of the probability of being infected over all the population.
Finally, the difference between the reported number of active
cases and the computed one is returned as v. Note that Eval
makes use of P for all the days since d0 but updates it only
for the days in dv.
For each group of days Dg, a lookup for the adequate τ is

done using Bisect algorithm in Alg. 3 from τmin to τmax. since
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Algorithm 3 Bisect
1: [x, itr,Pn] = Bisect(τmin, τmax, vmin, vmax, x, itr, dv,P)
2: Input:[τmin, τmax, vmin, vmax, x, itr, dv,P]
3: Ouput:[x, itr,Pn]

4: itr ← itr + 1
5: if vmin = NaN then
6: [vmin,P]← Eval(dv,P, τmin), itrext ← 0
7: while itrext < 5 & vmin < 0 do
8: itrext ← itrext + 1, τmin← τmin/5
9: [vmin,P]← Eval(dv,P, τmin)

10: end while
11: if itrext = 5 then x ← τmin end if
12: end if
13: if vmax = NaN then
14: vmax← Eval(dv,P, τmax), itrext ← 0
15: while itrext < 2 & vmax > 0 do
16: itrext ← itrext + 1, τmax← 5τmax
17: [vmax,Pn]← Eval(dv,P, τmax)
18: end while
19: if itrext = 5 then x ← τmax end if
20: end if
21: [v,Pn]← Eval(dv,P, x)
22: if |v| > ε & itr < Maxitr & itrext < 5 then
23: if v > 0 then
24: τmax← x, vmax← v
25: else
26: τmin← x, vmin← v
27: end if
28: x ← (τmin + τmax)/2
29: [x, itr,Pn]← Bisect(τmin, τmax, vmin, vmax, x, itr, dv,P)
30: else
31: Return [x, itr,Pn]
32: end if

the expected number of active cases is a decreasing func-
tion of τ , the error vmin when using τmin should be positive
(Expected number higher than the reported one). Similarly,
the error vmax when using τmax should be negative. To make
sure that the interval [τmin τmax] contains the desired τ ,
the Bisect algorithm starts by computing vmin and vmax and
making sure that vmin ≤ 0 (line 7) and vmax ≥ 0 (line 15).
Otherwise, τmin is reduced to τmin/5 and/or 5τmax up to
10 times (itrext < 10).

In case the extension of τmax or τmin 5 times didn’t make
the system satisfy the initial constraints, then τ that had the
smallest error is reported. In particular, this is done to avoid
rare divergence cases that may occur due to some extreme
conditions or sometimes because of a large number of deaths
that is not taken into consideration in this model.

Once the initial conditions are satisfied, the error v is com-
puted for the potential τ denoted x. Then, at each iteration, x is
set to x+τmin

2 if v > 0 and to x+τmax
2 if v < 0 till reaching either

the maximum number of iterations Maxitr or the minimum

FIGURE 5. Effect of the Zone dimension on the distance distribution.

absolute error (|v| ≤ ε). Once one of these conditions is
reached the Bisect algorithm returns P and τ = x (line 31).
Note that the spread factor τ numerically estimated using

the proposed algorithm in Alg. 3 can make the model pre-
diction more accurate. In particular, the proposed model can
fit to the case where the spread is very fast and where two
individuals need a very limited amount of time to share the
virus (τ ≈ +∞ and Pd,A,i|BI ≈ 1). This model can also fit to
the extreme case where the disease is very slowly spreading
by setting τ to zero. Furthermore, once a large amount of data
is available, the spread factor can be even analyzed as a user
specific parameter which reflects the measures of protection
against the pandemic each user is applying. However, such
feature is beyond the scope of this paper due to the lack of
the relevant data.

V. NUMERICAL RESULTS
To validate the findings of this paper, this section presents
simulated results for COVID-19 pandemic spread using
Matlabr R2019a by investigating the accuracy of the derived
time of exposure for different configuration parameters. The
functionality of the virus spread mapping is then discussed
and the efficiency of the parameters fitting algorithms are
then presented.

In particular, indoor public zones with random users posi-
tions are simulated in Fig. 5 and Fig. 6 to verify the validity
of the derived probability and time of exposure. In the second
part, sample realistic spread models are generated in Fig. 7,
Fig. 8 and Fig. 9 to track the virus spread in sample commu-
nity configurations. Finally, in the third part, using realistic
community configurations and approximations, and by using
the actual number of active cases in few countries, the effi-
ciency of the proposed model in fitting into the real reported
data is checked in Fig. 10 and Fig. 11.

A. TIME OF EXPOSURE
Fig. 5 presents the effect of the indoor public zone dimensions
on the distance distribution between a couple of users when
C t
R = CS

R = 10%, i.e. 10% of the time is spent in a
crowded zone with 10% the size of the full building. First,
it can be seen that the derived distribution expression has a
perfect match with the simulated distribution with different
dimensions’ configurations. Also, note that the bigger is the
building, the smaller is the risk for the users to have short
distances separating them for a long period of time.
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FIGURE 6. Effect of the time spent in crowded zones on the distance
distribution.

FIGURE 7. Number of active cases evolution for different configurations.

In particular, the average distance separating two users
under these configurations are around 4 m, 9 m, 19 m and
28 m when the length and width of the zone are equal to 10
m, 20 m, 40 m and 60 m, respectively. This average distance
is proportional to the dimension of the zone and is almost
equal to half the length of the zone under these configurations.
Also, even-though the average distance separating two users
is relatively high, chances of getting close to an infected
person is not low and can also increase with the number of
users in the building, the dimension of the crowded parts and
the time spent there.

Fig. 6 presents the effect of the time spent in crowded
zones and also their dimensions (C t

R = CS
R ) on the distance

distribution and on the exposure time when DX = DY = 10
m. First, it can be seen that the distance between users follows
a distribution with two peaks, the first around one to two
meters and the second around four to five meters. The bigger
distance peak is due to the exposure in the full public zone
and the peak in the smaller distance is due to the exposure in
the more crowded part of the zone such as a cashier.

Therefore, the longer is the time spent in these crowded
parts and the bigger are these parts, the higher will be the
distribution peak for low distances. i.e. the users will have
more chances of getting close to each others for a long period
of time. In particular, the average distance between two users
when CR = 5% of the time is spent in a crowded zone of
size equivalent to CR = 5% of the total zone size is equal
to 4 m compared to 6 m when this percentage becomes 30%.
Although this average doesn’t seem to be varying a lot with
the dimension and time spent in crowded parts, the distribu-
tion itself drastically changes especially for low distances.

B. VIRUS INFECTION TRACKING
For all the next simulations, the arrival rate during the day is
generated in way that makes it close to the reported ‘‘popular
times’’ for few public places reported by google maps which
is based on the visits to the place. In particular, the arrival
rate is obtained by interpolating and averaging the reported

FIGURE 8. Evolution of the probability of being infected or immune over
time.

FIGURE 9. Example of virus spread tracking for one week.

FIGURE 10. Evolution of the number of active cases over time.

FIGURE 11. Evolution of the spread factor over time.

distributions of few popular visited places by making sure the
integral of such distribution over the day is equal to 1.

Also, the average time spent by a user is generated as a
random variable following an exponentially decreasing distri-
bution (with a decreasing factor 0.8) from 0 hours to 16 hours.
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i.e., users can stay up to 16 hours per day in public zones
but with much less probability compared to staying for only
limited duration. Furthermore, the users preference factor τP
is set to 0.8.4

Fig. 7 presents the effect of the spread factor on the
expected number of active cases evolution over time. A popu-
lation of 1000 persons is considered to be spread over 5 zones
with dimensionsDX andDY uniformly distributed from 50 m
to 100 m. The spread factor τ is varied from 0.01 to 6. Note
that when the spread factor is very low (τ = 0.01), the users
can catch the virus very quickly. Therefore, almost all the
population became infected in less than 10 days. However,
the expected number of active cases peak is reached slower
with higher spread factors. In particular, when τ = 5, the peak
is reached at day 110 with only 11 infections at the same
day. Consequently, the bigger is τ , the slower is the pandemic
spread and the more efficient would be the healthcare system.

Fig. 8 presents the evolution of the probability of being
infected and the probability of being immune but for each user
separately. The users are assumed to be divided into 5 groups
of 200 persons in each and 5 persons of each group go to
the public zones of other groups. The spread factor is set to
τ = 0.5. It can be seen that at the end of the simulated period,
almost all the users became immune. Also, each user has a
different probability distribution depending on his group and
from whom he could get the infection.

To visualize the virus spread, a small community is simu-
lated for one week in Fig. 9. This community is assumed to be
composed of 5 groups with 10 persons in each. One out of the
10 persons in each group is assumed to also move in another
group simultaneously. Each group of users is assumed to
randomly visit five public zones of size 50 m× 50 m.
At day 1, only 2 out of the 50 persons are assumed to

get confirmed infections; user 8 in group 1 and user 21 in
group 3. Since user 8 and 21 became infected at day 1,
they will not become contagious before day three when they
start spreading the virus over the persons they came close to.
In particular, even-though these two infected person came in
contact with several users in their groups, the proposed model
did not predict any other user to have any chance of infection
in any group till day 3 when they became contagious.

At day 3, user 21 spread the virus over several members of
his group, as it can be seen in Fig. 9, not all the members of
group 3 had the same probability of being infected since they
are modeled to have different average times spent in public
zones and they might go to different zones.

User 21 is assumed to go to both the zones of group 1 and
5 which caused the infection of user 39. Again, user 21
spread the disease in his group only 2 days after his infection
(starting from day 5). Furthermore, note that the contagions
becomes more and more spread over time. In particular, even
if a member of a group did not catch the virus in the previous

4Note that in practice, such information should be available from the
sensing devices and, most of the times, no mathematical distribution and
modeling shall be used.

days from the confirmed infected persons, he starts to get
some chances of infection due to other new non-confirmed
but probable cases.

C. FITTING TO REAL SCENARIOS
Simulating the proposed model for a large population is chal-
lenging as it is infeasible to track all the distances between
each pair of users, all times. Therefore, three complementary
solutions are adopted to scale the proposed model for large
populations:
• The population is divided into groups of smaller sizes
where the tracking can be performed. Also, few random
users are allowed to move occasionally from one group
to another.

• The second solution is to only take into consideration
long exposure duration to favour the creation of sparse
tracking matrices that can help manage the large amount
of data investigated.

• Since the proposed model is probabilistic, the expected
number of infected persons should be proportional to the
number of persons,N . In particular, by assuming that the
total population is divided into perfectly isolated towns
of almost equal sizes and initial number of infections,
the total number of expected cases becomes proportional
to the number of towns. Therefore, the simulation is
performed with a relatively small population of 500.000
and the number of cases is scaled up proportionally to
the investigated population (60.36 × 106 in Italy for
example).

As detailed above, a population of 50.000 persons is inves-
tigated and the number of cases is scaled up proportionally
to the total population. This population is divided into 10
groups of 5.000 each. Also 5 public zones are considered for
each group. Half of the users are assumed to visit zones of
two groups, one fifth is assumed to visit zones of 3 groups
and 10% of the users visit the zones of 4 groups. The public
zones dimensions are uniformly distributed between 50m and
100 m.

Although the curves presented in Fig. 7 are realistic (have
a similar shape to most of the reported data of active cases
in the world), it is challenging to fit them to real active cases
curve by updating the spread factor, the arrival rate and the
other configuration parameters. In particular, fitting errors
appear especially in the long run due to the modifications
in population behavior and in the government strategy itself
during the investigated period. Also, the application rate of
social distancing changes over time.

Therefore, the investigated period (257 days from 22 Jan-
uary 2020) in Fig. (10) and Fig. (11) is divided into groups
of 5 days each. The number of active cases in United King-
dom (UK), Italy and France are computed by subtracting the
number of deaths and the number of recoveries from the num-
ber of reported cases obtained from the Harvard Dataverse
COVID-19 Daily Cases dataset in [45].

The spread factor is then fit automatically using Alg. 2 for
each group of days separately. This allows having accurate
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active cases curve which results in accurate prediction of the
infection map.

Fig. (10) presents both the real number of active cases
curve for UK, Italy and France as well as the the number
generated by the proposed spread factor fitting algorithm.

To have a fair comparison, day 1 for each country is consid-
ered as the first day when the number of active cases is bigger
or equal to 10 out of the 50.000 investigated population,
i.e. 100 active cases per million. Therefore, the investigated
periods are from 23/03/2020, from 13/03/2020 and from
21/03/2020, for UK, Italy and France, respectively.

First, it can be seen that the proposed model can fit with
very low errors with the real reported data for different coun-
tries. Also, to have such close curves, the spread factor had to
vary over time for the different countries.

In particular, Fig. (11) reveals the spread factor obtained
from Alg. 2 which states that the three countries had almost
the same spread factor in the first 30 days of the investi-
gated period. That’s why the three investigated countries have
almost the same virus spread curve shape in the beginning.
Starting from day 40, note that the spread factor is, most of the
times, higher for Italy, compared to France and UK, and also
higher for France compared to UK. This indeed explains the
reduction in the number of cases in Italy compared to the two
other countries and the lower increase for France compared to
UK. Note also that starting from day 118 (which corresponds
to 18/05/2020), Italy ended the lockdown which made the
spread factor slowly decrease till coming back to close values
to France andUK. Also, note that the raise in the spread factor
in the first 40 days is explainable by the application of the
lockdown in the three investigated countries.

The results obtained from Fig. (10) and Fig. (11) can first
be beneficial in evaluating the measures performed by each
country. More importantly, it can help getting more accurate
prediction of the probability of infection of each member of
community as in Fig. (9).

VI. CONCLUSION
To alleviate the dramatic effect of the COVID-19 pandemic,
a private IoT proximity tracking model is proposed in this
paper. The proposed model aims to protect the health of
individuals while preserving their privacy. In particular, this
is done by making use of a low-cost sensor network that
anonymously collects Bluetooth and WiFi beacons to create
an anonymous movement tracking map of all the users in
the public zones. This map is used to compute the exposure
time between each couple of users. A mathematical move-
ment model is also used to populate the data. Furthermore,
a virus spread model is investigated in order to extract the
probability of each individual being infected at each day.
This probability is computed using a novel iterative algorithm
that allows the estimation of the system parameters and virus
spread accurately. The accuracy of the proposed model can
be further enhanced by also using 3G, 4G, 5G, ZigBee,
and other protocols whenever possible. Finally, the authors
believe that the findings of this paper, if implemented, might

be of great interest in combating COVID-19 pandemic and
other potential novel contagious diseases while preserving the
privacy of the community.

APPENDIX A: PROOF OF THEOREM 1
A. Case 1
First, if x satisfies 0 ≤ x < DY , the CDF Fr (x) becomes

Fr (x) =
∫ x

0
fZY (tY )

∫ √
x2−t2Y

0
fZX (tY ) dtX︸ ︷︷ ︸
I1

dtY . (35)

It can be shown that I1 is expressed as follows

I1 =
1

D2
X

√
x2 − t2Y (2DX −

√
x2 − t2Y ). (36)

Consequently, Fr (x) becomes

Fr (x) =
2
(
I3(x)− I3(0)

)
D2
XD

2
Y

, (37)

where I3 is defined as follows

I3(t) =
∫
(DY − tY )

√
x2 − t2Y (2DX −

√
x2 − t2Y ) dt

=
DX
3

√
x2 − t2(t(3DY − 2t)+ 2x2)+

DY t3

3

+DXDY x2 tan−1
( t
√
x2 − t2

)
−DY x2t −

t4

4
+

(xt)2

2
. (38)

B. Case 2
When x satisfies DY ≤ x ≤ DX , the CDF of dA,B can be
computed similar to case 1 but while integrating I3 only till
DY and not till x. Therefore, Fr (x) becomes

Fr (x) =
2

D2
XD

2
Y

(
I3(DY )− I3(0)

)
. (39)

C. Case 3
In this case, x is bigger than the biggest dimension of the

building (DX ). i.e. x satisfies DX < x ≤
√
D2
X + D

2
Y .

Consequently, the CDF of r becomes

Fr (x) = FZY
(√

r2 − D2
X

)
+

2
D2
X D2

Y

(
I3(DY )− I3(

√
x2 − D2

X )
)
. (40)
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