
The DNA Damage Response Pathway Contributes to the
Stability of Chromosome III Derivatives Lacking Efficient
Replicators
James F. Theis1, Carmela Irene1, Ann Dershowitz1, Renee L. Brost2, Michael L. Tobin1, Fabiana M. di

Sanzo1, Jian-Ying Wang1, Charles Boone2, Carol S. Newlon1*

1 Department of Microbiology and Molecular Genetics, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States

of America, 2 Banting & Best Department of Medical Research and Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research,

University of Toronto, Toronto, Ontario, Canada

Abstract

In eukaryotic chromosomes, DNA replication initiates at multiple origins. Large inter-origin gaps arise when several adjacent
origins fail to fire. Little is known about how cells cope with this situation. We created a derivative of Saccharomyces
cerevisiae chromosome III lacking all efficient origins, the 5ORID-DR fragment, as a model for chromosomes with large inter-
origin gaps. We used this construct in a modified synthetic genetic array screen to identify genes whose products facilitate
replication of long inter-origin gaps. Genes identified are enriched in components of the DNA damage and replication stress
signaling pathways. Mrc1p is activated by replication stress and mediates transduction of the replication stress signal to
downstream proteins; however, the response-defective mrc1AQ allele did not affect 5ORID-DR fragment maintenance,
indicating that this pathway does not contribute to its stability. Deletions of genes encoding the DNA-damage-specific
mediator, Rad9p, and several components shared between the two signaling pathways preferentially destabilized the
5ORID-DR fragment, implicating the DNA damage response pathway in its maintenance. We found unexpected differences
between contributions of components of the DNA damage response pathway to maintenance of ORID chromosome
derivatives and their contributions to DNA repair. Of the effector kinases encoded by RAD53 and CHK1, Chk1p appears to be
more important in wild-type cells for reducing chromosomal instability caused by origin depletion, while Rad53p becomes
important in the absence of Chk1p. In contrast, RAD53 plays a more important role than CHK1 in cell survival and replication
fork stability following treatment with DNA damaging agents and hydroxyurea. Maintenance of ORID chromosomes does
not depend on homologous recombination. These observations suggest that a DNA-damage-independent mechanism
enhances ORID chromosome stability. Thus, components of the DNA damage response pathway contribute to genome
stability, not simply by detecting and responding to DNA template damage, but also by facilitating replication of large inter-
origin gaps.
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Introduction

In eukaryotic chromosomes, DNA replication initiates at multiple

origins, specified by cis-acting sequences called replicators. In the

budding yeast, Saccharomyces cerevisiae, replicators are termed ARS

elements and were identified by their ability to promote extra-

chromosomal maintenance of plasmids. Chromosomal replication

origins coincide with ARS elements, which contain the binding site

for the six-subunit initiator complex, ORC. During G1, ORC

recruits additional proteins to form pre-replicative complexes (pre-

RCs) that initiate replication during S phase [1]. The average

distance between active replication origins in S. cerevisiae is

approximately 40 kb, based on both electron microscopic analysis

of replicating DNA molecules [2] and whole genome analysis [3,4].

In fission yeast, a similar range of estimates was obtained from

whole genome analysis and DNA combing [3,5].

The presence of multiple origins on chromosomes raises the

question of whether replicators are activated according to a fixed

temporal program or whether their use is stochastic, i.e. different

replicators are activated in different cells or in successive S phases.

In budding yeast, 2D-gel analyses and replication timing studies

suggested that replicators are activated according to a program,

although some variability is inevitable because some replicators

fire inefficiently [3,4,6–12]. Recent single-molecule studies in

budding yeast ([13,14] Wang and Newlon, manuscript in

preparation), and in fission yeast [5,15–18] reflect this stochasticity

in initiation.

Stochastic activation of replicators should occasionally produce

large inter-origin gaps caused by failure of adjacent origins to

initiate, referred to as the random gap problem [19]. Recent

theoretical analysis of the replication dynamics of the fission yeast

genome based on data that describe the positions and firing

PLoS Genetics | www.plosgenetics.org 1 December 2010 | Volume 6 | Issue 12 | e1001227



probabilities of replicators and the rate of fork movement suggests

that long inter-origin gaps occur frequently in fission yeast [20]. In

88% of 2000 simulations using this stochastic hybrid model, at

least one region of the genome contained an inter-origin gap more

than 6-fold longer than the average inter-origin spacing;

replication of such a gap would require about twice the known

length of S phase. These results suggest that completion of DNA

replication requires most of the normal G2 period of the cell cycle,

and in some fraction of the population, regions of the genome

would still be replicating at the normal time of mitosis. The

problematic regions included about 5% of the genome, and each

individual region appeared infrequently in the simulations, making

such regions difficult to detect experimentally. It is not known how

cells cope with this issue.

One possibility is that ongoing replication activates a checkpoint

response to prevent cells from undergoing mitosis prior to

completion of S phase. Two intertwined checkpoints function

during S phase (Figure 1). The DNA damage response is activated

by a signal transduction cascade in response to stalling of replication

forks encountering DNA damage (reviewed by Branzei and Foiani

[21,22]). Experimentally, this response is activated by treatment

with MMS or UV; unperturbed cells probably activate this pathway

in response to forks encountering endogenous DNA damage. The

replication stress response is activated experimentally by hydroxy-

urea treatment, which slows replication forks by inhibiting

ribonucleotide reductase; it is not known what endogenous signal(s)

activate(s) it.

Activation of an S phase response may occur in cells coping with

long inter-origin gaps. Rad53p, the ortholog of the mammalian

and fission yeast effector kinase, Chk2 (Figure 1), becomes

hyperphosphorylated late in S phase in mutants that fail to fire

some replication origins, indicating activation of a checkpoint

[23,24]. In addition the stability of a yeast artificial chromosome

(YAC) carrying human DNA sequences from which origins had

been deleted depended on RAD9, the mediator in the DNA

damage response pathway [25]. However, other evidence suggests

that cells do not monitor either the initiation or completion of

DNA replication. For example, strains carrying tight alleles of cdc6

(cdc18+ in S. pombe), which encodes a pre-RC component, or of

dbf4, the regulatory subunit of the Cdc7p kinase required for origin

firing, proceed directly from G1 to mitosis despite failing to

replicate any DNA [26–28]. Even ongoing replication may not

prevent anaphase entry [29,30].

Figure 1. DNA damage and replication stress response
pathways. A simplified version of the DNA damage and replication
stress checkpoint pathways is shown. The pathways are conceptually
divided into sensors, phosphoinosotide-3-kinase-related kinases (PIKKs),
mediators and effector kinases. The shared components of the
pathways are shown in purple. The pathway-specific mediators, Rad9p,
and Mrc1p, are shown in blue and red, respectively. The pathways are
activated by sensors. Mec1p and Ddc2p form a complex, homologous
to the mammalian ATR-ATRIP complex, which recognizes Replication
Protein A (RPA) bound to ssDNA [88]. Rad17p, Mec3p, and Ddc1p form
a PCNA-like complex, homologous to the 9-1-1 complex, which is
loaded onto DNA at 59 junctions adjacent to single-stranded DNA
coated with RPA by an alternative clamp loader in which Rad24p
replaces Rfc1p in a complex with Rfc2p, Rfc3p, Rfc4p, and Rfc5p [89–92].
Binding of the Rad17p-Ddc1p-Mec3p clamp results in activation of
Mec1p kinase activity. Ddc1p is phosphorylated by Mec1p [90]. Dpb11
binds to phosphorylated Ddc1p and mediates a more robust activation
of Mec1p [93]. Signals from the PIKK kinases are transduced to effector
kinases with the help of mediators (see text). Components tested are
shown in bold type.
doi:10.1371/journal.pgen.1001227.g001

Author Summary

Loss of genome integrity underlies aspects of aging and
human disease. During DNA replication, two parallel
signaling pathways play important roles in the mainte-
nance of genome integrity. One pathway detects DNA
damage, while the other senses replication stress. Both
pathways activate responses that include arrest of cell
cycle progression, giving cells time to cope with the
problem. These pathways have been defined by treating
cells with compounds that induce either replication stress
or DNA damage, but little is known about their roles
during unperturbed DNA replication. They may be
important when several adjacent replication origins fail
to initiate and forks from flanking origins must replicate
longer regions of DNA than normal to complete replica-
tion. We have used a derivative of budding yeast
chromosome III lacking all efficient replication origins to
identify mutants that preferentially destabilize this chro-
mosome fragment, which mimics a chromosome with a
large inter-origin gap. We found that the DNA damage
response pathway, but not the replication stress response
pathway, plays an important role in maintaining this
fragment. The signal recognized in this case may be
replisome failure rather than forks stalled at endogenous
DNA damage.

Long Inter-Origin Gaps and the DNA Damage Response
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We have created a derivative of yeast chromosome III lacking

efficient replicators as a tool to detect mechanisms that contribute

to replication of large inter-origin gaps (the 5ORID-DR fragment -

Figure 2). This fragment is composed entirely of yeast sequences

with the exception of plasmid sequences at the fragmentation

point. It replicates efficiently, with a loss rate per division of

2.161023 [31] and is much more stable than the YAC [25]. We

carried out a genetic screen for mutants specifically defective in

maintenance of this ORID derivative on the premise that

mutations that caused destabilization of the 5ORID-DR deriva-

tive, but had little or no effect on maintenance of the

corresponding 0ORID-DR derivative (Figure 2) would identify

genes required for the replication of long inter-origin gaps, or

perhaps new replication initiation mechanisms. This screen

identified three originless fragment maintenance (Ofm) mutants,

one dominant, OFM1-1, and two recessive, ofm6-1 and ofm14 (an

allele of RAD9) [32]. The rad9 mutation increased the loss rate of

the 5ORID-DR fragment, but did not cause the frequent

rearrangement that was seen with the YAC [32].

Here we report the results of a modified synthetic genetic array

(SGA) screen [33,34] used to identify additional Ofm mutants.

Deletions of several genes in the DNA damage response pathway

caused an Ofm phenotype. Further analysis indicated that this

pathway contributes to the replication of large inter-origin gaps. In

contrast, the replication stress response pathway does not

contribute to the stability of the 5ORID-DR fragment. Surpris-

ingly, genes in the homologous recombination pathway, which are

believed to contribute to the restart of collapsed replication forks,

do not contribute to the maintenance of the fragment.

Results

SGA+Chromoduction-based screen for Ofm mutants
Our previous visual screen for Ofm mutants was labor intensive,

during both the initial visual screening of colonies grown from the

mutagenized culture and in subsequent attempts to identify

mutations responsible for the phenotype. Thus, we adapted

synthetic genetic array (SGA) technology [33,34] for use in a

colony sectoring screen to identify additional Ofm mutants in the

S. cerevisiae viable deletion collection. One limitation of this screen

is that essential genes could not be tested.

In the primary screen, as detailed in Methods, we used SGA

technology to create ade2D::natR xxxD::kanR haploid MATa
progeny. We then used chromoduction [35] to introduce the

5ORID-DR fragment of chromosome III marked with ADE2 into

each strain (Figure 2). Chromoductants, each carrying the

5ORID-DR fragment were then streaked on plates with limiting

adenine. Loss of the ADE2-marked fragment during growth of a

colony results in a red sector. If a mutant has a low 5ORID-DR

fragment loss rate, such sectors will be rare; conversely, a mutant

with an elevated loss rate will yield highly sectored colonies,

providing a semi-quantitative estimate of loss rates. Examples of

sectoring patterns are shown in Figure 3. The majority of the 5171

strains screened showed a low rate of sectoring as illustrated by the

aro7D mutant used as a control. Ninety strains had an elevated rate

of sectoring, as shown by the spe1D and ctf8D strains.

The elevated sectoring observed for the 90 strains selected from

the primary screen could reflect either defects in transmission of all

chromosomes, e.g. a defect due to the loss of a component of the

kinetochore, or defects specific to 5ORID-DR fragment transmis-

sion. To distinguish between these possibilities, we identified a

colony from each of the 90 strains that had lost the 5ORID-DR

fragment, then separately introduced by chromoduction the

0ORID-DR and the 5ORID-DR fragments (Figure 2), and

compared the sectoring phenotypes of two independent chromo-

ductants carrying each of these fragments by estimating the

number of red sectors per colony seen in chromoductants. Our

previous measurements of loss rates of these chromosome III

derivatives by fluctuation analysis allowed us to make semi-

quantitative estimates of loss rates based on sectoring patterns

[31,32]. The loss rate of the 5ORID-DR derivative is ,261023

losses per division in wild type cells, and this loss rate results in 0–3

sectors per colony in the SGA strain background. Colonies of

strains carrying the 0ORID-DR derivative, which has a loss rate of

about 261025 losses per division, rarely have a red sector. Mutant

strains with loss rates of the 5ORID-DR fragment in the range of

1022 losses per division form colonies with 5–10 sectors per

colony, and strains with loss rates in the range of 1021 losses per

division form colonies with $10 sectors per colony. The results of

this secondary screen are detailed in Table S1. For example, spe1D
was classified as an Ofm mutant because cells carrying the

5ORID-DR fragment gave rise to colonies with 5–10 sectors per

colony, while those carrying the 0ORID-DR fragment yielded

Figure 2. Chromosome III derivatives. The diagram at the top
summarizes replicator activity on the wild type (0ORID) chromosome.
ARS elements are numbered above the line and color coded to indicate
efficiencies: green, active in $90% of cell cycles; yellow, active in 15–
25% of cell cycles; red, not detectably active [55]. The diagram below
shows regions altered in ORID derivatives; individual deletions were
made in the ORID region, and the number of deletions present is
specified by a number, e.g. 0ORID (no origins deleted) or 5ORID (the
efficient origins deleted). Additional ORID derivatives were made by
fragmenting the chromosome just to the right of ARS304 to remove
dormant origins in the ‘L’ region, or just to the right of ARS310 to
remove origins in the ‘R’ region. We refer to these derivatives as DL-
ORID and ORID-DR derivatives. Blue boxes indicate the positions of the
HML, MAT and HMR loci. The lavender arrows indicate the position of
the LEU2 gene; the red arrows indicate the position of the ADE2 or
SUP11-1 insert; the filled black circles indicate CEN3; the green filled
circle indicates the CEN4 replacement of CEN3, which removes ARS308;
green arrows indicate the positions of TRP1 inserts; the orange arrow
indicates the position of the NAT1 insert.
doi:10.1371/journal.pgen.1001227.g002

Long Inter-Origin Gaps and the DNA Damage Response
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colonies that were rarely sectored; ctf8D was called a non-Ofm

mutant because cells carrying either fragment gave rise to colonies

with .10 sectors per colony (Figure 3). Overall, the 71 deletion

strains in which the high sectoring phenotype of the 5ORID-DR

fragment was reproduced in the secondary screen were divided

into high confidence Ofm mutants (52 strains), possible/probable

Ofm mutants (14 strains) and non-Ofm mutants (5 strains)

(Table 1). In the high confidence Ofm mutants, the two

chromoductants carrying the 5ORID-DR derivative were estimat-

ed to have at least 5–10 sectors per colony, and the two

chromoductants carrying the 0ORID-DR derivative rarely gave

rise to a colony with a sector. In the case of the probable/possible

Ofm mutants, either the two 5ORID-DR chromoductants or the

two 0ORID-DR chromoductants showed different sectoring

patterns. In the non-Ofm mutants, the 0ORID-DR chromoduc-

tants all showed a sectoring pattern consistent with at least a 100-

fold increase in the loss rate of this derivative.

A gene ontology (GO) analysis was performed on the 52 genes

whose deletion caused Ofm phenotypes and on the 5 genes whose

deletion caused non-Ofm phenotypes (http://db.yeastgenome.

org/cgi-bin/GO/goTermFinder.pl). The three highest scoring

clusters among the Ofm mutants (P = 861025–461023) share

many genes and correspond to the annotations ‘‘cell cycle

checkpoint’’, ‘‘DNA damage response, signal transduction’’, and

‘‘DNA damage checkpoint’’. The cell cycle checkpoint cluster

(SGS1, BFA1, MAD2, MAD3, RAD9, RAD17, and RAD24) included

all of the genes present in the other two clusters. When the

possible/probable Ofm mutants were included in the analysis

the highest scoring cluster was still ‘‘cell cycle checkpoint’’

(p = 861027). In addition to the 7 genes above, the cluster

included BIM1, BUB1, BUB2, BUB3, CSM3 and TOF1. RAD9,

RAD17, and RAD24 function in the DNA damage response

pathway while MAD2 and MAD3 function in the spindle

checkpoint, though some results have suggested an additional role

in the DNA damage checkpoint [36–38]. BFA1 and BUB2 are

required to prevent mitotic exit in both the DNA damage and

spindle checkpoint pathways [39]. The highest scoring cluster

(P = 361026) among the non-Ofm mutants corresponded to the

annotation ‘‘mitotic cell cycle’’. This cluster included all five

mutants identified as non-Ofm mutants.

Mutations in the DNA damage response pathway, but
not the replication stress response pathway, cause an
Ofm phenotype

Results of the GO analysis and identification of a null allele of

RAD9 in our forward mutation screen [32] led us to examine the

DNA damage response pathway in more detail. We moved the

deletions of interest into the YKN10 strain background (Table S2)

as described in Methods. Analysis of these strains allowed us to

confirm that each deletion caused an Ofm phenotype and to

quantitate the effects of the mutations in the strain background

with which we had the most experience.

Our premise in undertaking this screen is that problems with the

replication of the 5ORID-DR derivative may be qualitatively

different than the problems sustained by the 0ORID-DR

derivative by virtue of the presence of a long inter-origin gap.

Therefore, we wanted to be able to make a quantitative

comparison of loss rates that are very different. We reasoned that

a comparison of the number of additional loss events sustained by

the 5ORID-DR and 0ORID-DR derivatives in a given mutant

would provide a measure of the strength of the Ofm phenotype.

We define the ‘‘Ofm index’’ as the number of additional loss

events per 105 divisions for the 5ORID-DR derivative divided by

the number of additional losses for the 0ORID-DR derivative

(Table 2). Two examples illustrate our reasoning. Suppose that in

a wild type cell the loss rate of the 0RID-DR derivative is 1 and the

loss rate of the 5ORID-DR derivative is 100. In one case, a

mutation causes both derivatives to sustain an additional 400 loss

events per 105 cell divisions. In this case the Ofm index =

(5002100)/(40121) = 1. This is the outcome we might expect for

a mutation in a kinetochore component, and we would not

consider the mutant to be an Ofm mutant. In another case, a

mutation causes the 0ORID-DR derivative to sustain 10 additional

loss events and the 5ORID-DR derivative to sustain an additional

900 loss events. In this case the Ofm index = (10002100)/(1121)

Figure 3. Examples of sectoring patterns. In the primary screen
the 5ORID-DR fragment (marked with ADE2 and LEU2) was introduced
into each of the ade2D::natR xxxD::kanR double mutants by chromo-
duction. Chromoductants were streaked on medium with limiting
adenine. Chromosome loss events appear as red sectors due to the
accumulation of a pigment in ade2 mutants. For the secondary screen,
sectoring colonies from the primary screen were re-streaked. The
5ORID-DR and 0ORID-DR fragments were separately introduced by
chromoduction into a Leu2 Ade2 colony from these streaks. These
chromoductants were then streaked on limiting adenine medium and
photographed after 5 days. Left panels: Photographs of mutants
carrying the 5ORID-DR fragment: aro7D - wildtype level of sectoring;
spe1D - highly elevated sectoring; ctf8D - highly elevated sectoring.
Right panels: Photographs of mutants carrying the 0ORID-DR fragment.
spe1D was classified as an Ofm mutant because colonies carrying the
0ORID-DR fragment were rarely sectored. ctf8D was classified as a non-
Ofm mutant because colonies carrying the 0ORID-DR fragment were
highly sectored. See also Table S1.
doi:10.1371/journal.pgen.1001227.g003

Long Inter-Origin Gaps and the DNA Damage Response
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= 90. We would consider this high Ofm index to indicate a specific

defect in maintenance of the 5ORID-DR fragment.

We first wished to distinguish the roles of the DNA damage and

replication stress response pathways in the maintenance of the

5ORID-DR derivative. In budding yeast, these pathways are best

distinguished by the effects of mutations in the mediators because

the pathways share both upstream and downstream components

(Figure 1). The DNA-damage-specific mediator, Rad9p, an

ortholog of mammalian 53BP1, is phosphorylated by the PIKK

Mec1. Hyper-phosphorylated Rad9p binds the effector kinase

Rad53p, an ortholog of Chk2, and facilitates both phosphorylation

of Rad53p by Mec1p and activation of Rad53p kinase activity

by autophosphorylation [40–44]. We previously found that

both our original rad9 allele and the rad9D allele cause Ofm

phenotypes, with mutants strains having Ofm indices of 81 and 65,

respectively (Table 2 and [32]). These results indicate the DNA

damage response pathway contributes to the maintenance of the

5ORID-DR derivative.

The corresponding mediator in the replication stress response

pathway is Mrc1p, a homolog of mammalian claspin. Mrc1p plays

roles in both the replication stress response and normal replication

fork progression [45–50]. Analysis of the role of MRC1 in the

maintenance of the 5ORID-DR derivative was complicated by its

location on chromosome III and its dual role in S phase. We

constructed both recipient and donor strains carrying the mrc1D

allele; the 5ORID-DR mrc1D and 0ORID-DR mrc1D fragments

were then separately transferred into the mrc1D recipient strain by

chromoduction. Both 5ORID-DR and 0ORID-DR fragments

were destabilized in the homozygous mrc1D strain, resulting in a

low Ofm index (Table 2); the mrc1D strain is not an Ofm mutant.

A deletion that removed the C-terminal half of the MRC1 ORF

(the allele included in version 1 of the systematic deletion

collection) caused a similar loss rate of the 5ORID-DR fragment,

but the 0ORID-DR loss rate was about 10-fold lower than in the

complete ORF deletion strain, suggesting that the N-terminus of

Mrc1p may contribute to maintenance of the 0ORID-DR

fragment (data not shown).

To distinguish between the roles of the replication stress response

and fork progression functions of Mrc1p in the maintenance of the

5ORID-DR derivative, we made use of a separation of function

allele, mrc1AQ, made by mutating six consensus Mec1p phosphor-

ylation sites [47]; this allele lacks the replication stress response

function of MRC1, but retains the fork progression function.

Plasmids carrying either wild type MRC1 or mrc1AQ complemented

the high loss rate of the 5ORID-DR fragment in the mrc1D strain

(Table 3). These results indicate that it is the loss of the fork

progression function of Mrc1p that destabilizes the 5ORID-DR

fragment, not the loss of replication stress signaling. Therefore,

mutations that impair DNA damage signaling, but not replication

stress signaling, cause an Ofm phenotype.

Table 2. Loss rates of chromosome III derivatives in checkpoint mutants (Losses per division 6 S. D. 6 105).

Strain 5ORID-DR 0ORID-DR Ofm index1 5ORID DL-6ORID

Wild Type 210630 362 Not defined 963 240640

sml1D 160650 1863 23 662 130630

rad9 (ofm14) 150061002 19642 81 39611 ND

rad9D 210064002 32662 65 3068 960061000

rad17D 11006100 1263 99 ND ND

rad24D 9806180 1263 86 2465 15006300

mec1D sml1D 14006200 3367 40, 833 260640 6106100

mrc1D 12006200 150620 7 5306100 4606100

chk1D 410650 962 33 N.D. 11006200

rad53D sml1D 490690 67611 4, 73 N.D. 12006200

rad53D chk1D sml1D 8806140 3967 19, 343 N.D. 900061000

1Ofm index = (loss_rate_5ORID-DRmutant2loss_rate_5ORID-DRwild type)/(loss_rate_0ORID-DRmutant2loss_rate_0ORID-DRwild type).
2Values from [32].
3Value calculated using smlD value for 0ORID-DR construct.
doi:10.1371/journal.pgen.1001227.t002

Table 1. Genes identified in screen.

Ofm mutants asi2, ast2, bfa1, bre5, chd1, ctf18, ecm7, gut2, gyp1, hch1, hst3, idh1, idh2, ioc2, irc14, isw1, lsm1, mad2, mad3, mcr1,
mid1, mtc1, mth1,pol32, puf3, rad9, rad17, rad24, rpa34, rpl20b, rpl34b, sdp1, sgf73, sgs1, sip3, skt5, sop4, spe1, spt8,
swi5, ubp3, vph2, whi4, ybr099c, ydr278c, yer046w-a, yfr016c, yhl005c1, yor024w2, ypk1

Possible/Probable Ofm mutants acm1, bim1, bub1, bub2, bub3, chl1, csm3, dia2, rmi1, rtg1,rtg3, sok2, tof1, top33

Non-Ofm mutants ctf4, ctf8, kar3, mad1, sic1,

1YHL005C is a dubious ORF that partially overlaps MRP4, which encodes a mitochondrial ribosomal protein. It also occupies the promoter region of SHU1, which
functions in a RAD51 and RAD54-dependent pathway for homologous recombinational repair.

2YOR024W is a dubious ORF upstream of HST3; hst3D was also scored as an Ofm mutant. yor024wD leaves only 52-base-pairs upstream of the HST3 ORF intact,
suggesting that this deletion alters HST3 expression.

3top3 mutants are slow-growing and rapidly accumulate sgs1 mutations which suppress the slow-growth phenotype [94]; the chromoductants screened are likely top3
sgs1 double mutants. sgs1 was scored as an Ofm mutant (see Table S1).

doi:10.1371/journal.pgen.1001227.t001

Long Inter-Origin Gaps and the DNA Damage Response
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We further tested the role of MRC1 in replication fork

progression in our YKN10 background by examining the

activation of dormant origins on chromosome III using 2D gel

electrophoresis. These origins are inactive in the wild type strain

because they are replicated by a fork from an adjacent origin

before they can fire. Dormant origins can be activated by deletion

of adjacent origins, which causes a delay in the time at which forks

from the nearest remaining origins reach them, giving them an

opportunity to fire [31,51]. The dormant origin ARS304 is also

activated in an mrc1D strain [49] in which forks progress slowly

[48,49]. To explore the generality of this phenomenon, we

examined the activation of three dormant origins on chromosome

III: ARS301, ARS304 and ARS314. As shown in Figure 4,

replication initiation at ARS301 and ARS314, revealed by the

presence of bubble-shaped intermediates, was detected in the

mrc1D mutant, but not in the MRC1 strain; ARS304 was also active

in the mutant (data not shown). Thus, activation of dormant

origins is a general phenomenon in mrc1D strains that most likely

reflects slow fork progression.

Deletions of other components of the DNA damage and

replication stress response pathways also caused Ofm phenotypes.

Deletions of genes encoding sensors shared by both pathways,

including RAD17, which encodes a subunit of a PCNA-like clamp,

and RAD24, which encodes the large subunit of its clamp loader

(see Figure 2), caused Ofm phenotypes with Ofm indexes of 100

and 85, respectively (Table 2). Although it was not scored as a

potential Ofm mutant in the primary screen, further examination

revealed that deletion of DDC1, which encodes another subunit of

the clamp, caused colonies of strains carrying the 5ORID-DR

fragment to sector similarly to the rad17D strain (Figure S1). Genes

encoding other shared sensors were not examined because they

are essential, including RFC2, RFC3, RFC4, RFC5, DDC2 and

DPB11 (Figure 1).

Sensors activate PIKKs shared by both pathways. In S. cerevisiae,

the ATR homolog, Mec1p, plays a more important role in the

detection and repair of DNA damage than does the ATM

homolog, Tel1p [52]. MEC1 is essential and was not in our screen;

however the lethality caused by the mec1D allele can be suppressed

by deletion of the ribonucleotide reductase inhibitor encoded by

SML1 [53]. The sml1D mutation did not increase the loss rate of

the 5ORID-DR derivative, though it did slightly elevate the loss

rate of the 0ORID-DR derivative (Table 2). Since the sml1D strain

is not an Ofm mutant, we examined mec1D in the sml1D
background. The mec1D allele confers an Ofm phenotype

indicating by its Ofm index of 40 (Table 2). The other PIKK,

Tel1p, does not contribute to maintenance of the 5ORID-DR

fragment. The loss rate of this fragment in the tel1D mutant was

2.360.461023 per division, similar to its loss rate in the wild type

strain, and its loss rate in the mec1D tel1D double mutant was

1.360.261022, similar to its loss rate in the mec1D mutant.

Downstream of the mediator, Rad9p, are the two effector

kinases, Chk1p and Rad53p, homologues of the mammalian

kinases, Chk1 and Chk2, respectively. The chk1D strain was not

scored as a potential Ofm mutant in the primary screen; however,

further examination revealed that this strain had an Ofm

phenotype, with an Ofm index of 33 (Table 2). This result

implicates Chk1p in transducing the signal from Rad9p to

downstream targets. The rad53D mutant was not in the screen

because it is inviable, but its inviability is suppressed by deletion of

SML1. We found that the rad53D sml1D double mutant did not

have an Ofm phenotype (Ofm index = 7) because the rad53D
mutation caused an increase in the loss rate of the 0ORID-DR

fragment (Table 2). The increased loss rate of the 0ORID-DR

fragment in the rad53 strain indicates that Rad53p contributes to

the maintenance of chromosomes with a normal complement of

replication origins and is consistent with its well-documented role

in response to DNA damage [22]. However, the loss rate of the

5ORID-DR fragment was increased about 3-fold relative to the

sml1D control, raising the possibility that Rad53p also contributes

to the maintenance of this fragment. We examined the loss rate

of the 5ORID-DR fragment in a sml1D rad53D chk1D strain

and found that its loss rate in the triple mutant was

880614061025, approximately equal to the sum of the loss rates

in the sml1D rad53D and chk1D mutants and nearly as high as the

loss rates in strains carrying deletions of upstream components of

the checkpoint pathway (Table 2). The Ofm index of the triple

mutant was similar to that of the chk1 strain. Taken together, these

results are consistent with the idea that Chk1p is primarily

responsible for transducing the signal from Rad9p to downstream

Figure 4. Activity of dormant origins in the mrc1D mutant.
Genomic DNA was prepared from MRC1 (YDN324) and mrc1D (YDN337),
strains lacking ARS305. Southern blots of 2D gels of replicating DNA
were probed to detect either ARS301 (left column) or ARS314 (right
column). The detection of bubble-shaped replication intermediates,
indicated by the arrows, demonstrates that both origins are active in
the mrc1D mutant; both origins are inactive in the MRC1 strain.
Diagrams of the 4.8 kb NdeI fragment containing ARS301 and the 3.5 kb
ClaI-EcoRV fragment containing ARS314 are shown. The black boxes on
the map lines indicate the locations of the ARS elements; the bars
below the maps indicate the locations of the probes. The ARS301 probe
also hybridized to a 7.1 kb NdeI fragment on chromosome XI containing
the VBA5 gene.
doi:10.1371/journal.pgen.1001227.g004

Table 3. Loss rate of 5ORID-DR derivative in mrc1D strain
transformed with plasmids (Losses per division 6 S.D. 6105).

no plasmid pRS416 pmrc1AQ pMRC1

12006200 12006200 180630 230640

doi:10.1371/journal.pgen.1001227.t003
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effectors, with Rad53p making a relatively small contribution to

the maintenance of the 5ORID-DR fragment as long as Chk1p is

active, but becoming important in the absence of Chk1p.

Recombinational repair is not important for maintaining
ORID chromosome derivatives

RAD52 is required for virtually all homology-based double-

strand break repair mechanisms, including break-induced repli-

cation and single-strand annealing (reviewed by Symington [54]).

Our previous work showed that a rad52 mutant does not have an

Ofm phenotype [31]; for this analysis we measured the stabilities

of the 5ORID-DR and 0ORID-DR fragments (Figure 2) in wild

type and rad52 strains in the CF4-16B strain background (Table

S2), which differs slightly from the YKN10 background used in

experiments summarized in Table 2. The 0ORID-DR fragment

was lost at a rate of 761025 in the wild type strain and 9.561024

in the rad52 strain, while the 5ORID-DR fragment was lost at a

rate of 1.561023 in the wild type strain and 3.161023 in the rad52

strain, leading to an Ofm index of 1.8 [31]. Confirming and

extending these results, strains carrying deletions of ten genes in

the RAD52 epistasis group (RAD50, RAD51, RAD52, RAD54,

RAD55, RAD57, RAD59, RDH54, MRE11, and XRS2) all showed

wild type sectoring in our primary screen (Figure S2). These results

indicate that, in otherwise wild type strains, recombinational

repair is not required for maintenance of ORID chromosome

derivatives.

Stabilities of chromosome III derivatives with efficient
origins and a large inter-origin gap distinguish mec1D
and mrc1D mutants from rad9D and rad24D mutants

By deleting the five efficient origins from the 5ORID-DR

fragment, we altered both the positions at which replication most

likely initiates and the distances that individual replication forks

travel. The high loss rates of the 5ORID-DR fragment seen in the

DNA damage response mutants could result from difficulty in

initiating replication, difficulty in replication fork progression, or

both. To address this issue, we examined stabilities of two

additional derivatives of chromosome III, the full-length 5ORID
chromosome and the DL-6ORID fragment (Figure 2), in these

mutants. The 5ORID-DR fragment used in our mutant screen is

truncated to the right of the ARS310 deletion. The full-length

5ORID chromosome carries the same deletions of the five efficient

origins as the 5ORID-DR fragment, but retains origins distal to the

ARS310 deletion; the inefficient origin, ARS313, is located about

20 kb distal to the ARS310 deletion, and the efficient origin,

ARS315, is located about 50 kb distal [55]. This derivative is as

stable as the 0ORID-DR derivative in the wild type strain and the

sml1D mutant. The DL-6ORID fragment was derived from the

full-length 5ORID chromosome by removing the centromere-

associated inefficient origin, ARS308, and fragmenting the

chromosome to the right of ARS304, which removed ARS304,

the dormant origins associated with HML and the left telomere.

This derivative is as stable as the 5ORID-DR derivative in the wild

type strain and the sml1D mutant (Table 2). In both 5ORID and

DL-6ORID derivatives, the origin-deleted region to the left of

ARS313 can be replicated by forks that initiate at ARS313 or at

origins further to the right. In 5ORID, but not in DL-6ORID,

there also exists the potential for the origin-deleted region to be

replicated by forks that initiate at one of the normally-dormant

HML-associated origins.

If a mutant has an initiation defect, then the presence of

additional origins on 5ORID and DL-6ORID derivatives should

suppress the Ofm phenotype. Conversely, if a fork progression

defect creates difficulty in completing replication of a large inter-

origin gap, the presence of additional origins should not suppress

the defect. The DL-6ORID fragment provides a particularly

stringent test of fork progression and/or fork stability, because a

collapsed leftward-moving fork initiated at ARS313 or ARS315

cannot be rescued by a fork initiated at one of the HML-associated

dormant origins.

We first examined the stability of these larger gapped constructs

in the mrc1D mutant because it has a known fork progression

defect [48,49]. MRC1 was deleted from the full-length 5ORID
chromosome to avoid complementation; MRC1 is distal to ARS304

so, like the dormant origins, it is absent from the DL-6ORID
fragment. In mrc1D mutants, loss rates of the full-length 5ORID
chromosome and the DL-6ORID fragment were similar, and were

about 2.5-fold lower than the loss rate of the 5ORID-DR fragment

(Figure 5, Table 2). These results are consistent with our

expectation that the additional origins on these two derivatives

would not suppress the fork progression defect of mrc1D.

Activation of HML-associated dormant origins does not appear

to contribute to the stability of the full-length 5ORID chromosome

in the absence of Mrc1p, because the DL-6ORID fragment, which

lacks HML-associated dormant origins, showed a loss rate similar

to 5ORID. The 2.5-fold higher rate of loss of the 5ORID-DR

fragment likely reflects the fact that replication of this fragment is

at least partially dependent upon activation of HML-associated

dormant origins, and that these origins are less efficient than the

origins present on the right arm in the full-length 5ORID
chromosome and the DL-6ORID fragment (Figure 5).

Consistent with the observation of Cha and Kleckner [56] that

Mec1p stabilizes forks in slow replication zones, we found that the

mec1D mutant behaved similarly to the mrc1D mutant. The 5ORID
chromosome was unstable in a mec1D strain (Figure 5, Table 2),

suggesting a fork progression defect. The loss rate of the DL-6ORID
fragment was less than three-fold higher than that of the full-length

5ORID chromosome, suggesting that the HML-associated dormant

origins make only a small contribution to the stability of the full-

length 5ORID chromosome in the absence of Mec1p.

Results obtained with the rad9 and rad24D mutants contrasted

sharply with the mrc1D and mec1D results. The full-length 5ORID
chromosome was substantially more stable than 5ORID-DR or

DL-6ORID in the absence of Rad9p or Rad24p, with loss rates

about 40-fold lower than the 5ORID-DR fragment and only two-

fold higher than the 0ORID-DR fragment (Table 2 and Figure 5).

By contrast, in mrc1D and mec1D strains, the full-length 5ORID
chromosome is 10- to 20-fold less stable than 0ORID-DR.

Figure 5. Comparisons of loss rates of ORID derivatives in
checkpoint mutants. Selected data from Table 2 are shown. The
mec1 data are from the mec1D sml1D strain.
doi:10.1371/journal.pgen.1001227.g005
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The relative stability of 5ORID-DR in rad9 and rad24D mutants

might indicate that the presence of efficient origins to the right of

the origin-deleted region could suppress the Ofm phenotype of

these mutants. If this were the case, then the loss rate of the

DL-6ORID fragment should also be low. However, the loss rates

of this fragment were as high as or higher than the 5ORID-DR

fragment in both mutants. The high loss rates of both the

5ORID-DR fragment and the DL-6ORID fragment indicate that

maintenance of the full-length 5ORID chromosome in rad9 and

rad24D strains requires the presence of replication origins on both

sides of the ORID gap, and suggest that a single fork cannot

traverse the gap in these strains.

One explanation for the lower stability of the DL-6ORID
fragment in the rad9D strain than in a mec1D sml1D strain is that in

the absence of Rad9p, Mec1p kinase activity is deleterious. If this

were the case, the loss rate of DL-6ORID fragment in a rad9D mec1D
sml1D triple mutant should be the same as in the mec1D sml1D strain.

Alternatively, a second pathway, possibly Tel1p-dependent, could

activate Rad9p in the absence of Mec1p, or Rad9p could have a

DNA-damage-response-independent function that contributes to

the maintenance of the DL-6ORID fragment. In both of these cases,

the triple mutant should have a loss rate similar to the rad9D strain.

The loss rates of the DL-6ORID fragment were 6.960.661022 in a

rad9 sml1D strain and 5.160.461022 in a rad9 mec1D sml1D strain,

suggesting that a second pathway activates Rad9p. Alternatively

Rad9p has a function that is independent of its role in the DNA

damage response pathway in maintenance of the DL-6ORID
fragment (see Discussion).

Finally, the behavior of the DL-6ORID fragment in the effector

kinase mutants provides strong support for idea that Rad53p

becomes important for the maintenance of ORID chromosomes in

the absence of Chk1p. The loss rates of the DL-6ORID derivative

in the chk1D and rad53D sml1D strains were similar and elevated

approximately 2-fold relative to the 5ORID-DR derivative. The

loss rate in the chk1D rad53D sml1D mutant was approximately 10-

fold higher and was equal to the very high loss rate seen in the

rad9D mutant (Table 2).

Activation of dormant origins associated with HML in
mec1 and rad53 strains

The loss rate of the full-length 5ORID chromosome was much

higher in the mrc1D and mec1D strains than in the rad24D and rad9

strains. It appears that the dormant origins associated with HML

near the left end of the full-length 5ORID chromosome contribute

to the maintenance of this chromosome in wild-type, because

derivatives truncated to remove HML-associated dormant origins

showed higher loss rates than derivatives containing them

(Figure 5,Table 2 and [31]). Increased activation of these dormant

origins in rad9 and rad24D, as compared to in mrc1D and mec1D,

could explain the differences in stability of the full-length 5ORID
chromosome in these two sets of mutants. Therefore, we examined

the activation of the dormant origins ARS301, ARS302/ARS303/

ARS320 (three closely-spaced ARS elements), and ARS304 on the

full-length 5ORID fragment by 2D gel analysis (Figure 6). Both

bubble- and Y-shaped replication intermediates were detected at

ARS301 in mec1D and rad9D strains, indicating that this origin is

activated in a subset of the cells in both strains. A fortuitous

restriction-site polymorphism allowed us to distinguish the signal

arising from the balancer chromosome from that arising from the

5ORID chromosome. Bubble-shaped intermediates were detected

only in strains where the 5ORID chromosome was present,

indicating that ARS301 fires only on the 5ORID chromosome.

Similarly, we found bubble arcs arising from the ARS302/ARS303/

ARS320 cluster in mec1D and rad9D strains, but only when the

Figure 6. Activity of dormant origins on full-length 5ORID
chromosome in mec1 and rad9 mutants. Genomic DNA was
prepared from mec1D (YIC110) and rad9D (YJT135) strains carrying the
full-length 5ORID chromosome (+5ORID) and from strains that had lost
the 5ORID chromosome (-5ORID). A. Southern blots of 2D gels were
probed to detect ARS301. Replication intermediates of 4.8-kb NdeI
fragment from the balancer chromosome and a 4.1-kb NdeI fragment
from the full-length 5ORID chromosome are shown. The mec1 gel was run
longer in the first dimension than the rad9 gel. Bubble-shaped replication
intermediates, indicated by arrows, arise only from the smaller NdeI
fragment. Below the blots is a diagram of the ARS301 fragment as in
Figure 4, except that the polymorphic NdeI site is indicated. This site is
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5ORID chromosome was present. ARS304 was not detectably active

in either mutant (Figure 6). In all cases, the intensity of the bubble

arc was less than that of the Y arc, indicating that in the majority of

cells each ARS was passively replicated.

We quantitated the percent of bubble-shaped replication

intermediates produced by the 5ORID chromosome, using two

approaches to quantitate the signal (Methods and Table S3).

ARS301 initiated replication in 1.7–6.3% of the population in the

rad9D strains, and in 7.4–14.6% of the population in mec1D sml1D
strains. The range of values for the ARS302/ARS303/ARS320

cluster was similar, 2.3–7.6% in rad9D strain and 9.4–15.7% in the

mec1D sml1D strains. Thus the dormant replicators are 2-to 3-fold

more active in mec1D strains than in rad9D strains, indicating that

the higher stability of the 5ORID chromosome in rad9D strains

cannot be explained by increased activation of dormant origins.

The activation of HML-associated origins in the rad9D strain

may account for the differences in stability of the 5ORID
chromosome and the DL-6ORID derivative. The HML-associated

origins fire only late in S phase [51,57]. Leftward-moving forks

normally reach them before they are programmed to fire. In the

rad9D strain, approximately 10% of cells activate either ARS301 or

the ARS302/ARS303/ARS320 cluster in the full length 5ORID
chromosome. About 10% of rad9 cells lose the DL-6ORID
fragment (Table 2), suggesting that about 10% of the forks

initiated to the right of the gap fail to traverse the gap in rad9

mutants. In this situation, the DL-6ORID fragment, which lacks

the HML-associated dormant origins, would be lost as a result of

incomplete replication. In contrast, only 0.03% of rad9 cells lose

the 5ORID chromosome (Table 2) because, in the 10% of cells in

which leftward-moving forks fail to traverse the gap, firing of one

of the HML-associated dormant origins allows the replication of

this chromosome to be completed.

Unlike the 5ORID-DR fragment and the full-length 5ORID
chromosome, the DL-6ORID fragment was structurally unstable.

Stable derivatives that had lost the cloNAT-resistance marker

present at left-hand end of the fragment (Figure 2) arose in the

rad9, rad24, and mec1 mutants. The rates of production of these

stable derivatives were similar to the loss rates of the DL-6ORID
fragment measured in these strains (Table S4). Twelve stable

derivatives of the DL-6ORID fragment produced by the rad9 strain

migrated on pulsed-field gels with the full-length balancer

chromosome, suggesting that chromosome III sequences distal to

the fragmentation point had been restored (data not shown). One

possible mechanism for the production of these stable derivatives is

that replication forks collapse and are processed into double-strand

breaks that are repaired by break-induced replication [58] using

the balancer chromosome as a template.

Discussion

We employed a novel modification of the SGA method to

screen for mutations that preferentially destabilize a chromosome

III derivative lacking efficient replication origins. The modification

utilized a single chromosome transfer technique, chromoduction,

to transfer the 5ORID-DR fragment into an ordered array of the

viable ORF deletion collection. Yuen et al. [59] carried out similar

colony-sectoring screens of the viable deletion collection using two

chromosome fragments. Of the 66 chromosome transmission

fidelity (ctf) mutants identified in these screens, 14 were also

identified in our screen. As expected, given that the ctf mutants

were identified using chromosome fragments carrying a normal

complement of replication origins, the majority of the ctf mutants

we re-identified were found in the non-Ofm or possible/probable

Ofm classes. The two scored as Ofm mutants are ctf18D and mad2.

It seems likely that many ctf mutants were not identified in our

screen because they caused only small increases in the rate of loss

of the 5ORID-DR fragment. Approximately 60% of the loss rates

measured for chromosome fragments in ctf mutants are less than or

equal to the loss rate of the 5ORID-DR fragment; increases of that

magnitude would not have been detected in our visual screen.

Role of the DNA damage response pathway in the
maintenance of ORID chromosome derivatives

Our results indicate that the DNA damage signaling pathway,

but not the replication stress signaling pathway, contributes to the

maintenance of the 5ORID-DR fragment. While the DNA

damage and replication stress response pathways share many

components (Figure 1), mutation of the DNA-damage-tocheck-

point-signaling mediator, Rad9p, preferentially destabilized the

5ORID-DR fragment, but a checkpoint-deficient mutation in the

replication-stress-specific signaling mediator, Mrc1p, did not.

Mutations in many of the shared signaling components also

caused Ofm phenotypes.

We found unexpected differences in the contributions that the

DNA damage signaling pathway makes to maintenance of ORID
chromosome derivatives and the contributions that it makes to

DNA damage resistance. First, the DNA damage signaling

pathway detects and stabilizes forks stalled at sites of damage

and facilitates repair or bypass of the damage; studies with DNA

damaging agents [60–63] indicate that this function is more

strongly dependent on RAD53 than on CHK1. Based on the results

presented here, the DNA damage signaling pathway also

contributes to the replication of large inter-origin gaps, which

can arise when several adjacent origins fail to fire. Such gaps

appear commonly during the replication of the rDNA array [14].

The 5ORID-DR fragment, the full-length 5ORID chromosome

and the DL-6ORID fragment mimic these large gaps, and the

pathways identified by the Ofm mutants may have arisen to

facilitate the replication of large inter-origin gaps. Interestingly,

this function appears to be facilitated primarily by CHK1 with a

contribution from RAD53 evident in the absence of CHK1.

Second, we found that mec1D and mrc1D mutations have

different effects than rad9D and rad24D mutations on the stabilities

of the DL-6ORID and full-length 5ORID derivatives. Dormant

origins near the left end of chromosome III are more strongly

activated in a mec1D mutant than in a rad9 mutant (Figure 6),

suggesting that in the mec1D strain the HML-associated dormant

origins have more time to fire. However, removing the dormant

origins, as in the DL-6ORID fragment, caused a 16-fold greater

increase in the rate of chromosome loss in the rad9 strain than in

the mec1D strain (Table 2), suggesting that forks fail to reach the

left end more often in the rad9 strain. One explanation for this

disparity is that an alternative pathway activates Rad9p in mec1D
cells, which results in stabilization of replication forks and allows

them to progress, albeit slowly, in the absence of Mec1p [56]. In

mec1 mutants, we suggest that slow fork progression through the

present on the full-length 5ORID chromosome and absent from the
balancer chromosome. The bar below the map indicates the probe. The
ARS301 probe also hybridized to a 7.1 kb NdeI fragment from
chromosome XI containing the VBA5 gene. B. Southern blots of
FspI+SphI+ClaI-cut DNA probed to detect ARS302/ARS303/ARS320 and
ARS304 are shown. Bubble-shaped replication intermediates, indicated by
the arrows, arise only from ARS302/ARS303/ARS320 in the strain carrying
the 5ORID chromosome. Diagrams of the 4.5-kb FspI-ClaI fragment
containing ARS302/ARS303/ARS320 and 3.2-kb FspI-SphI fragment con-
taining ARS304 are shown below the blots. ARS elements are indicated by
the black boxes, and the bar below each map indicates the probe.
doi:10.1371/journal.pgen.1001227.g006
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long ARS305D – ARS310D gap allows time for the activation of

either ARS301 or the ARS302/ARS303/ARS320 cluster in ,20%

of the cells (Figure 6). However in the absence of the dormant

origins, as in the DL-6ORID fragment, these slow-moving forks

are able to complete replication through the gap to the telomere in

.99% of the cells (Table 2). Tel1p, which is also a PIKK, is a

candidate for activation of Rad9p, in this situation. However, our

observation that Tel1p did not contribute to the stability of the

5ORID-DR fragment in either the presence or absence of Mec1p

(see Results) suggests that Tel1p does not contribute to this

pathway. In the absence of Rad9p, we suggest that forks initiated

to the right of the ARS305D – ARS310D gap simply fail to traverse

the gap approximately 10% of the time (Table 2), and that, in the

absence of the dormant origins, replication of the chromosome is

not completed, leading to segregation of the partially replicated

molecule and chromosome loss. An alternative explanation for the

disparity is that Rad9p has a function that is independent of its role

in the DNA damage response pathway.

Finally, we found that strains carrying deletions of ten genes in

the RAD52 epistasis group did not show elevated loss rates of the

5ORID-DR fragment. Since genes in this epistasis group are

required for all homology-dependent repair processes, including

double-strand break repair, break-induced replication and repli-

cation fork restart, these results suggest that replication of this

ORID derivative does not require repair of DNA damage or

double-strand breaks.

Our favored model for the role of the DNA damage response

pathway in the replication of ORID chromosome derivatives is

based on the idea that replication forks age, i.e. that the probability

of fork arrest due to failure of a replisome component increases

with the distance the fork has traveled. We refer to these forks as

crippled, to distinguish them from forks that are stalled (arrested

by DNA damage or nucleotide depletion with replisome intact) or

collapsed (replisome disassembled), and to reflect the need for

some replisome component to be replaced or modified in order to

continue elongation. These crippled forks are then recognized and

restored by a RAD9-and CHK1-dependent pathway. The restart of

these crippled forks is independent of homologous recombination

because there is no DNA damage to be bypassed, and, therefore,

double-strand breaks are therefore not formed. If a fork were

arrested due to failure of a replisome component, there would be

no impediment to elongation once the replisome is reconstituted.

There are alternative models to explain the role of the DNA

damage response pathway in maintaining the 5ORID-DR

fragment, which has a large inter-origin gap. The simplest is that

the DNA damage response monitors the completion of replication.

However, the evidence for such a checkpoint is not compelling (see

Introduction). Debate over the existence of a replication comple-

tion checkpoint is ongoing; our observations provide only

circumstantial evidence in favor of such a checkpoint.

Another model to explain the role of the DNA damage response

pathway in maintaining fragments with large inter-origin gaps

suggests that forks stall at sites of endogenous DNA damage and are

stabilized by this pathway. The 5ORID-DR and DL-6ORID
fragments would be especially sensitive to such events in the

absence of the DNA damage response because the stalled forks

would collapse. In the case of the 0ORID-DR fragment, which has a

full complement of replication origins, a collapsed fork could be

rescued by a converging fork from an adjacent origin. In contrast,

the 5ORID-DR fragment has fewer initiation events, so a collapsed

fork would be rescued less often by a converging fork, resulting in an

elevated loss rate in a DNA damage checkpoint mutant. Consistent

with this suggestion, our analysis of individual 5ORID-DR

molecules in wild type cells suggests that replication initiates at

only one or two places per molecule, but at different places on

different molecules (Wang et al., manuscript in preparation).

The enhanced stability of the full-length 5ORID chromosome

compared to the DL-6ORID fragment in the rad9 and rad24D
mutants is also consistent with this endogenous damage model, as

a collapsed leftward-moving fork in the 5ORID chromosome can

be rescued by a fork initiating at one of the dormant origins near

HML. Our finding that mec1D confers an Ofm phenotype while

tel1D does not is also consistent with this model because MEC1

plays a more important role in the tolerance of DNA damage than

does TEL1 [52].

However, this endogenous damage model is challenged by

findings that fork stabilization at sites of DNA damage and survival

are more strongly dependent on RAD53 than on CHK1 [60–66],

whereas CHK1 makes a more important contribution than RAD53

to 5ORID-DR fragment maintenance, suggesting that the DNA

damage response is not simply stabilizing forks in response to

damage. While Segurado and Diffley [61] have suggested a role

for CHK1 in stabilizing replication forks, that function was

detected only in the absence of both RAD53 and EXO1, which

encodes a nuclease responsible for fork collapse in the absence of

RAD53. Thus, it seems unlikely that this explains the contribution

of CHK1 to 5ORID-DR fragment maintenance. Another problem

is that deletions of genes, whose products are required for

mismatch repair, repair of UV damage, and homologous

recombination, did not increase the loss rate of the 5ORID-DR

fragment in the primary screen, as would have been expected if

DNA damage-provoked fork collapse was responsible for loss of

this fragment.

Replication fork aging also suggests an explanation for the close

spacing of replication origins in S. cerevisiae. A median inter-origin

distance of 36 kb was estimated from visualization of replicating

molecules by electron microscopy (reviewed by Newlon [67]), and

a similar median distance, 34 kb, was estimated using the genome-

wide replication timing data of Raghuraman et al. [4]. Based on a

median fork rate of 2.3 kb per minute and an S phase of 55

minutes [4], a single fork from the earliest firing origin would be

able to replicate ,120 kb and a fork from an origin activated in

the middle of S phase would be able to replicate ,60 kb. Thus,

origins are spaced more closely than predicted by the median

origin activation time and rate of fork movement. The observed

high density of origins may insure that gaps too long to be reliably

replicated do not occur, even if several adjacent origins fail to fire.

DNA-replication-linked genes
Pan et al. described a DNA Integrity Network of 78 genes on

the basis of synthetic fitness or lethality defects [68]. Sixteen of

these genes are believed to have roles in S phase checkpoints.

Deletions of eight of these genes cause an Ofm phenotype: RAD9,

RAD17, RAD24, CTF18, MEC1, DDC1, CHK1, and RAD53.

Deletions of two other genes in this group, csm3D and tof1D, were

scored possible Ofm mutants.

In addition to the checkpoint genes, our Ofm mutants included

deletions of two other genes from the DNA Integrity Network,

HST3 and POL32, both of which have links to DNA replication.

HST3 encodes a NAD+-dependent histone H3 lysine-56 deacety-

lase [69–71]. Our analysis of hst3 mutants will be presented

elsewhere; it indicates that the Ofm phenotype of hst3D results

from a fork progression defect (Irene et al. manuscript submitted).

pol32D mutants, which lack a nonessential subunit of DNA

polymerase D, also show fork progression defects, which may

explain their Ofm phenotype [72–75].

In summary, we have identified a set of genes whose products

facilitate replication of large inter-origin gaps. This set is enriched
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in components of the DNA damage and replication stress signaling

pathways. Replication of large inter-origin gaps shows several

surprising features: Dependence on the DNA-damage-specific

mediator, Rad9p, rather than the replication-stress-specific

mediator, Mrc1p; a stronger dependence on the effector kinase,

Chk1p than Rad53p, and no dependence on homologous

recombination

Methods

Strains and media
Yeast strains are listed in Table S2. All strains are isogenic with

YPH499 [76], except the full-length and fragmented chromosome

donor strains, which are in the CF4-16B background [31], and

YJT242 (and its parent Y7029) and the viable ORF deletion

collection, which are related to S288C [77]. SGA selection media

were prepared as described in [78]. Chromoductants for the SGA

screen were selected on -Ade -Leu -Lys -Arg dropout plates

containing 60 mg/ml canavanine (Sigma) and 10 mg/ml thialysine

(Sigma). Chromoductants in the YKN10 background were

selected on -Leu-Trp -Arg dropout plates containing 60 mg/ml

canavanine and 10 mg/ml cycloheximide (Sigma), except

that chromoductants of the DL-6ORID fragment were selected

on -Leu -Ade -Arg dropout plates containing 100 mg/ml CloNAT

(Werner Bioagents, Germany), 60 mg/ml canavanine, and 10 mg/

ml cycloheximide. Limiting adenine medium was purchased from

US Biologicals.

YJT242 was created by transforming Y7029 with a PCR product

carrying the natMX gene, amplified from pAG25 [79], flanked by

homology to the ADE2 locus; sequences of primers are available

upon request. Individual G418-resistant knockouts were moved

into the YKN10 background by transformation with a PCR

product amplified from the appropriate strain from the ORF

deletion collection (Open Biosystems) using the locus specific A and

D primers (www-sequence.stanford.edu/group/yeast_deletion_

project/Deletion_primers_PCR_sizes.txt). The mrc1D::NAT allele

was introduced into the YKN10 background using primers and a

template generously provided by K. Sugimoto (UMDNJ). This

allele was converted to mrc1D::KAN by transforming YJT294 with

NotI-cut pFA-KanMX4 [80] and selecting for G418-resistance

yielding YJT551. The his3-D367 alleles were generated by fusion

PCR and introduced by two-step gene replacement [81]. Primers

are available upon request. The bar1-D1327 allele carries a BglII-

BsrGI deletion that removes 1327 bp within the open reading frame.

SGA screen
In our version of the screen, a strain carrying an ade2D::natMX

mutation, which causes the accumulation of a red pigment in

colonies grown on limiting adenine and confers nourseothricin

resistance, was mated to the array of viable deletion mutants, each

marked with kanMX, which confers G418 resistance. The resulting

diploids were then sporulated, and double mutant ade2D::natR

xxxD::kanR haploid MATa progeny were selected. The array of

double-mutant strains was mated to F510aA1–4, the donor strain,

carrying the 5ORID-DR derivative of chromosome III marked with

ADE2 (Figure 2). Because the donor strain carries the kar1-D15

mutation, normal karyogamy is inhibited, resulting in inefficient

production of diploid cells [82]. During the transient heterokaryon

stage, single chromosomes are transferred at low frequency between

the two nuclei, a process called chromoduction [35]. The strains

were marked to allow selection for rare chromoduction events in

which the 5ORID-DR fragment was transferred into the ade2D::natR

xxxD::kanR nucleus. The 5ORID-DR fragment carries LEU2 at its

endogenous locus and an ectopic copy of ADE2 inserted near the

ARS307 deletion (Figure 2). The corresponding donor strain carrying

the 5ORID-DR fragment is Leu+ and Ade+, but canavanine-sensitive

and thialysine-sensitive because it carries the wild type CAN1 and

LYP1 alleles. The double mutant (ade2D::natR xxxD::kanR) strains

generated by SGA analysis are Leu2, Ade2, canavanine-resistant,

and thialysine-resistant. Any diploids that form between the donor

strain and the ade2D::natR xxxD::kanR double mutant strains are Leu+

and Ade+, but canavanine-sensitive and thialysine-sensitive because

the can1D and lyp1D mutations are recessive. The desired

chromoduction event results in cells that are Leu+ and Ade+,

because they carry the 5ORID-DR fragment, and canavanine- and

thialysine-resistant, because they carry the can1D and lyp1D
mutations. Medium lacking leucine, adenine, arginine, and lysine

and containing both canavanine and thialysine selects for these cells.

A preliminary screen using approximately 100 strains selected from

the viable deletion collection was carried out to determine conditions

for the chromoduction. We found that pinning the array of double

mutants at the density found in a standard 384 well plate was

necessary to ensure efficient mating of the donor strain to the array.

The screen was done in duplicate, and chromoductants from the

duplicate arrays were streaked side-by-side on a single plate with

limiting adenine for scoring sectoring patterns (see Table S1). This

process was completed in less than three months by eight

individuals, demonstrating the feasibility of including a chromoduc-

tion step in the SGA procedure to transfer a single chromosome or

plasmid into the double mutant array. If the phenotype of

chromoductants could be scored directly on selective medium,

then the entire procedure could be accomplished with robots.

Loss rate measurements
Chromosome loss rates were determined by fluctuation analysis

using the colony isolation method [83]. Red colonies were tested

for leucine and tryptophan auxotrophies to distinguish chromo-

some losses from gene conversions or mitotic recombination

events; leucine auxotrophy and nourseothricin-resistance were

used in fluctuations involving the DL-6ORID fragment. The

presence of origin deletions was confirmed by PCR. Loss rates

were calculated using the method of Lea and Coulson [84].

Analysis of replication intermediates
Genomic DNA was prepared from log-phase cultures as

described [85], digested with either NdeI, ClaI+EcoRV, or FspI+
SphI+ClaI, subjected to BND-cellulose (Sigma) chromatography,

electrophoresed on neutral-neutral 2D gels, blotted, and hybridized

as described [86]. The probe for ARS301 was the1.3-kb EcoRI-XhoI

fragment from p78_4.6; the probe for ARS302/ARS303/ARS320

was the 1.9-kb EcoRI-HindIII fragment from p78_5.2; the probe for

ARS304 was the 3.5-kb PshAI-BamHI fragment from D10B; the

probe for ARS314 was the 1.8-kb HindIII fragment from pH 1.8

[55,87]. These fragments were labeled with [a-32P] dATP (Perkin

Elmer) using the Megaprime DNA-labeling system (GE Health-

care). Images were acquired on a Molecular Dynamics Typhoon

9410, and the exposure was adjusted using ImageQuant 5.2

software. Quantitations of bubble-shaped and Y-shaped replication

intermediates were determined using the polygon tool and the line

tool of ImageQuant 5.2.

Photography
Colonies were photographed after ,5 days of growth at 30uC

on limiting adenine plates. Images were acquired as TIFF files

with a Nikon D-100 camera fitted with an AF Micro-Nikkor

60 mm f/2.8 D lens. Images were cropped and adjusted for color

balance and brightness/contrast in Photoshop.cs v8.0 (Adobe

Systems).
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Supporting Information

Figure S1 Sectoring patterns of aro7D, ddc1D, and rad17D
strains. The 5ORID-DR fragment was introduced into aro7D,

ddc1D and rad17D strains by chromoduction, and the chromoduc-

tants were streaked on plates with limiting adenine and

photographed after growth for 5 days.

Found at: doi:10.1371/journal.pgen.1001227.s001 (1.70 MB TIF)

Figure S2 Sectoring patterns of mutants in the rad52 epistasis

group. Top panels: 5ORID-DR chromoductants of rad50D,

rad51D, rad52D, rad54D, rad55D, rad57D, rad59D, rdh54D, mre11D
and xrs2D strains isolated in the whole genome screen were

streaked on plates with limiting adenine and photographed after

growth for 5 days. aro7D and rad9D chromoductants were included

as controls. Lower panels: Chromoductants were tested for

sensitivity to phleomycin, which induces double-stranded breaks,

to confirm that the strains carried the expected deletions. Cultures

of the strains shown in the top panels were grown overnight in

YEPD, serially diluted and spotted on YEPD plates (control) and

plates with 0.1 and 1.0 mg/ml phleomycin. YEPD plates and

0.1 mg/ml phleomycin plates photographed after 3 days, 1.0 g/ml

phleomycin plates after 5 days. Each of the strains, with the

exception of rad59D and rdh54D, showed sensitivity, indicating that

the sensitive strains carried the expected deletions. rad59 mutants

have been reported to be 10,000-fold less sensitive to gamma

irradiation than rad52 mutants [Bai et al], so the lack of sensitivity

of the strain we tested was expected. The sensitivity of rdh54D to

gamma irradiation had not been previously tested but it had been

shown not to be sensitive to HO-induced double strand breaks

[Klein et al]; we found that an authentic rdh54D mutant was also

not sensitive to phleomycin. [Bai Y, Symington LS (1996) A

Rad52 homolog is required for RAD51-independent mitotic

recombination in Saccharomyces cerevisiae. Genes Dev 10: 2025–

2037.] [Klein HL (1997) RDH54, a RAD54 homolog in

Saccharomyces cerevisiae, is required for mitotic diploid-specific

recombination and repair and for meiosis. Genetics 147: 1533–

1543.]

Found at: doi:10.1371/journal.pgen.1001227.s002 (6.45 MB TIF)

Table S1 Results of secondary screen for Ofm mutants.

Found at: doi:10.1371/journal.pgen.1001227.s003 (0.73 MB PDF)

Table S2 Strains used in this study.

Found at: doi:10.1371/journal.pgen.1001227.s004 (0.06 MB DOC)

Table S3 Quantitation of 2D gels.

Found at: doi:10.1371/journal.pgen.1001227.s005 (0.03 MB DOC)

Table S4 Appearance of rarely-sectored colonies in strains

carrying the DL-6ORID fragment.

Found at: doi:10.1371/journal.pgen.1001227.s006 (0.03 MB

DOC)
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