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LOXL2 (lysyl oxidase-like 2), an enzyme that catalyzes oxidative deamination of lysine residue, is upregulated in esophageal
squamous cell carcinoma (ESCC). A LOXL2 splice variant LOXL2-e13 and its wild type were overexpressed in ESCC cells followed
by microarray analyses. In this study, we explored the potential role and molecular mechanism of LOXL2-e13 based on known
protein-protein interactions (PPIs), following microarray analysis of KYSE150 ESCC cells overexpressing a LOXL2 splice variant,
denoted by LOXL2-e13, or its wild-type counterpart.The differentially expressed genes (DEGs) of LOXL2-WT and LOXL2-e13 were
applied to generate individual PPI subnetworks in which hundreds of DEGs interacted with thousands of other proteins. These
two DEG groups were annotated by Functional Annotation Chart analysis in the DAVID bioinformatics database and compared.
These results found many specific annotations indicating the potential specific role or mechanism for LOXL2-e13. The DEGs of
LOXL2-e13, comparing to its wild type, were prioritized by the RandomWalk with Restart algorithm. Several tumor-related genes
such as ERO1L, ITGA3, and MAPK8 were found closest to LOXL2-e13. These results provide helpful information for subsequent
experimental identification of the specific biological roles and molecular mechanisms of LOXL2-e13. Our study also provides a
work flow to identify potential roles of splice variants with large scale data.

1. Introduction

The lysyl oxidase (LOX) family, which is composed of
five enzymes (LOX and LOXL1/2/3/4), catalyzes oxidative
deamination of lysine residues in their protein substrates,
generating highly reactive aldehyde residues that initiate
inter- and intramolecular cross-linkages [1]. LOX family
members are present in several human tissues, including
the placenta, heart, lung, kidney, and pancreas [2–6], and
are critical for multiple biological functions, such as growth,
development, senescence, chemotaxis, and cell mobility [7].
LOXL2 has been emphasized in recent years because of its
critical roles in carcinomas. Upregulation of LOXL2 has been

detected in many tumor cell lines or clinical samples and also
closely correlates with tumor invasion and metastasis [8–11].
LOXL2 protein distributes in either extracellularly or intra-
cellularly [12]. Secreted LOXL2 is able tomediate extracellular
matrix remodeling by upregulation of tissue inhibitor of
metalloproteinase-1 (TIMP-1) and matrix metalloproteinase-
9 (MMP-9) [13]. Intracellular LOXL2 is able to positively reg-
ulate the epithelial-mesenchymal transition (EMT) inducer
Snail by enhancing Snail stability and functional activity
and promoting EMT and tumor progression through down-
regulation of E-cadherin [14]. Moreover, LOXL2 modulates
focal adhesions, tight junctions, and cell polarity complexes
in basal breast carcinoma cells through activation of the
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FAK signaling pathway [15]. The mechanisms of intracellular
LOXL2 action are not yet fully known. Recently, LOXL2 has
been found to be associated with chromatin and reported
to be involved in histone H3 deamination, a novel function
that is dependent on the LOXL2 catalytic domain [16].
These analyses suggest the functions of LOXL2 in carcinoma
are multifaceted and complicated. Therefore, delineation of
LOXL2 function will provide a broad understanding of
carcinogenesis.

In our previous study, LOXL2 was found to be overex-
pressed in esophageal squamous cell carcinoma (ESCC) cell
lines and clinical samples and was significantly associated
with lymph node metastasis [17]. Immunohistochemistry
results showed the expression level of LOXL2 in ESCC is
decreased in the nucleus but increased in the cytoplasm.
Overall survival rates of ESCC patients with decreased
nuclear expression or increased cytoplasmic expression of
LOXL2 are significantly lower than those of the patients
with the reverse expression pattern [17]. In a recent study,
we identified a splice variant of LOXL2 lacking exon 13,
denoted by LOXL2-e13, which is also expressed in ESCC cell
lines and clinical samples [18]. To reveal the biological roles
and molecular mechanisms of LOXL2 and its variants, we
overexpressed wild-type LOXL2 (LOXL2-WT) and LOXL2-
e13 in ESCC KYSE150 cell line and analyzed the mRNA
profiles by the PrimeView Human Gene Expression Array
(Affymetrix Corp., St Clara, CA, USA).

Hundreds and thousands of interactions between either
extracellular or intracellular proteins compose a network.
With recent advances in high-throughput technologies in
protein-protein interactions (PPIs), network knowledge can
give rise to understanding the biological function and
dynamic behavior of cellular systems, generating new bio-
logical hypotheses and providing important clues for exper-
imental verification [19–21]. In this study, two PPI subnet-
works were generated by mapping DEGs of LOXL2-WT and
LOXL2-e13 to the human PPI dataset. These DEGs were
annotated by Functional Annotation Chart in the DAVID
bioinformatics database. Annotations were compared to
reveal the potentially specific roles ormechanisms of LOXL2-
e13. This analysis can provide important clues for the future
identification of specific roles of LOXL2-e13 from the view-
point of system analysis.

2. Materials and Methods

2.1. Differentially Expressed Genes. The detailed manipula-
tions of overexpression and microarray were prepared in
another manuscript [18]. Briefly, LOXL2-WT and LOXL2-
e13 were cloned into the pcDNA3.0 plasmid and overex-
pressed by transfection into ESCC KYSE150 cells (a gen-
erous gift from Professor Mingzhou Guo, Department of
Gastroenterology and Hepatology, Chinese PLA General
Hospital, Beijing, China). Transfection with an empty plas-
mid was used as a control. The mRNA expression pro-
files were analyzed by PrimeView Human Gene Expression
Array (Affymetrix Corp., St Clara, CA, USA), and the raw
data was normalized by the RMA algorithm. The mRNA
expression profiles have been submitted to the GEO database

(http://www.ncbi.nlm.nih.gov/geo) under accession number
of GSE53645.TheDEGs of LOXL2-WTversus empty plasmid
(LOXL2-WT-DEGs) and LOXL2-e13 versus empty plasmid
(LOXL2-e13-DEGs) were differentiated using a threshold of
1.5-fold change. Moreover, e13-WT-DEGs were also obtained
by comparing the expression profile of LOXL2-e13 to that of
LOXL2-WT using the same threshold.

2.2. Protein-Protein Interaction Subnetwork Generation.
Human Protein Reference Database (HPRD) (http://www
.hprd.org) is a database of human proteins, including
protein-protein interactions, posttranslationalmodifications,
enzyme-substrate relationships, and disease associations
[22].The Biological General Repository for Interaction Data-
sets (BioGRID) is a freely accessible database of physical and
genetic interactions for various species, which is available at
http://www.thebiogrid.org [23]. All PPI data were collected
manually from the published literature. These two datasets
are popular in PPI network research or other high-through-
put data analyses because of their reliability and up-to-date
release [24, 25].The newest PPI data version ofHomo sapiens
species from these two databases was downloaded for our
study, and we integrated them by removing the redundant
interactions. There were 18595 unique proteins and 174552
interactions in this integrated PPI dataset, and we regarded
it as the parent PPI network.

First, we used Cytoscape to map the LOXL2-WT-DEGs
and LOXL2-e13-DEGs PPI datasets to the HPRD&BioGRID
parent PPI network to generate the respective PPI subnet-
works. Cytoscape (http://www.cytoscape.org) is a free soft-
ware for visualizing, modeling, and analyzing molecular and
genetic interaction networks and has been widely applied in
the field of “omics” research (e.g., genomics, transcriptomics,
proteomics, and metabolomics) [26]. In Cytoscape, the PPI
network is presented by a graph in which each protein is
represented by a node, and each interaction between two
nodes is represented by an edge. To increase the reliability
and limit the protein perturbation to a certain level, the DEG
PPI subnetwork constructionwas limited to the first neighbor
proteins of each DEG.

2.3. Network Topological Parameter Analysis. In order to
gain insight into the organization and structure of the
PPI network, NetworkAnalyzer (http://med.bioinf.mpi-inf
.mpg.de/netanalyzer) was applied to analyze the network
topological parameters [27]. In the study of networks, the
degree of a node is the number of its connections to
other nodes, and the degree distribution is the probability
distribution of these degrees over the whole network. The
node-degree distribution of PPI subnetworks follows a power
law, one of the most important network topological charac-
teristics, and was analyzed as we previously described [28].
Briefly, the edges in all networks were treated as undirected.
Node-degree distribution 𝑃(𝑘) is the number of nodes with
a degree 𝑘. By fitting a line on datasets, the pattern of their
dependencies can be visualized. NetworkAnalyzer considers
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only data points with positive coordinate values for fitting
the line where the power law curve of the form 𝑦 = 𝛽𝑥𝑎 is
transformed into a linear model ln𝑦 = ln𝛽 + 𝑎 ln𝑥 and the
𝑅
2 value (coefficient of determination) provides a measure of

how well the data points fit to the curve. An 𝑅2 value closer
to 1 indicates a better fit.

2.4. Functional Annotation of Differentially Expressed Genes
and Comparison. Functional Annotation Chart in the
DAVID bioinformatics database (http://david.abcc.ncifcrf
.gov/) is a tool to identify the enriched biological terms
associated with a large gene list [29]. Compared to other
similar enrichment analysis tools, Functional Annotation
Chart has an extended annotation coverage, increasing from
only GO to over 40 annotation categories, including protein
sequence features, protein-protein interactions, protein func-
tional domains, disease associations, pathways, homology,
gene functional summaries, gene tissue expression, and
literature. For example, INTERPRO annotation provides
functional analysis of protein sequences by classifying them
into families and predicting the presence of domains and
important sites [30]. SMART annotation (Simple Modular
Architecture Research Tool) allows the identification and
annotation of genetically mobile domains and the analysis of
domain architecture [31].The LOXL2-e13-DEGs and LOXL2-
WT-DEGs were submitted to the DAVID bioinformatics
database and their Functional Annotation Chart results
obtained. The terms from the Functional Annotation Chart
results with 𝑃 < 0.05were visualized by the Enrichment Map
plugin in Cytoscape, which is a network-based visualization
method for gene-set enrichment results [32]. The two Func-
tional Annotation Chart results of LOXL2-e13-DEGs and
LOXL2-WT-DEGs were compared and displayed.

2.5. Prioritization Analyses of e13-WT-DEGs. We applied the
Random Walk with Restart (RWR) algorithm to analyze
the prioritization of e13-WT-DEGs when considering their
relationshipswith LOXL2-e13. RWR is an algorithm for graph
analysis, for example, a PPI network, in which, at every tick
time, a randomwalker has a chance to get back to one ormore
start nodes, from any current node, with a fixed, common,
and constant probability [33, 34]. For example, when node(A)
is a start node, an RWR result with node(A) provides the
stationary probabilities from node(A) to all nodes of the
given graph. These probabilities can be considered to be the
affinity or proximity from node(A) to individual nodes. RWR
is formally defined as the following equation:

𝑝
𝑡+1
= (1 − 𝑟)𝑊𝑝

𝑡
+ 𝑟𝑝
0
, (1)

where 𝑟 is the restart probability,𝑊 is the column-normalized
adjacency matrix of the network graph, and 𝑝𝑡 is a vector of
size equal to the number of nodes in the graph where the ith
element holds the probability of being at node 𝑖 at time step 𝑡.
In this study, RWRwas executed with our custom 𝑅 program
in the e13-WT-DEGs PPI subnetwork with LOXL2 set as the
seed node.

3. Results

3.1. Protein-Protein Interaction Subnetwork of Differentially
Expressed Genes. Using a 1.5-fold change as the threshold,
we obtained 349 DEGs, including 217 upregulated genes and
132 downregulated genes, from comparing LOXL2-e13 versus
empty plasmid, while there were 606 upregulated genes and
351 downregulated genes from comparison of LOXL2-WT
versusempty plasmid. A single protein could not work alone
to achieve so many biological effects but must cooperate
with other proteins through their physical interactions. To
find how many and what kinds of proteins are connected
with the DEGs, two PPI subnetworks were constructed by
mapping the LOXL2-WT-DEGs and LOXL2-e13-DEGs to
the HPRD&BioGRID parent PPI network to generate their
respective PPI subnetworks.

The LOXL2-e13-DEGs PPI subnetwork contained 4768
nodes and 67769 edges, including 289 DEGs (Figure 1(a)).
We also found, among the interactions between DEGs, a
small protein cluster containing 84 nodes and 103 edges
(Figure 1(b)). The LOXL2-WT-DEGs PPI subnetwork was
composed of 6429 nodes and 97233 edges with 821 DEGs
(Figure 1(c)). The interactions between LOXL2- and WT-
DEGs were also found. To our surprise, there was a huge pro-
tein cluster containing 318 DEGs.These two PPI subnetworks
indicated that overexpression of LOXL2-WT or LOXL2-e13
greatly perturbed the PPI network in ESCC cells due to
DEGs interacting with hundreds and thousands of proteins
to achieve the biological consequences of the LOX2 protein
itself. To our great interest, a large number of interactions
between DEGs were found, indicating these DEGs might
form protein complexes in specific temporal or spatial pat-
terns, and their upregulation or downregulation might favor
their counterpart to conduct its biological functions.

3.2. Topological Parameters of PPI Subnetworks. Network
topological parameters are important characteristics for eval-
uating the networks. In this study, PPI subnetwork topo-
logical parameters were analyzed by NetworkAnalyzer. The
distributions of node degree approximately followed power
law distributions with 𝑅2 = 0.863 and 0.852, respectively
(Figure 2). Thus, these two PPI subnetworks were character-
ized to be scale-free, one of themost important parameters to
recognize a true complex biological network [35]. The other
topological parameters of these two subnetworks, such as
clustering coefficient, network centralization, and network
density, are shown in Table 1.

3.3. Annotations and Comparison of DEGs. To understand
the function of theseDEGs beyond the traditional gene listing
and GO annotation, we submitted the LOXL2-e13-DEGs and
LOXL2-WT-DEGs to Functional Annotation Chart analy-
sis in the DAVID bioinformatics database. The Functional
Annotation Chart results with 𝑃 < 0.05 were visualized and
displayed as a network by Enrichment Map.

In Figure 3, the functional annotation terms were repre-
sented as nodes. The node with more significance was larger.
Edge width was defined by the overlap coefficient between
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Figure 1: Continued.
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Figure 1: DEGs were mapped to the HPRD&BioGRID parent PPI network to generate PPI subnetworks. (a) PPI subnetworks of LOXL2-e13-
DEGs. (b) PPI subnetworks of LOXL2-WT-DEGs. (c) Interactions between LOXL2-e13-DEGs. (d) Interactions between LOXL2-WT- DEGs.
Nodes are labeled by different colors to indicate the expression trend of proteins. Green nodes represent proteins encoded by downregulated
genes, while red nodes represent proteins encoded by upregulated genes. Interacting proteins without significantly different expression are
represented as blue nodes.
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Figure 2: Power law fit of node-degree distribution for PPI subnetworks. The node degree (𝑘) is represented on the 𝑥-axis and the number
of nodes with 𝑘 is represented on the 𝑦-axis. The graph displays a decreasing trend of degree distribution with an increase in the number of
links, indicating scale-free topology. (a) Node-degree distribution of the LOXL2-e13-DEGs PPI subnetwork. (b) Node-degree distribution of
LOXL2-WT-DEGs PPI subnetwork.

Table 1: Network parameters of the LOXL2-e13-DEGs and LOXL2-WT-DEGs PPI subnetwork.

PPI subnetwork 𝑦 = 𝛽𝑥
𝑎

𝑅
2 Correlation Clustering coefficient Network centralization Network density

LOXL2-e13 𝑦 = 2012.2𝑥
−1.319 0.852 0.754 0.261 0.680 0.006

LOXL2-WT 𝑦 = 3763.3𝑥
−1.411 0.863 0.618 0.242 0.681 0.005

these categories (overlap coefficient cut-off was set as 0.6).
The more genes shared by two nodes, the wider their edge
width. For LOXL2-WT-DEGs, there were 166 terms fromGO
categories (e.g., biological process, cellular component, and
molecular function) (Figure 3(a)). Except for these, another
96 terms were included from the following annotation cat-
egories: 13 INTERPRO, 3 SMART, 31 SP PIR KEYWORDS,
38 UP SEQ FEATURE, and 5 KEGG PATHWAY. For the
LOXL2-e13-DEGs, in addition to the 71 terms from GO
categories, the Functional Annotation Chart results also con-
tained another 51 terms from the following annotation cate-
gories: 12 INTERPRO, 2 SMART, 17 SP PIR KEYWORDS, 8
UP SEQ FEATURE, and 5 KEGG PATHWAY (Figure 3(b)).
These results provide more information than merely using
GO enrichment alone, including protein sequence features,
protein domains, and pathways.

To illustrate the specific characters or functions of
LOXL2-e13 in comparison to wild type, we compared and
displayed the differences of the two Functional Annotation
Chart results. The number of unique annotation terms
for LOXL2-e13 was 89, while that for LOXL2-WT was 229
(Figures 3(c) and 3(d)). From INTERPROT annotation, the
protein sequences of LOXL2-e13-DEGs were mainly com-
prised of domains for “IPR007125:Histone core,” “IPR009072:
Histone-fold,” and “IPR000558:Histone H2B.” LOXL2-e13-
DEGs were only annotated by the terms for “IPR007872:Zinc
finger, DPH-type.” To our surprise, LOXL2-WT-DEGs
proteins showed several different zinc annotations, including
“IPR007087:Zinc finger, C2H2-type,” “IPR015880:Zinc
finger, C2H2-like,” and “IPR013087:Zinc finger, C2H2-type/
integrase, DNA-binding” from INTERPROT; “GO:0008270∼
zinc ion binding” from GO “molecular function”; “zinc-
finger,” “zinc finger region : C2H2-type (1–17), C2H2-
type 19, and C2H2-type 21” from SP PIR KEYWORDS
annotation. Other sequence feature annotations from
PIR SUPERFAMILY indicated LOXL2-e13-DEGs were
characterized by “histone H2B,” “chaperone HSP70,” and

“serpin,” while LOXL2-WT-DEGs were annotated by “zinc
finger protein ZFP-36.” A specific KEGG pathway potentially
correlated to carcinoma, “hsa04620:Toll-like receptor
signaling pathway,” was found for the LOXL2-e13-DEGs
network. As for LOXL2-WT-DEGs, four carcinoma-related
KEGG pathways were found: “hsa04010:MAPK signaling
pathway,” “hsa04110:Cell cycle,” “hsa04115:p53 signaling
pathway,” and “hsa05200:Pathways in cancer.”

Both LOXL2-WT and LOXL2-e13 were involved in
regulation of gene expression, but they might play different
roles or at different levels. It showed LOXL2-e13-DEGsmight
affect chromosome remodeling, such as “GO:0006334∼
nucleosome assembly,” “GO:0031497∼chromatin assembly,”
“GO:0006333∼chromatin assembly or disassembly,”
“GO:0006323∼DNA packaging,” “GO:0000786∼nucleo-
some,” and “GO:0065004∼protein-DNA complex assembly”
from GO annotation. However, LOXL2-WT-DEGs might
regulate expression mainly at a transcriptional level, as
indicated by “GO:0045449∼regulation of transcription,”
“GO:0006350∼transcription,” “GO:0006355∼regulation of
transcription, DNA-dependent,” “GO:0010629∼negative
regulation of gene expression,” “GO:0016604∼nuclear body,”
and “GO:0000775∼chromosome, centromeric region.”

To our great interest, these two charts also provided
clues revealing the different roles of LOXL2-WT and LOXL-
e13 in malignancy. The GO “biological process” annotation
showed LOXL2-WT-DEGs were involved in cell motility
(GO:0048870), cell migration (GO:0016477), and regula-
tion of cell adhesion (GO:0030155). Though LOXL-e13-
DEG was not annotated by such terms related to the
malignant degree of tumors, it could not be excluded that
LOXL2-e13 also plays important roles in carcinoma devel-
opment. Significantly, LOXL2-e13-DEGs could regulate the
activities of several enzymes or modify proteins, including
enzyme inhibitor activity (GO:0004857), Rab-protein ger-
anylgeranyltransferase complex (GO:0005968), endopepti-
dase inhibitor activity (GO:0004866), glutaminase activity
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Figure 3: Visualization of Functional Annotation Chart analysis for DEGs and their comparison. (a) Visualization of Functional Annotation
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(GO:0004359), peptidase inhibitor activity (GO:0030414),
serine-type endopeptidase inhibitor activity (GO:0004867),
protein serine/threonine kinase activity (GO:0004674), and
GO:0016310∼phosphorylation.

3.4. Prioritization of e13-WT-DEGs. To provide a deep view
of the different influence on ESCC cells between LOXL2-e13
and its wild type, we selected the DEGs between LOXL2-
e13 and its wild-type counterpart for future analyses. We
obtained 275 e13-WT-DEGs, including 118 downregulated
genes and 157 upregulated genes. To obtain a full view of
the influence of the e13-WT-DEGs, its PPI subnetwork was
also constructed and contained 2741 nodes and 43507 edges,
including 100 upregulated genes and 54 downregulated genes
(Figure 4(a)). These results indicated that overexpression of
LOXL2-e13 had a widely different impact on the mRNA
expression profile compared to wild-type LOXL2, providing
important clues to reveal the specific functions and potential
molecular mechanisms of LOXL2-e13.

We applied the RWR algorithm to identify how the e13-
WT-DEGs would be ranked by their closeness in the context
of LOXL2-e13 overexpression.The RWR algorithm gave each
protein member in the e13-WT-DEGs PPI subnetwork a
probability score, which ranged from −2.56 to −8.74 (the
more negative the score, the less significant the protein)
(Figure 4(b)). Subsequently, only the nodes of e13-WT-DEGs
were extracted from the modified PPI subnetwork for a
better illustration (Figure 4(c)). Since some of the e13-WT-
DEGs scored closely, we rearranged e13-WT-DEGs after
their scores were log10-transformed and classified by the
score ranges. For example, only the seed node LOXL2 was
classed as the A layer; DEGs with a log-transformed score of
−2.0∼−2.99 were classified as the B layer, and DEGs with a
log-transformed score of −3.0∼−3.99 were classified as the C
layer (Figure 4(d)).We found upregulated ERO1L and ITGA3
and downregulated PLAA ranked in the first class close to
LOXL2-e13-DEGs and upregulated MAPK8 ranked in the
second class. These results provided the priorities of e13-WT-
DEGs when considering their relationships with LOXL2-e13,
which could be applied as candidate genes for subsequent
experimental identification.

4. Discussion

Esophageal squamous cell carcinoma (ESCC), the major
histopathologic form of esophageal cancer, is one of the
most prevalent cancers in Asia and is the fourth leading
cause of cancer death in China [36, 37]. The functions of
a splice variant might be different and vary compared to
wild type [38]. Much evidence has indicated that splicing
abnormalities are a hallmark of cancer [39–41]. The poten-
tial roles for splice variants in cancer might involve cell
migration, cell growth, hormone responsiveness, apoptosis,
and response to chemotherapy [42]. For example, two splice
variants of K-Ras, K-Ras 4A, and 4B, which arise from
two alternative versions of exon 4, have been found [43].
These two variants show antagonistic biological effects; K-
Ras 4A exerts proapoptotic effects, while K-Ras 4B is an

antiapoptotic protein. Both variants are coexpressed in many
tissues, but their ratio is altered in sporadic colorectal cancer,
favoring the antiapoptotic 4B isoform [44].This indicates that
the expression of tumour-specific splice variants significantly
affects many cellular events, critical for cancer biology, which
are still far from being illustrated.

Inspired by this evidence, we overexpressed LOXL2-e13
and determined themRNA expression profile, in comparison
with wild-type LOXL2 overexpression, to explore its specific
biological roles. PPI subnetworks were generated bymapping
the DEGs to a public PPI dataset to gain a full view of
their influence.We show that LOXL2-WT-DEGs and LOXL2-
e13-DEGs interact with thousands of other proteins, which
suggests LOXL2-WT and LOXL2-e13 can greatly impact
cellular activity through the cascades of interactions of the
DEGs.

To better illustrate their potential molecular functions,
Functional Annotation Chart analysis was applied to clas-
sify the DEGs based on related multiple gene function
annotations, which allows investigators to analyze genes
from many different biological aspects in a single space.
Our results indicate that there are distinguishing differences
between LOXL2-e13 and LOXL2 in regard to GO enrich-
ment, protein sequence features, protein domains, and path-
ways. LOXL2-e13-DEGs contain a list of upregulated histone
proteins, including HIST1H2AC, HIST1H2BC, HIST1H2BD,
HIST2H2BE, HIST1H2BJ, HIST1H2AK, HIST2H4A, and
HIST2H4B, which mediate DNA organization and play a
dominant role in regulating eukaryotic transcription. On the
other hand, there are as many as 78 proteins, containing zinc
finger, which can interact with LOXL2-WT-DEGs, such as
ZNF19, ZNF292, KLF11, CREB5, SNAI2, and SP2. It has been
suggested that zinc-finger-containing proteins function in
gene transcription, translation, mRNA trafficking, cytoskele-
ton organization, epithelial development, cell adhesion, pro-
tein folding, chromatin remodeling, and zinc sensing [45].

The other evidence for regulation of transcription by
both DEG networks comes from the GO annotations,
which show that LOXL2-e13-DEGsmight affect chromosome
remodeling, based on annotations “nucleosome assembly,”
“DNA packaging,” and “protein-DNA complex assembly.”
LOXL2-WT-DEGs might regulate expression mainly at the
transcriptional level, such as “regulation of transcription” and
“regulation of transcription, DNA-dependent.” These results
suggest that both LOXL2-WT and LOXL2-e13 are involved
in gene expression regulation at different levels. This could
be one of the specific molecular mechanisms for LOXL-e13
compared to wild type.

The other distinguishing property for LOXL2-e13 is
that its DEGs involve enzyme activities or modifications,
such as “Rab-protein geranylgeranyltransferase complex,”
“serine-type endopeptidase inhibitor activity,” and “pepti-
dase inhibitor activity.” The term “serine-type endopepti-
dase inhibitor activity” contained 7 genes, including APP,
SERPINB2, SERPINB1, SLPI, SERPINB3, SERPINB13, and
OVOS2. SERPINB1 (serine protease inhibitor, clade B, mem-
ber 1) has been shown to be downregulated in hepatocellular
carcinoma and is correlatively related with cancer metastasis
and intravasation [46]. Interference of SERPINB1 promotes
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Figure 4: Continued.
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Figure 4: Prioritization analyses of e13-WT-DEGs based on the PPI subnetwork. (a) PPI subnetwork of e13-WT-DEGs. (b) Random Walk
with Restart algorithm was used to score all proteins in the PPI network with LOXL2 set as the seed node. The size of each node in the PPI
subnetwork was designed as a gradient based on the scores. (c) The e13-WT-DEGs were extracted from (b) to illustrate their sizes. (d) The
DEGs were rearranged according to their closeness to LOXL2-e13 protein.
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migration and invasion of HCC cells, with an apparent
increase in the level of active matrix metalloproteinase-2
(MMP2) [46]. It is interesting to note that SERPINB1 is also
decreased 1.58-fold upon LOXL2-e13 overexpression. The
“peptidase inhibitor activity” annotation contains 10 genes,
including APP, CARD16, SERPINB2, BIRC6, SERPINB1,
SLPI, SERPINB3, HSPA5, SERPINB13, and OVOS2. BIRC6
is upregulated 1.56-fold in the LOXL2-e13 expression profile.
BIRC6 is a member of the inhibitors of apoptosis protein
(IAP) family, which is thought to protect a variety of cancer
cells from apoptosis [47]. BIRC6 has been found to be
overexpressed in various carcinomas, such as prostate cancer,
melanoma, and non-small-cell lung cancer [47–49]. The
relationship between LOXL2 and metabolism was not found.
We assumed that LOXL2-e13 might influence metabolism in
ESCC cells and that this might be a specific biological role or
molecular mechanism for LOXL2-e13.

It was important to identifywhich e13-WT-DEG responds
to explain differing functions for LOXL2-e13. We prioritized
the e13-WT-DEGs by application of the RWR algorithm
based on current knowledge of PPI networks. For example,
ERO1L, ITGA3, PLAA, and MAPK8 were DEGs that ranked
the closest to LOXL2-e13. It was reported that the upreg-
ulation of ERO1L (ERO1-like (S. cerevisiae)) is specifically
induced in hypoxic microenvironments coinciding with that
of upregulated VEGF expression in human tumors, such as in
hepatocellular carcinoma and glioblastoma [50]. In support
of this, we find VEGF is upregulated 1.68-fold in the e13-
WT-DEGs. ITGA3 (integrin, alpha 3) plays an important role
in tumors. Loss of ITGA3 prevents skin tumor formation
by promoting epidermal turnover and depletion of slow-
cycling cells [51]. ITGA3 also serves as a biomarker for
various conditions, such as a biomarker for estimation of
the risks of locoregional and hematogenous dissemination of
oral squamous cell carcinoma, a marker for NMuMG cells
undergoing epithelial-mesenchymal transition and for cancer
cells with aggressive phenotypes, and a diagnostic marker for
the clinical outcome of tongue squamous cell carcinoma [52,
53]. MAPK8, also named JNK, is involved in a wide variety
of cellular processes, such as proliferation, differentiation,
transcription regulation, and development in both normal
tissues and tumors [54]. So it is expected that LOXL2-e13
causes broad changes in mRNA expression profile, including
some critical tumor-related genes, enabling LOXL2-e13 to
play new and specific roles in ESCC compared to its wild-type
counterpart.

5. Conclusions

In summary, we provide evidence, through generation, anno-
tation, and comparison of PPI networks, to indicate that
LOXL2-e13 might play different roles compared to wild-type
LOXL2. These results provide helpful information in the
experimental identification of its biological roles and expla-
nation of itsmolecularmechanisms.With the development of
high-throughput techniques for protein-protein interactions,
the public PPI network database and its use in subsequent
analyses will become more acute and reliable. Our analyses

also provide a work flow to test the different roles of a splicing
variant with large scale data.
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