
Fast Convergence of Competitive Spiking
Neural Networks with Sample-Based Weight

Initialization

Paolo Gabriel Cachi1(B) , Sebastián Ventura2 , and Krzysztof Jozef Cios1,3

1 Virginia Commonwealth University, Richmond, VA 23220, USA
{cachidelgadpg,kcios}@vcu.edu
2 Universidad de Córdoba, Córdoba, Spain

sventura@uco.es
3 Polish Academy of Sciences, Gliwice, Poland

Abstract. Recent work on spiking neural networks showed good progress
towards unsupervised feature learning. In particular, networks called Competi-
tive Spiking Neural Networks (CSNN) achieve reasonable accuracy in classifica-
tion tasks. However, two major disadvantages limit their practical applications:
high computational complexity and slow convergence. While the first problem
has partially been addressed with the development of neuromorphic hardware, no
work has addressed the latter problem. In this paper we show that the number of
samples the CSNN needs to converge can be reduced significantly by a proposed
new weight initialization. The proposed method uses input samples as initial val-
ues for the connection weights. Surprisingly, this simple initialization reduces the
number of training samples needed for convergence by an order of magnitude
without loss of accuracy. We use the MNIST dataset to show that the method is
robust even when not all classes are seen during initialization.

Keywords: Spiking Neural Networks · Competitive learning · Unsupervised
feature learning

1 Introduction

The competitive learning paradigm has been successful in dealing with unsupervised
data [7,24,33]. In competitive learning, units/neurons compete with each other for the
right to respond to the given input. The winner units are then updated and become
more specialized. At the end of training, all units are tuned to respond to specific input
patterns and their activation is used to classify new unseen samples [29,33].

Competitive learning inspired design of several clustering and unsupervised fea-
ture learning algorithms, such as Vector Quantization [22], Self Organizing Maps
(SOM) [17], and Deep Self Organizing Maps (DSOM) [39]. While these algorithms
are good for extracting spatial information from unlabeled data, their use for classifica-
tion tasks is limited by their performance. For example, classification accuracy achieved
by DSOM on the MNIST dataset was 87.12% [39], compared with 99.79% achieved
by current state of the art fully supervised algorithms [5,34,38].
c© Springer Nature Switzerland AG 2020
M.-J. Lesot et al. (Eds.): IPMU 2020, CCIS 1239, pp. 773–786, 2020.
https://doi.org/10.1007/978-3-030-50153-2_57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50153-2_57&domain=pdf
http://orcid.org/0000-0001-7362-279X
http://orcid.org/0000-0003-4216-6378
http://orcid.org/0000-0001-5808-5316
https://doi.org/10.1007/978-3-030-50153-2_57


774 P. G. Cachi et al.

A considerable increase in classification performance has been achieved by compet-
itive learning networks using spiking neurons. Spiking neurons are dynamic units that
respond not only to the current state of their inputs, as traditional neural networks do
[11,19,33], but also take into account their previous states [2,23,32]. These networks,
named Competitive Spiking Neural Networks (CSNN), achieved 95% accuracy on the
MNIST dataset, almost 8% increase over DSOM [6,39].

The CSNNs, however, are limited by two factors: high computational complexity
and slow convergence. The first problem is due to the fact that the spiking neurons
are implemented as independent units, which requires using highly parallel processors.
The neuromorphic processors provide parallel architecture needed for these networks
and that, at the same time, considerably reduce energy consumption when compared
with traditional deep neural network implementations [8,27]. On the other hand, there is
little, if any, work on reducing the network convergence time. The state of the art CSNN
[6] needs around 20,000 samples to converge which in computational time represents
more than 2 h of training using a single thread implementation on an Intel Core i9-
9900K processor. Thus, developing a method that would require less number of samples
for training is urgently needed to expand their real world applications [14,25,26].

Here, we show that using the input samples as initial weights in the CSNN reduces
the number of training samples needed for convergence by an order of magnitude, and
with no loss in accuracy. We use different combinations of the initial weights to check
the method’s robustness to cases where the samples used for initialization do not repre-
sent all classes in the data. The method is evaluated on the MNIST dataset.

The rest of the paper is organized as follows. Section 2 presents a review of work on
the CSNNs. A general overview of the network topology and its main characteristics are
presented in Sect. 3. Section 4 introduces the proposed initialization method. Section 5
describes the dataset used, experimental settings, and evaluation metrics. Section 6 dis-
cusses the results. Section 7 ends with conclusions.

2 Related Work

The use of CSNN for unsupervised feature learning was originally proposed in [31].
The authors used an array of memrirstors to implement a CSNN for unsupervised fea-
ture learning. Their network used 300 spiking-like units to achieve 93% accuracy on
the MNIST dataset and showed robustness to parameter variations. An extension of this
work achieved accuracy of 95% but at the cost of using 6,400 complex spiking neu-
rons [6]. In terms of the convergence time, both implementations converged only after
20,000 sample presentations, which in combination with the high computational cost
undermines their practical applications.

Other authors used self-organizing and convolutional spiking network implementa-
tions. In [12] the authors reported accuracy of 94.07% using 1,600 neurons, however,
we believe that this increase of performance was due more to the use of a specific clas-
sification method. In fact, when using the same classification method as in [6], this
CSNN achieves only 92.96% accuracy. The convolutional spiking network had only
84.3% accuracy [35].



Fast Convergence of CSNN with Sample-Based Weight Initialization 775

3 Competitive Spiking Neural Networks

The CSNN uses a spiking neuron layer with Spike Time Dependence Plasticity (STDP),
lateral inhibition, and homeostasis to learn input data patterns in an unsupervised way.
At any given time, the output neuron that is most active (spikes the most) represents the
current data input.

3.1 Network’s Topology

The detailed network topology is shown in Fig. 1. The Sensory layer first transforms
an N -dimensional input vector, via N Poisson units (using Poisson distribution), into a
series of spikes, which are fed into a layer of M spiking neurons with lateral inhibition.

Fig. 1. Competitive spiking neural network topology

The N sensory units are fully connected to the M spiking neurons. The learning
process uses the STDP implementation of the Konorski/Hebb rule [13,18]. All spiking
neurons are connected with all others by fixed inhibitory weights; this is known as
lateral inhibition used to ensure that only one neuron fires for a given input. The specific
mechanisms used for both connections are described in detail in Sects. 3.3 and 3.4.

3.2 Spiking Neuron Model

In this paper we use a spiking neuron model known as Integrate and Fire [10,15,16].
This model uses a differential equation and a threshold mechanism to define the neuron
behavior:

τ
du

dt
= f(u) + i(u, t) (1)

tf : u(tf ) = θreset and
du(t)

dt

∣
∣
∣
t=tf

> 0 (2)



776 P. G. Cachi et al.

Equation 1 describes the evolution of the membrane potential u in terms of a linear/
non-linear function f(u) and a synaptic input term i(u, t). Equation 2 defines the fire
time tf as the moment the membrane potential u crosses, from below, its threshold
value θreset. When this happens, a spike is generated and the neuron enters a refractory
period, during which it cannot respond to any input, after that the neuron’s membrane
potential is reset.

The choice of f(u) gives rise to different variations of the Integrate and Fire neuron
model [10]. A linear choice (Eq. 3) defines the Leaky Integrate and Fire Model. Non
linear choice gives rise to the Exponential Integrate and Fire Model (Eq. 4) and the
Quadratic Integrate and Fire Model (Eq. 5):

f1(u) = −(u − urest) (3)

f2(u) = −(u − urest) + ΔT exp
(u − ϑrh)

ΔT
(4)

f3(u) = a0(u − urest)(u − uc) (5)

where f1(u), f2(u) and f3(u) are the linear, exponential and quadratic function terms,
urest represents the resting potential, ΔT the sharpness factor, ϑrh the threshold, and
a0 and uc are constant factors with a0 > 0 and uc > urest.

There are two typical choices for the synaptic contribution term i(u, t). The simplest
one considers the synaptic inputs as direct membrane potential modifiers, Eq. 6:

i(u, t) = i(t) = R
∑

j

∑

tf

wjρ(t − tfj ) (6)

A more complex one uses additional differential equations (Eqs. 7 and 8) for con-
ductance level contributions [3,4]:

i(u, t) = g(t)(uinput − u) (7)
dg

dt
= − g

τg
+

∑

j

∑

tf

wjδ(t − tfj ) (8)

where g(t) represents the conductance contribution, τg the conductance time constant,
wj the synaptic weight of connection j, and tfj is the firing time of the input neuron j.

3.3 Learning Rule

The CSNN uses STDP to modify the connection weights between the Poisson units
and the spiking neurons [31]. In STDP, the adjustment of the strength of each weight
depends on the relative activity between the pre- and post-synaptic neurons, Eq. 9:

STDP (Δt) =

{

α+ exp(−Δt/τ+) if Δt > 0
−α− exp(Δt/τ−) if Δt ≤ 0

(9)

where δt is the time between pre- and post-synaptic neuron firings, α+ and α− are
learning rates, and τ+ and τ− are time constants [1,37]. Over time, and because STPD



Fast Convergence of CSNN with Sample-Based Weight Initialization 777

takes effect only after a spiking event, the synaptic weights become selective to specific
input patterns. In contrast to the gradient descent learning, STDP is a local rule that uses
information only from the pre- and post-synaptic neuron firings, while gradient descent
updates all weights based on the minimization of a global loss function.

STDP can be implemented using exponential decay variables to keep track of the
weight update values apre and apost, Eqs. 10 and 11 [28]. When a pre-synaptic spike is
registered, the synaptic weight is decreased by apost and apre is updated to a constant
value Apre. In contrast, when a post-synaptic spike is registered, the weight value is
increased by apre and at the same time apost is updated to Apost.

τpre
dapre

dt
= −apre (10)

τpost
dapost

dt
= −apost (11)

where apre and apost are the pre- and post-synaptic trace values used to update connec-
tion weights in the event of a pre- or post-synaptic neuron spikes. τpre and τpost are the
constant time factors for each exponential decay variable.

3.4 Lateral Inhibition

All spiking neurons at the spiking layer are connected to each other via direct inhibitory
synapses, with the purpose of feedback regulation [6,31]. When a neuron produces
a spike, all neurons connected to it receive a negative potentiation (their membrane
potentials are decreased) which reduces the neuron’s probability of reaching its firing
threshold to generate a spike, see Fig. 1.

3.5 Homeostasis

It is important that the membrane firing threshold θthreshold is adaptive to make sure
all neurons have a chance to fire during training. The threshold value is defined by an
exponential decay function with a constant increase every time the neuron fires. Thus,
a neuron that fired recently is less able to fire again because of its higher threshold
value. Equation 12 describes the membrane reset value θreset as a function of a dynamic
variable θ, Eq. 13:

θreset = θoffset + θ (12)
dθ

dt
=

−θ

τθ
+

∑

tf

αδ(t − tfj ) (13)

where θoffset is the offset value when θ = 0, τθ is the time constant and α is the
increase constant value [30,40].

3.6 Weight Normalization

The purpose of weight normalization is to limit the total input a neuron receives. To do
so, each input connection is normalized according to Eq. 14:

wnorm
ij = wij

λ
∑

i wij
(14)



778 P. G. Cachi et al.

where wij is the weight value for connection i of neuron j, and λ is the total sum of
weights [9,21].

While a straightforward effect of normalization is to balance all input connections,
a not so obvious effect can be stated as helping to spread “information” to all active
inputs. This means that if one synapse is increased/decreased by STDP, the normaliza-
tion will average the change in all the incoming inputs. In that way, not only one input
is modified, but all of them.

4 Sample-Based Weight Initialization

What are the effects of using STDP, normalization, and lateral inhibition on the network
operation. If a neuron, using STDP learning, is excited with a single input image for a
long period of time, its synapse weights will increase/decrease proportionally to each
pixel input activation rate. The weights corresponding to high pixel values will increase
the most. Performing weight normalization bounds the weight changes so the system
will not become unstable. These two operations result in the weights trying to copy its
input. If more images are used, then the changes are averaged and the final weights are
“finding” single prototypes among all the input images. Finally, using lateral inhibition
makes sure that the neuron only updates in response to the inputs that are close to its
current prototype. For example, a neuron that is following the prototype for number “2”
will be only updated with inputs of this class (other inputs of “2”) thus increasing its
selectiveness.

We use the above analysis to reduce the network’s training convergence time as
follows. If each neuron strives to find prototypes among the input images, we can reduce
the training time by initializing its weights with the input pixel values, which are closer
to some of the final prototypes than a random initialization. We thus use the first M (out
of P ) training samples to serve as initial connection weights between the sensory layer
and the M neurons at the spiking neuron layer. Since we use weight normalization,
there is no need to re-scale the pixel values. We also tested the effects of using different
degrees of blurring filters to soften the contrast in the input images; for that purpose,
the OpenCV’s blurring filter was used.

The pseudo-code for Sample-Based Weight Initialization is shown in Algorithm 1.
The competitive spiking network is instantiated in line 2. Line 3 initializes the connec-
tion weights with the resulted images after passing the first M training samples through
a 5× 5 blurring filter. Line 4 creates a Spike Monitor instance used to keep track of
each neuron’s firing events. The FOR loop in lines 5 through 9 presents all the P − M
remaining training samples. First, the connection weights are normalized. Then, the
firing rates of the Poisson neurons are set based on the input image. Each sample is
presented for 350 ms.

After training, a new run over all training samples, with STDP turned off, is done
again to associate each spiking neuron with a unique class label. Algorithm 2 describes
the pseudo-code for the labeling process.

Line 2 loads the resulted network from the training process and line 3 turns STDP
off so the network connections are not any longer modified. Line 4 creates a spiking
counter to save each neuron’s firing pattern. As in the training process, a FOR loop is



Fast Convergence of CSNN with Sample-Based Weight Initialization 779

Algorithm 1. Training - Sample-Based Weight Initialization
1: trainingSet = load(MNIST-training)
2: spikingNetwork = CompetitiveSpikingNetwork()
3: spikingNetwork.STDPconnection[:, :] = CV2.blur(trainingSet[: M ], (5,5))
4: spikeMonitor = SpikeCounter(spikingNetwork[‘Spiking’])
5: for iterator = m,m+ 1, . . . , P do
6: normalizeSTDPConnection(78.0)
7: spikingNetwork[‘Poisson’].rate = trainingSet.data[iterator]
8: run(spikingNetwork, 350ms)
9: end for
10: saveSpikingNetwork(spikingNetwork)

Algorithm 2. Labeling
1: trainingSet = load(MNIST-training)
2: spikingNetwork = loadSpikingNetwork()
3: spikingNetwork.disableSTDP()
4: spikeMonitor = SpikeCounter(spikingNetwork[‘Spiking’])
5: for iterator = 1, 2, . . . , P do
6: spikingNetwork[‘Poisson’].rate = trainingSet.data[iterator]
7: run(spikingNetwork, 350ms)
8: end for
9: labels = getSpikingNeuronLabels(spikeMonitor, trainigSet.labels)
10: saveLabels(labels)

used to present all training samples (lines 5 to 8) but the difference is that normalization
is no longer needed since all connections are fixed. The spiking counter and the training
labels are used to decide each neuron’s label in line 9.

The already assigned labels are used to classify new unseen samples via a voting
process, such as maximum, confidence, or distant-based [6,12,35]. Additionally, the
firing pattern can be used directly for predictions through some decision function, which
can be predefined [12,36], or learned by using the firing pattern matrix as input to any
add-on machine learning classifier [31], such as a conventional neural network.

5 Experiments

5.1 Dataset

All experiments are performed on the MNIST dataset, which consists of 70,000 sam-
ples of hand written 28× 28 pixel images divided into 60,000 samples for training and
10,000 samples for testing [20]. The raw images are first flattened (turned into column
vectors) and scaled to the range from 0 to 63.75, and are used as input to the sensory
layer to determine the firing rates of the Poisson units.

5.2 Experimental Settings

To analyze the performance of the sample-based initialization, three different exper-
iments are performed. First, we compare the training convergence and testing accu-



780 P. G. Cachi et al.

racy of random initialization with our initialization method. Second, we evaluate our
method’s robustness using samples from only one class (from 10 total) as the initial
weights. Third, we compare the prediction results of the CSNN with a fully supervised
traditional neural network, using the same topology and number of neurons.

Two CSNNs with 400 spiking neurons are used: the state of the art CSNN [6], and
another one simplified by us. The state of the art CSNN uses 784 sensory layer Poisson
units, 400 Leaky Integrate and Fire neurons with conductance-based stimulation input
to the spiking neuron layer, trace-based STDP, indirect inhibition, weight normaliza-
tion, and resting period of 150 ms between each sample presentation. The simplified
CSNN uses the same spiking neuron model, learning rule and weight normalization but
differs in the use of direct inhibition, with no resting period, and a different value of the
membrane constant time (3 · 106 ms instead of 1 · 107 ms). Importantly, the simplified
CSNN trains in half the time than the state of the art CSNN.

All simulations were carried out using the Python’s Brian Simulator package on
an Intel Core i9-9900K with 64GB RAM computer (the code is publicly available on
GitHub).1

5.3 Evaluation Metrics

The training convergence and testing accuracy are used to evaluate all experiments. The
training convergence is based on the number of samples needed to reach a stable state,
which is defined as the number of samples needed to reach 80% accuracy. The training
accuracy is calculated after every 1,000 sample presentations in a two step process.
First, the neuron labels are assigned based on the maximum firing rate of the previous
1,000 samples. Second, the assigned labels are used to predict the classes for the next
1,000 samples using maximum voting.

The testing accuracy for all 10,000 testing samples is calculated using three different
methods: the maximum- and confidence-based voting, and using an add-on two layer
neural network classifier. The latter uses 200 neurons with Relu activation in its first
layer, 10 neurons with soft max activation in the output layer, dropout of 0.2 between
the layers, and cross entropy loss function. All results are reported as average of 10
runs.

6 Results and Discussion

6.1 Convergence Time

The accuracies for 60K training samples using random initialization and the sample-
based initialization are shown in Fig. 2. Figure 2a shows the accuracy on the first 20K
sample presentations, and Fig. 2b shows the result on the next 40K samples. Five lines
are plotted: one for the current state of the art CSNN with random initialization (Base
case) [6], one for the simplified by us CSNN with random initialization (Random), and
three for sample-based initialization with different degrees of image blurring. The plot
starts after 1K iterations since we estimate the training accuracy using a 1K window.

1 https://github.com/PaoloGCD/fastCSNN.

https://github.com/PaoloGCD/fastCSNN


Fast Convergence of CSNN with Sample-Based Weight Initialization 781

(a) Training 0-20K samples (b) Training 20K-60K samples

Fig. 2. Training accuracy vs. number of samples, using samples from all classes for initialization

The convergence time for our initialization method is faster than for random ini-
tialization (both base case and random). Specifically, using sample-based initialization
with blurring of 3 achieves 80% accuracy using less than 3K samples. Bigger blurring
factors reduce the convergence time (blurring of 9 and 15), but are still faster than the
base case and the random initialization that need around 12.5K samples each to reach
80% accuracy. Blurring of 9 reaches 80% accuracy after around 5K samples and blur-
ring of 15 after 8K samples.

Table 1 shows results using maximum and confidence voting, and using an add-on
neural network classifier for classification prediction of the test set (trained on 60K
samples). We see that sample-based initialization with blurring of 9 achieves the best
accuracy in all three methods. Namely, it achieves 90.87%, 91.27% and 92.54% accura-
cies, which are higher than for the base case (88.89%, 90.37% and 91.73%), and higher
than for random initialization (90.74%, 91.17% and 92.43%).

Table 1. Testing accuracy using different decision methods.

Max voting Confidence voting Neural network

Base case 88.89 ± 0.44 90.37 ± 0.31 91.73 ± 0.16

Random 90.67 ± 0.19 91.14 ± 0.12 92.43 ± 0.06

Blur 3 90.53 ± 0.21 91.08 ± 0.16 92.37 ± 0.12

Blur 9 90.87 ± 0.10 91.27 ± 0.11 92.54 ± 0.11

Blur 15 90.80 ± 0.17 91.18 ± 0.12 92.54 ± 0.12

Table 2 shows accuracy results on the testing set after training with 5K, 10K, 20K,
40K and 60K sample presentations, using maximum voting.

Before convergence (5K and 10K) sample-based initialization produces better
results than random initialization. While at convergence (20K, 40K, and 60K) the
results are about the same. The results with blurring of 9 are consistently the best in
all cases.



782 P. G. Cachi et al.

Table 2. Testing accuracy for different number of training samples.

5K 10K 20K 40K 60K

Base case 70.91 ± 0.71 83.37 ± 0.26 86.22 ± 0.62 87.54 ± 0.18 88.89 ± 0.44

Random 60.93 ± 0.54 82.11 ± 0.51 89.29 ± 0.25 90.66 ± 0.22 90.67 ± 0.19

Blur 3 86.65 ± 0.41 88.35 ± 0.53 89.17 ± 0.32 90.56 ± 0.23 90.53 ± 0.21

Blur 9 87.61 ± 0.27 88.81 ± 0.10 89.73 ± 0.39 90.90 ± 0.29 90.87 ± 0.10

Blur 15 81.96 ± 0.40 88.31 ± 0.28 89.53 ± 0.39 90.84 ± 0.27 90.80 ± 0.17

6.2 Sample-Based Initialization Robustness

When training, often not all classes are seen in the first M samples, which are used to
set the sample-based initial weights. Thus, we initialize the connection weights using
samples of just one class (out of 10). Although, all classes were tested, we discuss
here results only for training with classes 1, 5, and 7. Figure 3 shows training accura-
cies using initialization with these classes. The base and random cases are shown for
reference using results from Fig. 2.

(a) Training 0-20K samples (b) Training 20K-60K samples

Fig. 3. Training accuracy vs. number of samples, using samples from only one class for initial-
ization

We see that the convergence times for all sample-based initialization cases are still
faster than for random initializations even when only one class is used to initialize the
connection values. All these cases reach 80% accuracy after 4.5K sample presentations,
while random initialization reaches 80% accuracy after 12K samples.

Table 3 shows testing accuracy results for maximum and confidence voting and for
the add-on neural network classifier.

Overall, sample-based initialization of class 5 achieved the best result for all three
methods (91.06%, 91.41% and 92.66%), while class 1 initialization was the worst
(89.85%, 90.52% and 91.86%), but is still higher than the base case. The variance in all
cases is less than 0.5% which indicates consistency across all cases.



Fast Convergence of CSNN with Sample-Based Weight Initialization 783

Table 3. Testing accuracy using samples from only one class for initialization.

Max voting Confidence voting Neural network

Base case 88.89 ± 0.441 90.37 ± 0.308 91.73 ± 0.157

Random 90.67 ± 0.190 91.14 ± 0.115 92.43 ± 0.085

Class 1 89.85 ± 0.470 90.52 ± 0.335 91.86 ± 0.147

Class 5 91.06 ± 0.095 91.41 ± 0.152 92.66 ± 0.122

Class 7 90.74 ± 0.258 91.23 ± 0.190 92.52 ± 0.087

6.3 CSNN and Fully Supervised Neural Network Comparison

We compared the CSNN’s performance with a fully supervised classical neural net-
work. Table 4 shows testing accuracy for two best CSNNs, namely, sample-based ini-
tialization using blurring of 5 (fastest convergence) and blurring of 9 (best accuracy).
The used NN is a 3 layer feed-forward neural network with 400, 200, and 10 neurons.

Table 4. Testing accuracy, CSNN and Fully Supervised NN comparison.

1 epoch 3 epochs 5 epochs 10 epochs

CSNN-blurr5-NN 92.26 92.52 92.57 92.41

CSNN-blurr9-NN 92.55 92.89 92.97 92.85

Fully supervised NN 91.81 94.73 95.49 96.24

Importantly, we observe that both CSNNs achieve better accuracy after just 1 epoch
of training, which can be advantageous in many real world applications. The testing
accuracy for the CSNN improves slightly after 3 and 5 epochs but starts decaying at 10
epochs.

7 Conclusions

In this paper we introduced a new initialization method that uses the training samples as
initial values for the as connection weights, between the Poisson units and the spiking
neurons in Competitive Spiking Neural Networks. This method reduces the amount of
training samples needed to achieve convergence and increases accuracy. Specifically,
it significantly reduced the convergence time to around 3K samples as compared with
random initialization that needed around 12.5K samples on the MNIST dataset. It also
achieved a slight increase of accuracy using maximum voting, confidence voting, as
well as using an add-on neural network classifier. We also showed that the convergence
time and accuracy gains are about the same regardless of the class distribution in the
samples used to initialize the connection weights. Importantly, we compared the CSNN
with a fully supervised feed forward neural network and have shown that it performed
better for small number of sample presentations, which is a strongly desired character-
istic for real world applications.



784 P. G. Cachi et al.

References

1. Bi, G., Poo, M.: Synaptic modification by correlated activity: Hebb’s postulate revisited.
Ann. Rev. Neurosci. 24(1), 139–166 (2001). https://doi.org/10.1146/annurev.neuro.24.1.139.
pMID: 11283308

2. Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective
description of neuronal activity. J. Neurophysiol. 94(5), 3637–3642 (2005). https://doi.org/
10.1152/jn.00686.2005. pMID: 16014787

3. Cavallari, S., Panzeri, S., Mazzoni, A.: Comparison of the dynamics of neural inter-
actions between current-based and conductance-based integrate-and-fire recurrent net-
works. Front. Neural Circuits 8, 12 (2014). https://doi.org/10.3389/fncir.2014.00012.
https://www.frontiersin.org/article/10.3389/fncir.2014.00012

4. Cessac, B., Viéville, T.: On dynamics of integrate-and-fire neural networks with conductance
based synapses. Front. Comput. Neurosci. 2, 2 (2008). https://doi.org/10.3389/neuro.10.002.
2008. https://www.frontiersin.org/article/10.3389/neuro.10.002.2008

5. Ciregan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image
classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.
3642–3649, June 2012. https://doi.org/10.1109/CVPR.2012.6248110

6. Diehl, P., Cook, M.: Unsupervised learning of digit recognition using spike-timing-
dependent plasticity. Front. Comput. Neurosci. 9, 99 (2015). https://doi.org/10.3389/fncom.
2015.00099. https://www.frontiersin.org/article/10.3389/fncom.2015.00099

7. Fukushima, K.: Cognitron: a self-organizing multilayered neural network. Biol. Cybern.
20(3), 121–136 (1975). https://doi.org/10.1007/BF00342633

8. Furber, S.B., Galluppi, F., Temple, S., Plana, L.A.: The spinnaker project. Proc. IEEE 102(5),
652–665 (2014). https://doi.org/10.1109/JPROC.2014.2304638

9. Gerstner, W., Kistler, W.M.: Mathematical formulations of Hebbian learning. Biol. Cybern.
87(5), 404–415 (2002). https://doi.org/10.1007/s00422-002-0353-y

10. Gerstner, W., Kistler, W.M., Naud, R., Paninski, L.: Neuronal Dynamics: From Single Neu-
rons to Networks and Models of Cognition. Cambridge University Press, New York (2014)

11. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes,
C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing
Systems, vol. 27, pp. 2672–2680. Curran Associates, Inc. (2014). http://papers.nips.cc/paper/
5423-generative-adversarial-nets.pdf

12. Hazan, H., Saunders, D., Sanghavi, D.T., Siegelmann, H., Kozma, R.: Unsupervised learning
with self-organizing spiking neural networks. In: 2018 International Joint Conference on
Neural Networks (IJCNN), July 2018. https://doi.org/10.1109/ijcnn.2018.8489673

13. Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Wiley/Chapman
& Hall, Hoboken (1949)

14. Jia, Y., Huang, C., Darrell, T.: Beyond spatial pyramids: receptive field learning for pooled
image features. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.
3370–3377, June 2012. https://doi.org/10.1109/CVPR.2012.6248076

15. Kandel, E.R., et al.: Principles of Neural Science, vol. 5. McGraw-hill, New York (2013)
16. Koch, C., Segev, I.: Methods in Neuronal Modeling: from Ions to Networks. MIT Press,

Cambridge (1998)
17. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern.

43(1), 59–69 (1982). https://doi.org/10.1007/BF00337288
18. Konorski, J.: Conditioned Reflexes and Neuron Organization. Cambridge University Press,

Cambridge (1948)
19. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015).

https://doi.org/10.1038/nature14539

https://doi.org/10.1146/annurev.neuro.24.1.139
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.3389/fncir.2014.00012
https://www.frontiersin.org/article/10.3389/fncir.2014.00012
https://doi.org/10.3389/neuro.10.002.2008
https://doi.org/10.3389/neuro.10.002.2008
https://www.frontiersin.org/article/10.3389/neuro.10.002.2008
https://doi.org/10.1109/CVPR.2012.6248110
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.3389/fncom.2015.00099
https://www.frontiersin.org/article/10.3389/fncom.2015.00099
https://doi.org/10.1007/BF00342633
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1007/s00422-002-0353-y
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://doi.org/10.1109/ijcnn.2018.8489673
https://doi.org/10.1109/CVPR.2012.6248076
https://doi.org/10.1007/BF00337288
https://doi.org/10.1038/nature14539


Fast Convergence of CSNN with Sample-Based Weight Initialization 785

20. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010). http://yann.lecun.com/
exdb/mnist/

21. Liang, Z., Schwartz, D., Ditzler, G., Koyluoglu, O.O.: The impact of encoding-decoding
schemes and weight normalization in spiking neural networks. Neural Netw. 108, 365–
378 (2018). https://doi.org/10.1016/j.neunet.2018.08.024. http://www.sciencedirect.com/
science/article/pii/S0893608018302508

22. Linde, Y., Buzo, A., Gray, R.: An algorithm for vector quantizer design. IEEE Trans. Com-
mun. 28(1), 84–95 (1980)

23. Maass, W.: Networks of spiking neurons: the third generation of neural network models.
Neural Netw. 10(9), 1659–1671 (1997). https://doi.org/10.1016/S0893-6080(97)00011-7.
http://www.sciencedirect.com/science/article/pii/S0893608097000117

24. von der Malsburg, C.: Self-organization of orientation sensitive cells in the striate cortex.
Kybernetik 14(2), 85–100 (1973). https://doi.org/10.1007/BF00288907

25. McDonnell, M.D., Vladusich, T.: Enhanced image classification with a fast-learning shallow
convolutional neural network. In: 2015 International Joint Conference on Neural Networks
(IJCNN), pp. 1–7, July 2015. https://doi.org/10.1109/IJCNN.2015.7280796

26. Mishkin, D., Matas, J.: All you need is a good init. arXiv preprint arXiv:1511.06422 (2015)
27. Monroe, D.: Neuromorphic computing gets ready for the (really) big time. Commun. ACM

57(6), 13–15 (2014). https://doi.org/10.1145/2601069
28. Morrison, A., Diesmann, M., Gerstner, W.: Phenomenological models of synaptic plasticity

based on spike timing. Biol. Cybern. 98(6), 459–478 (2008). https://doi.org/10.1007/s00422-
008-0233-1. https://pubmed.ncbi.nlm.nih.gov/18491160. 18491160[pmid]

29. Nowlan, S.J.: Maximum likelihood competitive learning. In: Touretzky, D.S. (ed.) Advances
in Neural Information Processing Systems, vol. 2, pp. 574–582. Morgan-Kaufmann (1990).
http://papers.nips.cc/paper/225-maximum-likelihood-competitive-learning.pdf

30. Pfister, J.P., Gerstner, W.: Triplets of spikes in a model of spike timing-dependent plasticity.
J. Neurosci. 26(38), 9673–9682 (2006). https://doi.org/10.1523/JNEUROSCI.1425-06.2006

31. Querlioz, D., Bichler, O., Dollfus, P., Gamrat, C.: Immunity to device variations in a spik-
ing neural network with memristive nanodevices. IEEE Trans. Nanotechnol. 12(3), 288–295
(2013). https://doi.org/10.1109/TNANO.2013.2250995

32. Querlioz, D., Bichler, O., Gamrat, C.: Simulation of a memristor-based spiking neural net-
work immune to device variations. In: The 2011 International Joint Conference on Neural
Networks, pp. 1775–1781, July 2011. https://doi.org/10.1109/IJCNN.2011.6033439

33. Rumelhart, D.E., Zipser, D.: Feature discovery by competitive learning. Cognit.
Sci. 9(1), 75–112 (1985). https://doi.org/10.1016/S0364-0213(85)80010-0. http://www.
sciencedirect.com/science/article/pii/S0364021385800100

34. Sato, I., Nishimura, H., Yokoi, K.: APAC: augmented pattern classification with neural net-
works. arXiv preprint arXiv:1505.03229 (2015)

35. Saunders, D.J., Siegelmann, H.T., Kozma, R., et al.: STDP learning of image patches with
convolutional spiking neural networks. In: 2018 International Joint Conference on Neural
Networks (IJCNN), pp. 1–7. IEEE (2018). https://doi.org/10.1109/IJCNN.2018.8489684

36. Shin, J., et al.: Recognition of partially occluded and rotated images with a network of spik-
ing neurons. IEEE Trans. Neural Netw. 21(11), 1697–1709 (2010). https://doi.org/10.1109/
TNN.2010.2050600

37. Sjöström, P.J., Rancz, E.A., Roth, A., Häusser, M.: Dendritic excitability and synaptic
plasticity. Physiol. Rev. 88(2), 769–840 (2008). https://doi.org/10.1152/physrev.00016.2007.
pMID: 18391179

38. Wan, L., Zeiler, M., Zhang, S., Cun, Y.L., Fergus, R.: Regularization of neural networks using
dropconnect. In: Dasgupta, S., McAllester, D. (eds.) Proceedings of the 30th International
Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 28, pp.
1058–1066. PMLR, Atlanta, June 2013. http://proceedings.mlr.press/v28/wan13.html

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1016/j.neunet.2018.08.024
http://www.sciencedirect.com/science/article/pii/S0893608018302508
http://www.sciencedirect.com/science/article/pii/S0893608018302508
https://doi.org/10.1016/S0893-6080(97)00011-7
http://www.sciencedirect.com/science/article/pii/S0893608097000117
https://doi.org/10.1007/BF00288907
https://doi.org/10.1109/IJCNN.2015.7280796
http://arxiv.org/abs/1511.06422
https://doi.org/10.1145/2601069
https://doi.org/10.1007/s00422-008-0233-1
https://doi.org/10.1007/s00422-008-0233-1
https://pubmed.ncbi.nlm.nih.gov/18491160
http://papers.nips.cc/paper/225-maximum-likelihood-competitive-learning.pdf
https://doi.org/10.1523/JNEUROSCI.1425-06.2006
https://doi.org/10.1109/TNANO.2013.2250995
https://doi.org/10.1109/IJCNN.2011.6033439
https://doi.org/10.1016/S0364-0213(85)80010-0
http://www.sciencedirect.com/science/article/pii/S0364021385800100
http://www.sciencedirect.com/science/article/pii/S0364021385800100
http://arxiv.org/abs/1505.03229
https://doi.org/10.1109/IJCNN.2018.8489684
https://doi.org/10.1109/TNN.2010.2050600
https://doi.org/10.1109/TNN.2010.2050600
https://doi.org/10.1152/physrev.00016.2007
http://proceedings.mlr.press/v28/wan13.html


786 P. G. Cachi et al.

39. Wicramasinghe, C.S., Amarasinghe, K., Manic, M.: Deep self-organizing maps for unsuper-
vised image classification. IEEE Trans. Ind. Inf. 15(11), 5837–5845 (2019). https://doi.org/
10.1109/TII.2019.2906083

40. Zierenberg, J., Wilting, J., Priesemann, V.: Homeostatic plasticity and external input
shape neural network dynamics. Phys. Rev. X 8, 031018 (2018). https://doi.org/10.1103/
PhysRevX.8.031018

https://doi.org/10.1109/TII.2019.2906083
https://doi.org/10.1109/TII.2019.2906083
https://doi.org/10.1103/PhysRevX.8.031018
https://doi.org/10.1103/PhysRevX.8.031018

	Fast Convergence of Competitive Spiking Neural Networks with Sample-Based Weight Initialization
	1 Introduction
	2 Related Work
	3 Competitive Spiking Neural Networks
	3.1 Network's Topology
	3.2 Spiking Neuron Model
	3.3 Learning Rule
	3.4 Lateral Inhibition
	3.5 Homeostasis
	3.6 Weight Normalization

	4 Sample-Based Weight Initialization
	5 Experiments
	5.1 Dataset
	5.2 Experimental Settings
	5.3 Evaluation Metrics

	6 Results and Discussion
	6.1 Convergence Time
	6.2 Sample-Based Initialization Robustness
	6.3 CSNN and Fully Supervised Neural Network Comparison

	7 Conclusions
	References




