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Abstract

Proper functioning of working memory involves the expression of stimulus-selective persistent activity in pyramidal neurons
of the prefrontal cortex (PFC), which refers to neural activity that persists for seconds beyond the end of the stimulus. The
mechanisms which PFC pyramidal neurons use to discriminate between preferred vs. neutral inputs at the cellular level are
largely unknown. Moreover, the presence of pyramidal cell subtypes with different firing patterns, such as regular spiking
and intrinsic bursting, raises the question as to what their distinct role might be in persistent firing in the PFC. Here, we use
a compartmental modeling approach to search for discriminatory features in the properties of incoming stimuli to a PFC
pyramidal neuron and/or its response that signal which of these stimuli will result in persistent activity emergence.
Furthermore, we use our modeling approach to study cell-type specific differences in persistent activity properties, via
implementing a regular spiking (RS) and an intrinsic bursting (IB) model neuron. We identify synaptic location within the
basal dendrites as a feature of stimulus selectivity. Specifically, persistent activity-inducing stimuli consist of activated
synapses that are located more distally from the soma compared to non-inducing stimuli, in both model cells. In addition,
the action potential (AP) latency and the first few inter-spike-intervals of the neuronal response can be used to reliably
detect inducing vs. non-inducing inputs, suggesting a potential mechanism by which downstream neurons can rapidly
decode the upcoming emergence of persistent activity. While the two model neurons did not differ in the coding features
of persistent activity emergence, the properties of persistent activity, such as the firing pattern and the duration of
temporally-restricted persistent activity were distinct. Collectively, our results pinpoint to specific features of the neuronal
response to a given stimulus that code for its ability to induce persistent activity and predict differential roles of RS and IB
neurons in persistent activity expression.
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Introduction

Working memory reflects the temporary storage of information

that is necessary for immediate decisions/actions. Delay-period

activity, which corresponds to neural activity that persists after the

end of the initiating stimulus, represents the cellular correlate of

working memory [1,2]. This activity, referred from now on as

persistent activity, is stimulus-selective: a specific pyramidal

neuron will only exhibit persistent activity if a stimulus is presented

in specific locations of the visual field, in the spatial working

memory tasks for example, which represents the neuron’s memory

field. [3,4]. ‘A large body of work has been devoted to

understanding the biophysical mechanisms underlying induction

and maintenance of persistent activity, which have emphasized the

importance of a delicate balance between excitatory and inhibitory

recurrent network connections [5,6,7,8,9], as well as the

contribution of intrinsic cellular conductances [10,11,12,13].

However, very little is known regarding the cellular mechanisms

that enable stimulus selectivity in the PFC. How does a neuron

‘recognize’ the relevant stimulus and therefore, enters a persistent

activity state? Previous studies have suggested that formation of

these memory fields entails proper inhibitory transmission [14], as

well as fine interactions between pyramidal neurons and

interneurons [15], similar to the mechanisms underlying the

formation of orientation columns [16]. However, additional cell-

specific features, such as the latency to the first action potential or

the sequence of inter-spike intervals (ISIs), could also be involved

in the formation of memory fields, as shown in the visual cortex

[17].

In the prefrontal cortex (PFC), the brain area heavily involved

in mediating working memory functions and expression of

persistent activity, layer V pyramidal neurons come in at least

two flavors with respect to their firing patterns: intrinsic bursting

(IB) neurons, characterized by an initial burst of action potentials

(APs) followed by single APs or regular spiking (RS) neurons,

characterized by a sequence of single APs [18,19]. These neurons

can also be categorized as adapting, whose firing frequency in

response to a constant current step decreases during the

stimulation and non-adapting [20,21]. These different pyramidal

neuron subtypes based either on their morphology or firing

pattern, can form distinct sub-networks [22,23,24] that project to

different subcortical areas, such as the pons or the striatum,

suggesting that they might serve distinctive functional roles. This is

further supported by recent data showing that cortico-pontine

pyramidal neurons, compared to cortico-cortical neurons, have

increased levels of the hyperpolarization activated cation current
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(H-current), contributing to increased temporal summation and

increased amplitude of the slow afterdepolarization (dADP), which

in turn facilitates the probability of persistent activity induction

[25].

The present study uses detailed compartmental models of IB

and RS neuron sub-types to identify (a) features of incoming

signals that determine persistent activity induction (stimulus

selectivity) and (b) characteristics of the neuronal response to

these signals that may be used by downstream neurons to decode

information about the probability of persistent activity emergence

(encoding of preferred stimuli). Our results predict that stimulus-

selectivity is tightly linked to the spatial location of activated

synapses. Moreover, while the properties of persistent activity

differ between the two subtype models, in both neurons the latency

to the first action potential and the initial inter-spike-intervals of

the stimulus-induced response contain predictive information

regarding the emergence of persistent activity, providing a

mechanism for encoding and propagating the occurrence of

preferred signals.

Results

Following the construction of a morphologically and biophysi-

cally-detailed layer V PFC pyramidal neuron model, biophysically

relevant variations in the sodium and R-type calcium currents (see

Methods) led to the emergence of two distinct neuronal sub-types:

a Regular Spiking (RS) and an Intrinsic Bursting (IB) model

neuron. Specifically, a combination of doubling the R-type

calcium and the persistent sodium conductances changed the

firing pattern of the model neuron from an RS to an IB one. The

experimentally documented range of these conductances [26,27]

indicates that such differences are often seen in layer V PFC

pyramidal neurons.

Neuronal responses were first validated extensively against

known experimental data in order to verify that both model

neurons exhibit: a) physiological values of input resistance (81 MV
for both model neurons, experimental average 79.6066.6 MV
[28]), b) physiological responses to step pulse current injections

(Fig. 1B, C), c) proper back-propagating action potentials (BPAPs)

in the apical as well as the basal dendrites (Supplemental Fig. S1)

and d) physiological synaptic responses in the basal dendrites

(Supplemental Fig. S2, also see Methods).

Validation of the NMDA and dADP mechanisms
Two biophysical mechanisms have thus far been implicated in

the generation of persistent activity: the NMDA [7,9,29,30] and

the CAN conductance [7,10,11,29].

The NMDA current was validated with respect to the AMPA

current based on experimental data from connected layer V PFC

pyramidal neurons showing that the NMDA-to-AMPA ratio is 1.2,

and that NMDA currents have relatively slow kinetics of

inactivation (Fig. 2A, B1, B2) [31]. Furthermore, it has been

shown that basal dendrites of layer V pyramidal neurons exhibit

NMDA spikes at their basal dendrites (Fig. 2C) [32,33]. These

NMDA spikes are generated in an all-or-none manner, and once

generated, stronger stimuli affect mostly the duration of the

NMDA spike, while a slight increase in the amplitude may also be

seen [32]. We tested whether NMDA spikes could be evoked at the

basal dendrites of the neuron models. A dendritic branch located

about 100 mm from the soma was stimulated with an increasing

number of excitatory synapses. When using at least 40 excitatory

synapses to induce the necessary depolarization, dendritic NMDA

spikes could be evoked in both model neurons. Further increase in

the number of synapses resulted in an increase of the NMDA spike

duration along with a slight increase in the spike amplitude, in

accordance with the experimental data (Fig. 2D1, D2).

Layer V PFC pyramidal neurons have been shown to exhibit a

delayed afterdepolarization (dADP) following stimulation of Gq-

coupled receptors [34,35]. This dADP is induced following a burst

of action potentials and has small amplitude (average ,3 mV) and

very slow kinetics (decay t= 3 sec) [35], rendering it a possible

mechanism for induction and maintenance of persistent activity

[11]. The dADP has been shown to be primarily generated by the

CAN current [36] and possibly results from the activation of

TRPC4/5 channels which are found in layer V PFC pyramidal

neurons [35]. We simulated the dADP by including an additional

ionic mechanism, which is mainly dependent on two variables: a)

Figure 1. Neuron models used. A: Neuronal morphology used to
construct the model neurons. B, C: Experimental traces (top) and
voltage responses of the regular spiking (B) the intrinsic bursting (C)
model neurons (bottom) in response to a somatic step-pulse current
injection (200 pA). Experimental traces taken from the database used in
[11].
doi:10.1371/journal.pcbi.1002489.g001

Author Summary

Memory, referred to as the ability to retain, store and recall
information, represents one of the most fundamental
cognitive functions in daily life. A significant feature of
memory processes is selectivity to particular events or
items that are important to our survival and relevant to
specific situations. For long-term memory, the selectivity
to a specific stimulus is seen both at the behavioral as well
as the cellular level. For working memory, a type of short-
term memory involved in decision making and attention
processes, stimulus selectivity has been observed in vivo
using spatial working memory tasks. In addition, persistent
activity, which is the cellular correlate of working memory,
is also selective to specific stimuli for each neuron,
suggesting that each neuron has a ‘memory field’. Our
study proposes that both the location of incoming inputs
onto the neuronal dendritic tree and specific temporal
features of the neuronal response can be used to predict
the emergence of persistent activity in two neuron models
with different firing patterns, revealing possible mecha-
nisms for generating and propagating stimulus-selectivity
in working memory processes. The study also reveals that
neurons with different firing patterns may have different
roles in persistent activity expression.

Predictive Features of Persistent Activity
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the half point of calcium-induced activation and b) the rate of

inactivation. These two variables were adjusted so that the dADP

was induced following a burst of 5 spikes, but was much smaller

following just 2 spikes (Fig. 3A, B), in accordance with

experimental findings [11]. The amplitude of the dADP could

be modified by changing the conductance of the CAN mechanism

(Fig. 3C) and was kept within the physiological range (2–8 mV),

based on existing experimental data ([11] and Fig. 3D).

Induction of persistent activity in a single neuron model
Cortico-cortical connections that are thought to underlie the

emergence and maintenance of persistent activity [7,37] form

synapses onto the basal dendrites of pyramidal neurons [38].

Therefore, the basal dendrites of the model neurons were

stimulated with a total of 200 excitatory synapses (containing

both AMPA and NMDA receptors), evenly distributed within a

few basal dendrites (see Methods), 10 times at 20 Hz (synchro-

nously), while the soma was stimulated with 5 inhibitory synapses

(both GABAA and GABAB) at 50 Hz (also synchronously) [39].

This stimulation protocol was repeated 50 times and the location

(set of dendritic branches), but not the stimulation time, of

activated synapses varied between trials (see Methods). Persistent

activity was induced in a probabilistic manner, in a percentage of

these trials.

Synaptic stimulation alone (in the absence of the CAN

mechanism) did not lead to persistent activity in any single cell

model, even when the number of stimulated synapses was

gradually increased up to 400. However, since neuromodulators,

such as dopamine and serotonin, are known to increase NMDA

currents in layer V PFC pyramidal neurons [40,41,42] and the

NMDA conductance is required in large-scale networks for

stabilizing persistent activity [7], we next tested whether increasing

the NMDA current by 25% could induce persistent activity in the

single neuron models. Increasing the NMDA-to-AMPA ratio

(abbreviated ‘‘N*’’, with * equal to the ratio) from 1.2 to 1.5 did

not induce persistent activity in any model neuron (data not

shown) although it resulted in decreased inter-spike-intervals (ISIs)

of the neuronal response during the stimulus (Supplemental Table

S1). The latter concurs with experimental data showing modula-

tion of neuronal excitability by NMDA in vitro [43].

Activation of the dADP mechanism on the other hand, resulted

in induction of persistent activity, that is, neuronal activity that

lasted more than 3 seconds following the end of the stimulus

(Fig. 4A2, B2) in both neuron models. Increasing the magnitude of

the CAN conductance (i.e., increasing the amplitude of the

resulting dADP, tested with five somatic step pulses, within the

physiological range) increased the probability of inducing

persistent activity. We characterized the magnitude of the CAN

current that would induce persistent activity with at least 50%

probability in the 50 experimental trials in which the spatial

arrangement of the synapses on basal dendrites was varied (i.e., at

least 25/50 trials exhibited persistent activity). The dADP required

for induction of at least 50% persistent activity for the RS and IB

neuron models was 3.2 and 3.9 mV, respectively (Fig. 4C, white

bars) and dropped by 1.3 mV in both models when the NMDA-

to-AMPA ratio increased to 1.5 (Fig. 4C, black bars). Note,

Figure 2. Validation of the NMDA mechanisms. A. Experimental traces showing current responses at the soma of a pyramidal neuron following
generation of an action potential in a nearby connected pyramidal neuron within the PFC [31]. The current response at 270 mV corresponds to the
AMPA current while the current response at +60 mV corresponds to the NMDA current. B. Simulated somatic current recordings at 270 mV (AMPA)
and at +60 mV (NMDA) in response to activation of 5 synapses at the basal dendrites of the RS (B1) and the IB (B2) model neuron. C. Experimental
traces showing generation of NMDA spikes at the basal dendrites of cortical neurons [32]. Top two traces correspond to dendritic (red) and somatic
(blue) traces in response to unitary glutamate uncaging. The bottom red traces correspond to dendritic voltage responses to increasingly more
glutamate uncaging and the bottom blue traces to the corresponding somatic responses. The black trace (amongst the red ones) corresponds to the
dendritic voltage response in the presence of NMDA receptor blocker APV. D. Simulated dendritic and somatic voltage responses of the RS (D1) and
IB (D2) model neurons. The top two sets of traces are dendritic (red) and somatic (blue) voltage responses to stimulation at the basal dendrites with
increasing number of synapses (10, 20, 40 and 50 synapses, shown as traces with increasing amplitude). The bottom two sets of traces are dendritic
(red) and somatic (black) voltage responses to stimulation of an increasing number of synapses at the basal dendrites (10, 20, 40 and 50 synapses,
shown as traces with increasing amplitude). In both neuron models, at least 40 synapses were required for NMDA spikes to be generated.
doi:10.1371/journal.pcbi.1002489.g002
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Figure 3. Modeling the dADP following somatic current injection. A, B. Top traces. Experimental traces of the dADP in a layer V PFC pyramidal
neuron following 5 action potentials (A1) or 2 action potentials (B1) in response to 5 ms step pulses at 20 Hz. Bottom traces. Simulated traces of the
dADP following activation of the CAN mechanism in the RS model after 5 APs (A2) or 2 APs (B2) and in the IB model after 5 APs (A3) or 2 APs (B3). C.
Increasing the conductance of the CAN mechanism in both model neurons (RS and IB) increases the dADP induced following 5 action potentials. D.
The distribution of all neurons recorded experimentally based on their dADP. All values of dADP used in simulations fall within this physiological
range (taken from [11]).
doi:10.1371/journal.pcbi.1002489.g003

Figure 4. Persistent activity induction was studied in response to a 20 Hz stimulus targeted at the basal dendrites of both model
neurons. A–B. Representative traces of a simulation trial exhibiting no persistent activity (top) and a trial exhibiting persistent activity (bottom) for
the RS (A) and the IB model neuron (B). C. The magnitude of the dADP required for induction of persistent activity in at least 50% of the trials for the
RS and IB neuron models at two different NMDA-to-AMPA ratios, 1.2 (white bars) and 1.5 (black bars) D. Duration of neuronal activity after the end of
the stimulus in the no persistent trials for the RS and IB neuron models at two different NMDA-to-AMPA ratios, 1.2 (white bars) and 1.5 (black bars).
doi:10.1371/journal.pcbi.1002489.g004
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however, that the slightly larger dADP in the IB model cell

corresponds to a smaller CAN conductance compared to the RS

model cell (Fig. 3C). This can be explained by the enhanced R-

type calcium and persistent sodium currents in the IB model cell

which may contribute to the long-lasting depolarization produced

by the CAN mechanism, thus partially substituting the CAN

conductance. Taken together, these findings show that induction

of persistent activity requires a larger dADP (although a smaller

CAN conductance) in the IB than the RS model cell.

In the previous analysis, we classified persistent activity as the

neuronal activity that continues past the end of the initiating

stimulus and lasts at least 3 seconds. However, the neuron models

could exhibit self-terminated persistent activity (500–2000 ms)

(Fig. 4D, white bars), even in the experimental trials classified as

not having persistent activity (‘no persistent’ trials). We notice that

the RS neuron model exhibits significantly less temporally-

restricted persistent activity compared to the IB neuron model

(Fig. 4D, white bars, p,0.001). Increasing the NMDA-to-AMPA

ratio however facilitates short-lasting persistent activity to a much

larger extent in the RS than the IB model (Fig. 4D, black bars,

p,0.001). A possible explanation could lie in the fact that the IB

model cell has larger R-type calcium and persistent sodium

currents, which together with the CAN mechanism contribute to

the prolonged depolarization needed for persistent activity. Thus,

an additional slow increase in Ca++ influx due to enhanced

NMDARs would have a greater impact on the RS model, where

the primary conductance responsible for the dADP is the CAN

conductance, than the IB model, where several mechanisms -with

different kinetics- already contribute to this depolarization.

Furthermore, this short-lasting persistent activity could be

significant in an in vivo situation where network mechanisms could

maintain it for longer periods of time. These findings show that,

while persistent activity in the single neuron models is primarily

dependent on the CAN current, altering the NMDA-to-AMPA

ratio modulates the duration of persistent activity that lasts less

than 3 seconds.

Having characterized the conditions leading to persistent

activity emergence in both model cells, our next goal was to

search for features of the input and/or the models’ response that

would be associated with stimulus-selectivity.

Synaptic location as a feature of stimulus-selectivity
The presence of ‘memory fields’ has been shown in individual

PFC neurons with respect to delay-period activity [44]. That is, a

specific neuron exhibits robust delay-period activity (i.e., an

increase in firing rate during the delay compared to the stimulus

period) only for a specific set of locations in the visual field [3]. The

way a PFC pyramidal neuron, however, identifies its memory field

remains an open question. It is possible that different incoming

stimuli, such as stimuli located in different parts of the visual field,

activate synapses in different dendritic branches on PFC

pyramidal neurons and this spatial specificity of inputs is in turn

used to discriminate between preferred (i.e., those leading to

persistent activity) and non-preferred stimuli. In our models, we

used 50 simulation trials, in which the set of dendritic branches

containing synaptic mechanisms varies with each trial (see

Methods). This variability in the location of incoming contacts

could be assumed to represent different incoming stimuli [45],

hence, we conjecture that the spatial location of activated synapses

may play a role in persistent activity induction.

To test this hypothesis, we measured the distance from the soma

and the center of each dendritic branch that contained stimulated

synapses, and averaged the values of each of these features for all

dendritic branches in ‘persistent’ versus ‘no persistent’ trials. We

found that in both neuron models, synaptic mechanisms were on

average located further away from the soma for the ‘persistent’

trials, compared to the ‘no persistent’ trails and this difference was

statistically significant (p,0.001) (Fig. 5B, RS model and

Supplemental Fig. S3, IB model). The distributions of all activated

dendritic segments in ‘persistent’ and ‘no persistent’ trials (Fig. 5C,

RS model and Supplemental Fig. S3, IB model) show that this

difference stems from a rightward shift as well as a change in the

shape of the ‘persistent’ trial distribution due to the activation of

dendritic segments located further away from the soma.

A possible mechanistic explanation as to why inputs that are

further away from the soma lead to persistent firing may be linked

to the generation of NMDA spikes. As shown in Fig. 5D, the

magnitude of NMDA spikes is much larger when synapses are

stimulated in distal compared to proximal locations within the

basal dendrites of both model neurons. It is thus possible that distal

inputs lead to persistent activity emergence via the facilitation of

NMDA spikes which in turn promote the supralinear integration

of synaptic inputs [46] and provide much larger and longer lasting

somatic depolarizations. These findings are supported by recent

experimental data showing that inputs to proximal basal dendrites

of cortical pyramidal neurons sum linearly and require precise

temporal coincidence for effective summation, whereas distal

inputs are combined supralinearly over broader time windows in

an NMDAR-dependent manner [47]. Finally, these findings

suggest that the relative distance of incoming signals from the

cell body may code for the neuron’s memory field and therefore,

their ability to induce persistent activity.

Initial spikes in the stimulus-induced response code for
persistent activity emergence

Since the spatial location of incoming contacts is significantly

different between ‘persistent’ and ‘no persistent’ trials, it is likely

that these differences are reflected in the neuronal response to

these stimuli and, if so, this information can be used by

downstream neurons to decode the upcoming emergence of

persistent activity before it occurs [48].

To test this hypothesis, we first examined whether features of

the neuronal response to the stimulus, such as the average firing

frequency or the AP latency differed between preferred and non

preferred inputs. We found that the average ISIs of the neuronal

response during the stimulus was not different between ‘persistent’

and ‘no persistent’ trials in either the RS or the IB neuron model

(see Supplemental Table S2). However, the first AP latency of the

models’ response was clearly different in the ‘persistent’ trials when

compared to the ‘no persistent’ trials (see Fig. 6A–D and

Supplemental Table S3). Specifically, ‘persistent’ trials in the RS

model had AP latencies that were significantly larger than the ‘no

persistent’ trails for both NMDA-to-AMPA ratios tested (p,0.001

(N1.2) and p,0.001 (N1.5), non-overlapping boxes in Fig. 6C, D).

For the IB model neuron, differences in the AP latencies were

highly significant only when the NMDA-to-AMPA ratio was

increased to N1.5 (p = 0.0065 (N = 1.2), overlapping boxes in

Fig. 6C and p,0.001 (N = 1.5), non-overlapping boxes in Fig. 6D).

In both models, persistent activity emergence was associated with

a slightly slower onset of the neuronal response, which could be

explained by the more distal location of activated synapses,

compared to the ‘no persistent’ trials (Fig. 5B–C and Supplemental

Fig. S3). Although the differences in the AP latencies between

‘persistent’ and ‘no persistent’ trials were small (200–300 ms),

recent studies have shown that even submillisecond differences in

AP emergence or width could represent meaningful coding

parameters for neurons [49,50,51], suggesting that the magnitude

Predictive Features of Persistent Activity
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of the AP latency maybe used to code for the occurrence of a

preferred stimulus.

To test whether differences in the AP latency can discriminate

between ‘persistent’ and ‘no persistent’ trials in a more systematic

manner, we assessed the ability of the AP latency values to predict

the emergence of persistent activity using Linear Discriminant

Analysis (LDA). For this, we used a training set (consisting of the

AP latencies for 20 ‘persistent’ and 10 ‘no persistent’ trials) in order

to determine the optimal cut-off that separates the two

distributions based solely on the value of the AP latency. The

method was validated using leave-five-out cross validation

(LFOCV) and subsequently tested on a previously unseen set of

another 30 trials (see Methods), to assess how well can the AP

latency of the response to a new input determine whether this

input will induce persistent activity or not. Each observation (i.e.

trial) of the test set was passed through the 6 ‘trained’ LDA models

produced by the LFOCV and a class label was assigned by each

model (0 for ‘no persistent’ and 1 for ‘persistent’). All model

outputs were then averaged and if the average was 0.5 or higher,

then that specific observation was classified as a ‘persistent’ trial,

otherwise it was classified as a ‘no persistent’ trial.

Using the percentage of correctly predicted ‘persistent’

(sensitivity) and ‘no persistent’ (specificity) trials to assess the

method’s performance accuracy, we found that discrimination was

more successful in the RS than the IB model neuron. Specifically,

for the RS model and an NMDA-to-AMPA ratio of 1.2, the

sensitivity of the method was very high (100% or 1), while the

specificity was a bit lower (0.7), resulting in total accuracy of 0.85

(Fig. 6E–F, black squares). This means that out of the 30 trials

tested, all 20 ‘persistent’ trials and 7/10 of the ‘no persistent’ trials

are correctly identified by their respective AP values. For the IB

model, the sensitivity value was 0.8, the specificity was only 0.4,

and the total accuracy was 0.6, considerably decreased compared

to the RS model (Fig. 6E–F, ‘x’ marks). However, for a larger

NMDA-to-AMPA ratio (N 1.5), the performance accuracy was

high for both models, with the RS cell reaching 100% and the IB

cell reaching 90% (Fig. 6G). Taken together, these findings suggest

that the AP latency may be used as a discriminatory feature for

signaling whether a given stimulus will or will not lead to persistent

firing, that the accuracy of this prediction is higher in the RS than

the IB model neuron and is strongly dependent on the NMDA

contribution.

We next investigated whether some other characteristic of the

stimulus-induced response can better predict persistent activity

emergence even for a lower NMDA-to-AMPA ratio. Towards this

goal, we used the ISIs during the stimulus-induced response as

input to a linear perceptron (see Methods and Fig. 7A for a

graphical illustration) and tested whether ‘persistent’ trials could be

discriminated from ‘no persistent’ trials based on these features.

The perceptron was trained and validated with 30 trials (as in

LDA), using the leave-one-out cross validation (LOOCV) method

and subsequently tested on a previously unseen set of another 30

trials (see Methods and LDA analysis above). Sensitivity and

specificity measures were again used to assess the method’s

performance accuracy. The sensitivity of the perceptron for both

the RS and IB neuron models was 100% when the first 2, first 5,

or all ISIs of the stimulus-induced response were used as input

(Fig. 7B). Similarly, specificity of the perceptron for both models

was above 80%, with the IB slightly better than the RS model (0.9

or greater, Fig. 7C) for all ISI sequences tested. In particular, the

Figure 5. Characteristics of the spatial arrangement of synapses in ‘persistent’ and ‘no persistent’ trials. A. Representative spatial
arrangements from a ‘no persistent’ (black) and a ‘persistent’ (red) trial in the RS model neuron, showing that the synapses in a ‘no persistent’ trial are
closer to the soma compared to the synapses in the ‘persistent’ trial. B. Graph showing the average distance from the soma of all dendritic branches
activated in ‘persistent’ and ‘no persistent’ trails in the RS model neuron. C. Histogram of the average distance from the soma of all activated dendritic
branches in the RS model neuron. D. Dendritic voltage traces showing that NMDA spikes are larger when a dendrite located at 78 mm from the soma
(black trace) is stimulated with 20 synapses, compared to the NMDA spikes generated in a dendrite located at 40 mm from the soma (grey trace) in
the RS (D1) and the IB (D2) model neurons.
doi:10.1371/journal.pcbi.1002489.g005
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specificity for the RS model was 80%, 90% and 90% when the

first 2, 5 or all ISIs were used as input features (Fig. 7C, black

squares) whereas the specificity of the IB model was 90%, 100%

and 90%, respectively (Fig. 7C, ‘x’ marks). The perceptron’s

performance was also assessed on shuffled datasets (in which

‘persistent’ and ‘no persistent’ trials were randomly labeled) and

the performance was severely degraded: the sensitivity dropped to

0% and the specificity to 60% for both RS and IB models. These

results show that the initial ISIs of the stimulus-induced response

contain highly accurate predictive information regarding the

emergence of persistent activity in both the IB and the RS model

neurons.

Overall, our findings suggest that temporal characteristics of the

stimulus-induced response, such as the first spike latency and the

first 2 ISIs, contain significant predictive information about the

emergence of persistent activity beyond the end of preferred

stimuli while average characteristics such as the firing frequency

don’t capture such information, in accordance with data from

other brain regions [48,52,53]. These findings are particularly

important as they pinpoint specific features of the neuronal

response, at the single neuron level, which are common across two

major sub-types of pyramidal neurons and which encode stimulus

preference with respect to persistent activity emergence. If

experimentally validated, these findings suggest a potential

mechanism by which stimulus-selectivity that initiates in primary

cortices may be decoded by downstream PFC pyramidal neurons

within less than 100 miliseconds from the stimulus presentation,

and this rapid decoding may have serious implications for the

expression of goal-directed behaviors that have been documented

in the PFC [54].

Differential persistent activity properties in RS and IB
model cells

Since both model neurons seem to use similar codes for

stimulus-selective persistent activity induction, we wondered

whether their different firing patterns influenced persistent activity

at a different level. We thus contrasted the properties of persistent

activity, such as its induction threshold, firing frequency and firing

pattern and their dependence on CAN and NMDA in the two

model cells.

The role of CAN and NMDA conductances. We first

investigated how the biophysical properties (magnitude and

kinetics) of NMDA current may contribute to persistent activity

induction. We found that a small reduction in the NMDA

conductance by 10% (while retaining the same level of excitability

by increasing the AMPA conductance) resulted in corruption of

Figure 6. The AP latency of the stimulus-induced response can discriminate between ‘persistent’ and ‘no persistent’ trials. A–B.
Representative traces showing the increased AP latency in the ‘persistent’ trials compared to ‘no persistent’ trials in the RS (A) and IB (B) models. C–D.
Box plots of the first AP latency in trials where persistent activity is induced (red) and in trials where no persistent activity (black) is induced for the RS
and IB neuron models when N = 1.2 (C) and N = 1.5 (D). E–G. Sensitivity (E), Specificity (F) and Total Accuracy (G) obtained when using Linear
Discriminant Analysis on the AP latencies of the RS and IB neuron models.
doi:10.1371/journal.pcbi.1002489.g006
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persistent activity in both the RS and IB model neurons, (Fig. 8A,

B), while a similar decrease of AMPA conductance did not have

any effect (data not shown). Only when the dADP was increased

could persistent activity be expressed (Fig. 8D). If the NMDA

conductance was decreased further, then greater increases in the

dADP were required for induction of persistent activity (Fig. 8D).

The dADP required for reinstating persistent activity under

reduced NMDA conductance conditions was consistently larger in

the IB compared to the RS model, similar to the findings of Fig. 4C

under control conditions. Furthermore, increasing the inactivation

kinetics of the NMDA current (i.e., making the NMDA current

faster), by decreasing the inactivation factor 10-fold, resulted in

corruption of persistent activity (Fig. 8C) and a substantial increase

in the dADP was again required for persistent activity

reinstatement (Fig. 8E). On the other hand, a decrease in the

inactivation kinetics reduced the dADP required for persistent

activity initiation. When the factor for the inactivation time

constant matched the one of the CAN mechanism (b = 0.00001),

then no dADP was needed for induction of persistent activity in

either model neurons (Fig. 8E). This finding suggests that

persistent activity induction depends primarily on the long

lasting activation of a depolarizing current, which does not

necessarily need to be provided by the CAN conductance. If

another conductance had similar kinetics, the CAN mechanism

could be obsolete. However, since none of the remaining currently

known conductances in layer V pyramidal neurons has similar

activation/inactivation characteristics, the CAN mechanism

remains the key candidate for controlling persistent activity

induction.

Collectively, these data show that while the CAN mechanism is

necessary to initiate persistent activity in a single model neuron,

the NMDA synaptic mechanism -both its conductance and

inactivation kinetics- contributes to the emergence of persistent

activity and modulates the dADP amplitude required for its

induction.

Firing characteristics of persistent activity. Two

important properties of persistent activity are its average firing

rate and its coefficient of variation (CV). We find that in both

neuron models the average firing frequency increases during

persistent activity compared to the stimulus-induced neuronal

activity (Supplemental Table S1). Such an increase is observed

mostly in neurons that exhibit stimulus-selective persistent activity

in vivo [55]. In addition, we observe that persistent activity induced

in the RS model neuron exhibits a regular firing pattern (Fig. 9A1,

unimodal ISI distribution) while persistent activity induced in the

IB model neuron exhibits a bursting firing pattern (Fig. 9B1, bi-

modal ISI distribution), suggesting that neurons with different

stimulus-induced firing pattern responses also exhibit different

persistent activity patterns. Increasing the NMDA-to-AMPA ratio

allows the RS model neuron to also exhibit bursts during persistent

activity, suggesting that the firing pattern of persistent activity

could be modulated (Fig. 9A2).

Delay-period activity firing in vivo is highly variable, a

characteristic that has not been successfully reproduced in existing

computational models [55]. We analyzed the variability of the

persistent activity generated in our model neurons using the index

of coefficient of variation (CV) estimated over 250 ms bins. When

the NMDA-to-AMPA ratio is 1.2, CV is initially increased

compared to the CV during the stimulus response (see Supple-

mental Table S1), but gradually decreases to very small values, in

both RS and IB model neurons. When the NMDA-to-AMPA ratio

increases to 1.5, the CV in the RS model starts out lower,

gradually increases and then decreases again during the time

course of persistent activity. On the contrary, the CV in the IB

model neuron increases gradually over the course of persistent

firing and reaches a plateau close to 1 (Fig. 9C). Our results suggest

that IB neurons under conditions of increased NMDA receptor

contributions can achieve high degrees of variability during

persistent activity. In line with the in vivo findings [55], the

variability during persistent activity in both models is similar or

larger than the variability during the stimulus-induced response

(Supplemental Table S1), despite the increased firing frequency.

Given that in our neuron models, persistent activity is maintained

primarily by the CAN current (absence of ongoing network input),

these results suggest that intrinsic mechanisms, such as the CAN

current, cannot explicitly account for the increased variability

observed in vivo. Increased NMDA contribution from recurrent

excitation is likely to further enhance variability in fully connected

PFC networks [56].

Overall, we find that the properties of persistent activity such as

its firing pattern characteristics, Coefficient of Variation and its

dependence on CAN and NMDA currents are differentially

expressed in the RS versus the IB model cells, perhaps suggesting a

different contribution of these sub-types in working memory.

For example, our models predict that IB model neurons require

a larger dADP to induce persistent activity in response to

stimulation of their basal dendrites, suggesting that this subtype

might be less likely to express persistent activity in vivo. On the

other hand, stimulus-selective persistent activity properties ob-

served in vivo are much closer to the properties of the IB model,

suggesting that this subtype is crucial in the proper expression of

persistent activity.

Figure 7. The ISIs of the response to the stimulus can predict
the emergence of persistent activity. A. A simple artificial neural
network (Perceptron) is used to test whether the ISIs of the stimulus-
induced response in the model neurons can predict the emergence of
persistent activity. B. The sensitivity of the Perceptron is 100% for both
RS and IB model neurons when the first 2, first 5 or all ISIs are used as an
input. C. The specificity of the Perceptron for the RS and IB model
neurons when the first 2, first 5 or all ISIs are used as an input. D. Total
accuracy of the Perceptron for the RS and IB model neurons when the
first 2, first 5 or all ISIs are used as an input.
doi:10.1371/journal.pcbi.1002489.g007
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Discussion

In this study, we used a modeling approach to investigate the

mechanisms that underlie stimulus-specific induction of persistent

activity in two major subtypes of layer V PFC pyramidal neurons:

regular spiking and intrinsic bursting cells. We found that

persistent activity can emerge in both single neuron models when

the basal dendrites are stimulated with realistic synaptic inputs,

provided that the CAN mechanism is activated. In addition, we

showed that RS and IB model neurons have distinct persistent

activity properties, such as different firing patterns during

persistent activity as well as differences in its modulation by the

NMDA current. More importantly, our findings suggest that the

spatial arrangement of activated synapses may determine whether

a given signal will lead to persistent activity induction, thus

pinpointing a mechanism for stimulus selectivity. Specifically, we

found that in both model cells, preferred stimuli consisted of inputs

impinging on more distal parts of the basal dendritic tree

compared to non-preferred stimuli. Finally, we show that the

temporal features of the stimulus-induced response near its onset

code for persistent activity induction in both model cells.

Specifically, in the RS neuron, both the action potential latency

and the first few ISIs are sufficient for discriminating between

preferred and non-preferred stimuli while in the IB model neuron

only the first few inter-spike-intervals play the same role. These

findings suggest the potential decodability of preferred inputs by

downstream PFC neurons upon stimulus presentation and long

before persistent activity induction.

Single-neuron persistent activity
The ability of PFC pyramidal neurons to display neuronal

activity that persists after the end of stimulation was first recorded

in vivo in monkeys [57]. This persistent activity has been considered

as a network property and particularly a property of recurrent

networks due to reverberating excitation [5]. Thus, single neurons

have to be part of a recurrent network in order to exhibit persistent

activity firing. This hypothesis was further corroborated by the fact

that persistent activity could not be induced in neurons recorded in

PFC slices where many of the recurrent connections could be

severed. Following a modification of the artificial cerebrospinal

fluid used, persistent activity lasting for about 1–2 seconds could

be recorded from single PFC pyramidal neurons in the slice

preparation. This persistent activity, or rather the ‘UP’ state,

which occurs both spontaneously and following a stimulus

[8,9,30], is mediated by AMPA and NMDA [9] and is modulated

by GABAB currents [58] and dopamine [59,60].

Single neurons have been shown to exhibit persistent activity

following activation of metabotropic receptors, such as the

muscarinic acetylcholine receptor (mAchR) and the metabotropic

glutamate receptors (mGluR) [10,11,12], due to an underlying

depolarizing envelope (i.e., dADP) activated by these receptors

[34,35,61,62]. The average dADP in PFC pyramidal neurons

following a short 20 Hz stimulus ranges between 2 and 8 mV, not

large enough to induce persistent activity by itself, as it has been

suggested for enthorhinal cortical neurons [63]. Our computa-

tional study shows that this small depolarization when coupled

with synaptic activation can induce persistent activity in single

neurons.

The common characteristic of both dADP and NMDA

mechanisms is their slow inactivation kinetics, previously

suggested to be required for the persistent activity to maintain

‘physiological’ firing rates [31]. Our study examined the role of

these mechanisms in persistent activity. We showed that while an

increased NMDA modulates the neuronal firing rate during the

Figure 8. Effect of NMDA current properties on persistent activity induction. A. Stimulus-induced persistent activity in response to the
20 Hz input at the basal dendrites when the NMDA-to-AMPA ratio is 1.2. B. Corruption of stimulus-induced persistent activity when the NMDA
conductance is reduced to 90% of its original value. C. Corruption of stimulus-induced persistent activity when the factor for the inactivation time
constant of the NMDA conductance is increased 10 times. Inset: NMDA current traces under ‘control’ (black) conditions and under conditions of
increased inactivation time constant (grey trace). Scale bars: 1 pA, 50 ms. D. Graph showing the increase in the dADP required for induction of
persistent activity while the NMDA conductance is reduced. E. Graph showing the change in dADP required for induction of persistent activity when
the factor for inactivation time constant changes (all experiments in this study were performed with a control value of log(bNMDA) = 22).
doi:10.1371/journal.pcbi.1002489.g008
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stimulus, increasing the CAN current specifically increases the

firing frequency of persistent activity. Furthermore, while

increasing the NMDA current increases the variability of firing

during persistent activity, increasing the CAN current decreases

this variability. Based on analysis from in vivo delay-period

activity, stimulus-selective -and thus more informative (or

significant for mediating behavior)- persistent activity has high

firing frequency rates (increased compared to cue-response) as

well as increased variability [55]. Our results suggest a dual role

for both NMDA and CAN current mechanisms: CAN current

acts to enhance persistent activity firing but makes it more

regular, while NMDA acts to decrease persistent activity firing

but increases its irregularity. Thus, a delicate balance between

these two mechanisms in vivo is likely to be critical for proper

persistent activity firing.

Synaptic location as a cellular mechanism for stimulus-
selectivity

Persistent activity in PFC is stimulus-selective, that is, a neuron

will only exhibit persistent firing to specific stimuli, for example

stimuli that appear on a specific location of the visual field [44].

The selection of stimuli that a neuron responds to is called a

‘memory field’, in analogy to the receptive fields in the visual

cortex [64], or the place fields in the hippocampus [65]. Inhibitory

mechanisms play a significant role in shaping the memory fields in

PFC, since blockade of GABAA receptors disrupts the emergence

of stimulus-selective persistent activity [14].

In our study, we made the assumption that different

environmental stimuli could be mapped as different spatial

arrangements of synaptic inputs on the basal dendrites. Dendritic

activation has been shown to map direction-selective responses in

Figure 9. Properties of persistent activity. A, B. Histograms of the ISIs during persistent activity in the RS neuron model for N = 1.2 (A) and
N = 1.5 (B). The unimodal distribution seen when N = 1.2 is converted to a bimodal distribution when N = 1.5. C, D. Histograms of the ISIs during
persistent activity in the IB neuron model for N = 1.2 (C) and N = 1.5 (D), showing a bimodal distribution under both conditions. E, F: Coefficient-of-
variation (CV) before and during persistent activity measured per 250 ms bins. In the RS model neuron (E), CV is initially increased (white bars) or
rising (black bars) and gradually decreased during persistent activity when N = 1.2 (white bars) and N = 1.5 (black bars). In the IB model neuron (F), CV
gradually decreases during the time course of persistent activity when N = 1.2, but increases and stabilizes to values close to 1 when N = 1.5.
doi:10.1371/journal.pcbi.1002489.g009
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the fly [45] as well as place cells in the hippocampus [66], hence, it

is possible that different spatial locations in the neuron’s receptive

field correspond to the activation of spatially distinct synaptic

patterns.

The fact that persistent activity emergence in the model neurons

is associated with activation of synapses that are located further

away from the soma suggests that perhaps in vivo circuits are

refined so that stimuli within a memory field project to more distal

basal dendrites compared to stimuli outside the neuron’s memory

field. Since persistent activity is characterized by slow kinetics, it is

likely that inputs to distal dendrites, which are generally

characterized by slower integration, are more suitable for carrying

signals related to persistent activity induction. Finally, stimulation

of distal dendrites can generate larger NMDA spikes (Fig. 5 and

[67]) which will in turn prolong the window for temporal

summation of incoming signals thus resulting in larger and

longer-lasting somatic depolarization. Therefore, distal inputs may

facilitate persistent activity emergence via the enhancement of

NMDA spikes [47].

Potential decodability of preferred stimuli by
downstream circuits

In addition to a strong link between the spatial arrangement of

preferred stimuli and the emergence of persistent activity, our data

showed that features of the neuronal response during the stimulus

such as the AP latency [48] and the first few inter-spike-intervals,

can code for the emergence of persistent activity. Specifically, we

found that the AP latency in ‘persistent trials’ is on average

significantly longer compared to ‘no persistent’ trials in both the

RS and IB model neurons. This may be due to the fact that

‘persistent trials’ corresponded to synaptic arrangements in which

activated synapses were located significantly further away from the

soma than in ‘no persistent’ trials. Although the differences in the

AP latencies between ‘persistent’ and ‘no persistent’ trials were

submillisecond, several studies suggest that they could still be

decoded by downstream neurons [49,50,51]. This finding adds to

the coding capabilities of the AP latency which has also been found

to code for differences in spatiotemporal characteristics of the

input in CA1 model neurons [48] as well as the location of sound

in secondary auditory neurons [52].

While AP latency was not as powerful predictor at lower

NMDA-to-AMPA ratio, particularly in the IB model cell, stimulus

selectivity was encoded in the first few inter-spike-intervals of the

stimulus-induced response. For both the RS and IB model neurons

the emergence (or not) of persistent activity could be predicted

with high accuracy when utilizing the first few (2 or 5) ISIs. These

findings are particularly important as they suggest the potential

decodability of preferred stimuli by neuronal circuits downstream

the L5 PFC pyramids, as early as a few hundreds of milliseconds

following the stimulus presentation and long before the emergence

of persistent activity. In support of this conjecture, recent data

suggest that PFC neurons can categorize input signals as early as

the stimulus presentation time [68,69]. This information could in

turn be used by downstream striatal [70] and pontine neurons

[71,72] to prepare for the execution of a specific movement and

may provide a neuronal basis for goal-directed behavior.

Overall, our findings regarding the coding of information in ISIs

are in agreement with studies from other brain regions where ISI

sequences were shown to contain more information about

receptive fields in the visual cortex than the average firing

frequency [17], and could be used to filter and modulate receptive

fields in retinal ganglion cells [73]. Recently, in vivo patch-clamp

techniques uncovered the importance of intrinsic cellular features

in active place cell in the hippocampus [74]. Thus, it is now

possible to use patch-clamp recordings in PFC pyramidal neurons

during virtual working memory tasks to test the prediction that

cellular features such as the AP latency or the ISIs can be used to

code for the occurrence of preferred stimuli and the emergence of

persistent activity.

Differences between regular spiking and intrinsic
bursting neurons

While both IB and RS pyramidal neurons have been

documented in the prefrontal cortex [19,20], their functional role

remains unclear. According to recent studies, there could be a link

between neuronal sub-types and their preferred target areas. For

example, both RS and IB cortical neurons project to the pons

(cortico-pontine) or the striatum but no IB neurons project to the

contralateral cortex (cortico-cortical) [23]. Similarly, IB neurons in

the distal parts of the subiculum project primarily to the medial

enthorhinal cortex but not the amygdala [75]. This segregation is

likely to be associated with some form of functional specialization

of RS and IB neurons. Furthermore, corticopontine neurons,

which consist of both RS and IB neurons, in PFC seem more likely

to express persistent activity in response to acetylcholine

modulation compared to cortico-cortical neurons, in which no

IB neurons are found [25]. Our findings are in line with this

hypothesis as they support a differential role of RS and IB

pyramidal neurons in persistent activity emergence. Moreover,

since different neuronal properties have been suggested to provide

a recurrent network with different persistent activity characteristics

[76], our data suggest that RS and IB neurons may form distinct

subnetworks when connected in a recurrent network. Future

modeling and experimental work is needed to further investigate

this hypothesis.

Implications regarding the function of dopamine
Dopamine, acting through D1/5 receptors, increases the

NMDA current [42] while it decreases the dADP [11]. Our

computational study, as well as a previous one [77], suggested that

increasing the NMDA component of synaptic stimulation

decreases the CAN current required for induction of persistent

activity. Thus, D1 signaling seems to modulate both of these

mechanisms in order to maintain stability of neuronal excitability.

In the case where only NMDA currents are increased while the

dADP amplitude in response to metabotropic receptors remains

the same, persistent activity will be elicited even in response to

non-relevant stimuli. On the other hand, if dADP alone was

reduced without any change in the NMDA currents, then no

stimulus would be able to induce persistent activity.

Our modeling work showed that when increasing the NMDA

current in a similar amount that DA does, the ISI variability

increases in both model neurons but it remains elevated for the

entire 3 second recoding period of persistent activity only in the IB

model neuron (Fig. 9F). Furthermore, increasing the NMDA

current also changes the persistent activity properties of the RS

model neuron to resemble those of the IB model neuron, with a

bursting firing pattern during persistent activity and the emergence

of time-limited persistent activity (Fig. 9B and 4D). Our results are

in agreement with the well established idea that an increase in DA

is necessary for proper expression of persistent activity since the

properties of persistent activity in our model neurons are closer to

the ones observed in vivo, when the NMDA current contribution is

increased.

Furthermore, increasing the NMDA current contribution also

improves the ‘persistent’ vs. ‘no persistent’ trials discrimination

particularly in the IB model neuron, enhancing the coding

capabilities of this neuronal subtype, since both the AP latency
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and/or the first few ISIs can be used to predict the emergence of

persistent activity.

DA also modulates other biophysical mechanisms in pyramidal

neurons of the prefrontal cortex, such as the L-type calcium

channels [78,79], sodium currents [27,80] and potassium currents

[81,82]. Modulation of all these mechanisms is likely to affect

properties of persistent activity; however, such an analysis is

beyond the scope of this work.

Limitations
Our detailed model reproduces closely the electrophysiological

activity of PFC pyramidal neurons. Nonetheless, sources of

inaccuracy may have been introduced since the experimental

data used to constrain the model are products of in vitro

preparations. In that sense however, model limitations do not

significantly differ from those of the in vitro preparations whose

findings are readily replicated by the model. Simplifications that

have been adopted in this work include: (i) a strictly phenomen-

ogical model of the CAN current, (ii) absence of background

synaptic activity which is known to occur in vivo (although we do

include membrane noise), (iii) stimulation delivered only to the

basal dendrites of the model neurons (which are known to receive

the majority of inputs from other cortical areas), while more

spatially distributed stimulation in combination with the experi-

mentally observed accumulation of extracellular potassium [83]

could reduce the threshold for persistent activity induction and

require more complex spatial coding features, (iv) same biophysical

mechanisms in both model cells, yet different conductance values

for the R-type calcium and sodium currents, while in nature, there

is probably some variability, and (v) no modeling of plasticity or

neuromodulator effects. In spite these simplifications, our model

findings are important as they have identified neuronal features

that could code for the emergence of persistent activity in both

neuronal subytpes found in the cortex, as well as differential

properties of persistent activity between RS and IB neurons.

Concluding remarks
In summary, our modeling results allow the formulation of

several predictions, which when tested experimentally could

further the current knowledge on persistent activity, its underlying

mechanisms and its contribution to working memory. First, we

predict that the location of activated synapses is critical for the

emergence of persistent firing: stimuli that lead to persistent

activity consist of inputs that arrive in distal parts of the basal tree,

far away from the soma. This prediction could be easily tested

experimentally in slice preparations that generate Up and Down

states. Specifically, synaptic stimulation of proximal versus distal

basal dendrites should have a different impact on the probability of

generating Up states and/or modulating the firing frequency or

duration of the Up state. Second, we have identified the AP

latency and first few ISIs of the stimulus-induced response as

features that could discriminate between stimuli that result in

persistent activity or not. These findings could be tested

experimentally in slice preparations and/or in vivo when a stimulus

is used to induce persistent activity. Finally, our models predict

that the dADP threshold for persistent activity induction is lower

in RS than IB neurons, suggesting that RS neurons should

comprise the majority of layer 5 PFC pyramidal neurons that

exhibit persistent firing. This can also be tested experimentally in

slice preparations that generate Up and Down states, where the

effect of synaptic stimulation on the UP state is contrasted between

RS and IB neurons. Overall, our modeling work identifies key

features of the neuronal response that could predict the emergence

of persistent activity and pinpoints a differential role of RS and IB

model neurons in persistent activity properties.

Methods

A detailed compartmental model of a layer V PFC pyramidal

neuron comprising of a large variety of membrane mechanisms was

implemented in the NEURON simulation environment [84] and

was applied on a reconstructed layer V PFC pyramidal neuron

available at the neuromorph database (neuron C3_5 from the Smith

lab, http://neuromorpho.org/neuroMorpho/index.jsp, shown in

Fig. 1A). This neuron was taken from adult Long-Evans rats, at 64–

78 days of age [85]. When converted to NEURON, C3_5 had a

total of 45 compartments (1 somatic, 1 axonic, 18 basal, and 25

apical dendritic compartments). We assumed a uniform membrane

resistance of Rm = 30 kV.cm2; a uniform intracellular resistivity

Ra = 100 V.cm; and a specific membrane capacitance of

1.2 mF.cm22 in the soma and 2.0 mF.cm22 in the dendrites. The

resting membrane potential was set at 266 mV. Active mechanisms

included two types of Hodgkin–Huxley-type Na+ currents (tran-

sient: INaf; persistent INap;), three voltage-dependent K+ currents

(IKdr; IA; ID), a fast Ca++ and voltage-dependent K+ current, IfAHP; a

slow Ca++-dependent K+ current, IsAHP; a hyperpolarization-

activated non-specific cation current (Ih); a low-voltage activated

calcium current IcaT; three types of Ca++- and voltage-dependent

calcium currents (IcaN; IcaR; IcaL); and the calcium-activated non-

selective cation (CAN) current. Channel equations for all the

different voltage-gated calcium currents (IcaN; IcaR; IcaL, ICaT),

IsAHP, IA and Ih are described in [86], while the channel equations

for IKdr, ID, IfAHP, INap and INaf are described in [56]. A

combination of variations of the R-type Ca++ current and the

persistent Na+ current mechanism could generate two different

firing patterns: a) a regular spiking (RS) and b) an intrinsic bursting

(IB) firing pattern. Specifically, doubling the conductance values for

both of the two aforementioned currents switched the firing

behaviour of the model neuron from an RS one to an IB one (see

Supplementary Text S1). The possibility that such a variability

exists in PFC pyramidal neurons is evident from data showing that

the current density of persistent sodium current ranges from 2 to

6 pA/pF in PFC pyramidal neurons [27], and that the R-type

calcium current contribution could range from 5–25% of total

calcium current in layer V pyramidal neurons [26].

The equation for the Ca++-activated non-selective cation (CAN)

current mechanism was based on [87]. The ‘cac’ and ‘beta’

parameters were adapted so that the current reached its maximum

value by the first second following the end of the inducing stimulus

and decayed with a time constant of 3 seconds, as observed

experimentally (Fig. 3). The actual equations used for the CAN

mechanism are the following: In(CAN)~gCAN
:m2:(V{En), and

INa~0:7:In(CAN), based on [35], where about 70% of the dADP is

Na+ current. The state m was calculated by the following set of

equations

dm

dt
~

minf {m

tm

ð1Þ

minf~
alpha

(alphazbeta)=tadj
ð2Þ

tm~
1

(alphazbeta)=tadj
ð3Þ
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alpha~beta � ½Cai�
½cac�

� �2

, ð4Þ

where beta = 0.00001(1/ms) and cac = 0.0004 (mM). The beta and

cac values were adjusted so that the dADP was induced following

more than 4 spikes and had decay kinetics in the order of a few

(,3) sec.

Furthermore, mechanisms modelling four synaptic currents,

AMPA, NMDA, GABAA and GABAB, were used in the model

neuron (channel equations also described in [86] and Supplemen-

tary Text S1). The ‘default’ NMDA-to-AMPA ratio was set to 1.2,

based on [31]. The ratio was measured based on the somatic

current recorded at 270 mV and +60 mV, following stimulation

of 10 synapses on the basal dendrites. We also performed these

experiments with the same number of synapses used in the

‘persistent activity’ simulations, and did not find any difference in

the ratio of +60 mV and 270 mV currents. In order to achieve

this NMDA-to-AMPA ratio, the gNMDA was equal to 36 the

gAMPA. In order to increase the ratio to 1.5, the gNMDA was

equal to 46 the gAMPA.

Model validation
Both the RS and IB models were validated with respect to

passive and active membrane properties as well as apical and basal

dendritic responses (see Supplemental Fig. S1). Dendritic and

somatic voltage traces in response to glutamate release were

validated based on experimental data [32] (see Supplemental Fig.

S2).

Stimulation protocol
Dendrites were stimulated with a total of 200 excitatory

synapses (containing both AMPA and NMDA receptors), equally

distributed in 10 different dendritic branches (20 synapses on each

branch) which were activated 10 times at 20 Hz. The 10 dendritic

branches were selected randomly from the pool of all basal

dendrites. Synapses were distributed at random locations within

each branch, according to a uniform distribution. The soma of the

neuron model was stimulated with 5 inhibitory synapses [39] at

50 Hz. Both excitatory and inhibitory synapses were activated

synchronously, without any temporal variability between different

trials. Since we were interested in studying the suprathreshold

response of neurons to a specific stimulus, we used the above

number of synapses for which the neuron model responded with at

least 5 APs in the 10 event stimulus.

In addition, for best simulation of membrane potential

fluctuations as observed in vitro due to the stochastic ion channel

noise [88,89], an artificial current with Poisson characteristics was

injected in the soma of both RS and IB neuron models. This

simulation of channel noise is simple compared to ones recently

reported [89], yet sufficient for the complexity of the model used

and the purpose of the current study.

Persistent activity
We define persistent activity as the prolongation of neuronal

activity following the end of the stimulus for at least 3 seconds. All

simulations were recorded for 5 seconds, and if neuronal activity

persisted past the 3 seconds following the stimulus, it did not stop

before the 5 sec recording. Simulations included 50 repetition

trials for each condition (i.e. specific set of NMDA and CAN

conductances), where the spatial distribution of activated synaptic

mechanisms at the different basal dendritic branches changed in

each trial. For the data analysis, only conditions in which

persistent activity emerged in at least 50% of the runs were used,

unless otherwise noted.

Data analysis
Estimation of inter-spike-intervals (ISIs) of the simulated neuronal

responses, as well as generation of the ISI histograms was performed

with custom-made macros using IgorPro software (Wavemetrics,

Inc) and Matlab (Mathworks, Inc). Prediction of persistent activity

emergence based on the ISI values was done using a custom-made

Artificial Neural Network written in Java. The network used was a

simple perceptron, which was initially trained with 30 randomly

selected trials, validated (using leave-one-out cross validation) and

subsequently tested on another 30 trials (both training and test sets

comprised of 20 persistent and 10 no persistent trials). Prediction of

persistent activity emergence based on the AP latency values was

done using Linear Discriminant analysis (LDA) in Matlab (Math-

works, Inc.), with code downloaded from the file exchange site

(http://www.mathworks.com/matlabcentral/fileexchange/29673-

lda-linear-discriminant-analysis). The method was initially trained

with 30 randomly selected trials, validated (using leave-five-out cross

validation), and then tested on another set of unseen 30 trials,

similarly to the Perceptron analysis. The following conditions were

used for the prediction analysis: RS neuron model 2N1.2/2N1.5,

40 persistent trials, 20 no persistent trials; IB neuron model 2N1.2/

2N1.5, 40 persistent trials, 20 no persistent trials (as shown below in

the text: N = NMDA-to-AMPA ratio, dADP = delayed afterdepo-

larization).

Spatial arrangement analysis
In each trial, synaptic mechanisms were placed according to a

uniform distribution within 10 dendritic branches which were

selected at random. For each of the selected dendritic branches,

the path distance from the center of the branch to the soma was

calculated and used to estimate the average dendritic distance for

any given trial.

Experimental results
All experimental results shown here are parts of the neuronal

database recorded by Kyriaki Sidiropoulou while she was at Dr.

Francis White laboratory and have been reported in previous

publications [11,28].

Model availability
The model is available for download from ModelDB (Link:

https://senselab.med.yale.edu/modeldb/ShowModel.asp?model =

144089, accession number: 144089).

Supporting Information

Figure S1 Validation of dendritic responses in the two neuron

models. A–C: Validation of BPAPs in the apical dendrites based

on Gulledge and Stuart, 2003 (A1, B1, C1: experimental, A2, B2,

C2: simulated, RS model). A1,2: Somatic and dendritic (at

300 mm) traces in response to a 600 ms current step pulse. B1,2:

Graphs showing the latency of BPAP in relation to the distance

from the soma. C1,2: Graphs showing the relative amplitude of

the BPAP (normalized to the somatic BPAP) in relation to the

distance from the soma. D–F. Validation of BPAPs in the basal

dendrites based on Nevian et al, 2007 (D1, E1, F1: experimental,

D2, E2, F2: simulated, IB model). D1,2: Somatic and dendritic (at

300 mm) traces in response to a 500 ms current step –pulse. E1,2:

Graphs showing the latency of BPAP in relation to distance from

the soma. F1–2: Graphs showing the relative amplitude of the
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BPAP (normalized to the somatic BPAP) in relation to distance

from the soma.

(EPS)

Figure S2 Validation of synaptic responses at the basal

dendrites. Experimental (A,B) and simulated (C,D) neuronal

responses at the soma (A,C) and dendrite (B, D). For the

experimental traces, dendritic synapses were activated with

photostimulation of caged glutamate at the dendritic site (Nevian

et al, 2007). For the simulated traces, a single AMPA synapse was

activated at the dendrite (either proximal or distal). For the

simulated responses the red traces correspond to responses

following synaptic activation at a distal dendrite (120 mm), and

the blue trace corresponds to the responses following synaptic

simulation at a proximal dendrite (around 40 mm).

(EPS)

Figure S3 Characteristics of the spatial arrangement of synapses

in ‘persistent’ and ‘no persistent’ trials in the IB model neuron. A.

Graph showing the average distance from the soma of all dendritic

branches activated in ‘persistent’ and ‘no persistent’ runs in the IB

model neuron. B. Histogram of the average distance from the

soma of all activated dendritic branches in the IB model neuron.

(EPS)

Table S1 Average ISIs (ms) and coefficient of variations during

the stimulus and persistent activity.

(PDF)

Table S2 Average inter-spike-intervals (ms) of stimulus-induced

activity in trials with or without persistent activity.

(PDF)

Table S3 Action potential latency (ms) in trials with or without

persistent activity.

(PDF)

Text S1 Detailed description of the model neurons.

(DOC)
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