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Abstract

aspergilli, less susceptible to antifungals emerge and
resistance to azoles have been found mainly in As-
pergillus fumigatus; this has launched a new phase in
handling aspergillosis. Resistant strains have currently
been reported from Belgium, canada, china, den-
mark, france, norway, spain, sweden, the nether-
lands, uK and the usa. centres in the uK (Manches-
ter) and the netherlands (nijmegen) have described
particularly high frequencies (15 and 10% respective-
ly), and a significant increase in azole resistance in re-
cent years. the reason of  this high incidence may be
due to long term azole therapy in patients with chron-
ic aspergillosis in Manchester, and due to high use of
agricultural azoles in nijmegen. the primary underly-
ing mechanism of  resistance is as a result of  alter-
ations in the cyp51A target gene, with a variety of  mu-
tations found in clinical isolates and one genotype
identified in the environmental (lH98). Reports on
well documented in vitro and in vivo resistance to
echinocandins are rare for Aspergillus species and re-
sistance may be under-diagnosed as susceptibility test-
ing is less frequently performed due to technical rea-
sons.
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IntRoductIon

Invasive fungal infections (Ifd) are increasingly rec-
ognized and represent a primary cause of  morbidity
and mortality in critically ill patients [1-4]. a variety of
factors, including immunosuppressive agents, broad-
spectrum antibiotics, and antineoplastic agents influ-
ence the incidence and severity of  Ifds [1]. trans-
plant and haematopoietic stem cell transplant recipi-
ents, intensive care unit and surgical patients display
the population at risk [1, 4-7]. Aspergillus species have
become the most important pathogens [8]. the intro-
duction of  voriconazole, posaconazole and echinocan-
dins (caspofungin, micafungin and anidulafungin) im-
proved the therapeutic option for treatment of  inva-
sive aspergillosis (Ia) [9]. although the outcome of  Ia
is largely influenced by the state of  immunosuppres-
sion, factors related to the fungus also play a role. un-

til recently, species identification was sufficient to
guide antifungal therapy, but the emergence of  ac-
quired resistance limits the use of  species identifica-
tion for predicting activity of  antifungal agents. as-
pergilli, less susceptible to antifungals emerged and ac-
quired resistance to azoles have been found mainly in
Aspergillus fumigatus [10]; this has launched a new era
in handling aspergillosis. this article reviews the epi-
demiology and antifungal resistance against azoles and
candins with particular emphasis on Aspergillus
species.

EPIdEMIology of InvasIvE asPERgIllosIs

In a 4-year-study Pagano et al. [11] showed that 64%
of  Ifds in patients with haematological malignancies
were caused by moulds and among them 90% were
due to Aspergillus species. overall, the incidence of
Ia varies according to underlying diseases, pathogen
[lf] and geographic location [10, 12, 13]; rates of  up to
7% are reported in Europe [11].  Mortality rates for Ia
are high and vary according to patient population,
ranging from 38% in patients with acute myelogenous
leukaemia, from 50-60% in patients with organ trans-
plantation and from 70-85% in other immunosup-
pressed patients [11-16].    

although A. fumigatus still represents the leading
cause of  Ia, species like Aspergillus ter reus and As-
pergillus flavus become more frequent [15, 17]. these
non-A. fumigatus may be intrinsically resistant to anti-
fungal agents (eg A. ustus) [18] and the clinical pre-
sentation and evolution of  Ia may differ from com-
monly observed A. fumigatus infections [18-23]. Maxi-
mizing the efforts to culture the causative pathogen
appears necessary to allow identification and suscepti-
bility testing. 

EPIdEMIology of azolE and candInE

REsIstancE In clInIcal A. fumigAtus

antifungal drug resistance is normally quantified using
the minimum inhibitory concentration (MIc). the
MIc represents the lowest drug concentration that re-
sults in a notably reduction or complete lack of  fungal
growth. In vitro resistance can be primary (intrinsic)
or secondary (acquired). Primary resistance occurs
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naturally, without prior exposure to the drug. sec-
ondary resistance is generated following exposure to
an antifungal and may be associated with an altered
gene expression [10, 24]. clinical resistance is defined
as the failure to eradicate an infection despite the ad-
ministration of  an adequate antifungal [24]. such fail-
ures can be attributed to a combination of  the host,
the pathogen and the drug [24]. 

using the European committee for antibiotic sus-
ceptibility testing (Eucast) methodology break-
points were recently proposed for A. fumigatus and
itraconazole, voriconazole and posaconazole [25]; for
itraconazole and voriconazole, <2 mg/l (susceptible),
2 mg/l (intermediate) and >2 mg/l (resistant); for
posaconazole, <0.25, 0.5 and >0.5 mg/l respectively.
It is suggested to differentiate between single-azole,
pan-azole and multi-azole resistance (see table 1), the
majority of  infections is associated with clinical failure
when treated with the ascertained agent [26]. 

It was thought that acquired resistance of  As-
pergillus species to triazoles is unfrequently [27, 28].
yet reports from the netherlands and Manchester dis-
play an alarming increase of  azole resistance in A. fu-
migatus since 1998 [26, 29, 30]. the first published
case of  itraconazole-resistance in A. fumigatus ap-
peared in 1997 [31]; in 2000, a survey testing over 900
isolates showed a 2% prevalence of  Itc resistance in
Manchester [32]. In 2007 the percentage of  patients
with an azole-resistant A. fumigatus increased up to
15% [25, 26]. In the netherlands azole resistance in-
creased dramatically from 2.5% in 2000, to 4.9% in
2002, to 6.6% in 2004 and to 10% in 2009 [25]. this
represents an increasing frequency of  6% per year and
is an issue due to the limited number of  antifungals.
overall, azole-resistance differs from country to coun-
try and occurred sporadically in Belgium, denmark,
france, sweden, spain and norway [33-39]. In spain,
the prevalence is about 2% among clinical A. fumiga-
tus and in austria about 0%. In the usa, species with

MIcs of  voriconazole and posaconazole > 2 mg/l re-
main rare, less than 1% [27]. 

the clinical presentation and disease evolution may
be related to the underlying genotypes in A. fumigatus
(table 2).  Isolates have been collected from patients
suffering from chronic aspergillosis [29] and invasive
diseases [26, 33].    

azole drug resistance in A. fumigatus has been re-
ported both, before and after drug exposure; acquired
resistance appears to develop through treatment of
patients or through exposure of  isolates to azole
fungicides in the environment [40]. 

these findings have major implications for clinical
practice especially as fungal drug resistance is an acute
issue due to the limited number of  antifungal com-
pounds. alternative strategies utilising combination
therapy will become more attractive. Experts expect
that triazole resistance in this haploid, sparingly sexual
worldwide airborne fungus will increase [8]. Key ele-
ments in the management of  patients will be an accu-
rate speciation of  Aspergillus species and the perfor-
mance of  in vitro susceptibility testing for an approbi-
ate antifungal treatment. Presently we do not have ex-
act data on the prevalence of  azole-resistance as-
pergilli in germany, but seems to be rather low than
high. anyway, a shift has occurred in the epidemiology
of  invasive infections in Europe [8]. where invasive
candidiasis was once the predominant type of  invasive
fungal infections, invasive mould infections have be-
come increasingly important, including those caused
by unusual pathogens. Moulds have become the lead-
ing cause of  Ifd in some populations. Aspergillus
species are the most frequent mould pathogens, but
the number of  infections caused by previously rare
pathogens, such as the zygomycetes and fusarium
species, is increasing. the reasons for the shift in the
epidemiology are multifactorial, but are a result, at
least in part, of  the increased use of  extensive
voriconazole and echinocandins as prophylaxis/treat-
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table 1. azole resistance in A. fumigatus.

Phenotypes description

Pan-azole resistant MIcs are in the resistant range for all available active azoles

Multi azole resistance MIcs are in the resistant range for more than one, but not all azoles

Itraconazole, voriconazole or posaconazole resistant MIcs are in the resistant range for a single azole

MIcs= minimal inhibitory concentrations

table 2. clinical overview of azole resistance in A. fumigatus.

location clinical presentation Epidemiology Pathomechanism

nijmegen Invasive pulmonary aspergillosis Mainly azole naive dominant resistance 
cns aspergillosis Previous azole mechanism: 
osteomyelitis exposure tR/l98H

Manchester chronic aspergillosis Previous azole Multiple resistance
aspergilloma exposure mechanisms:
aBPa g448s, M220, P216l,
cns aspergillosis tR/l98H

aBPa=allergic bronchopulmonary aspergillosis
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ment [8]. as a result of  growing numbers of  immuno-
suppressed patients with risk factors, the patient popu-
lations for Ia will expand and will include patients
with haematological malignancy, Icu intervention,
pulmonary disease [e.g.chronic obstructive pulmonary
disease (coPd) and asthma], sot recipients and pa-
tients with solid tumours. 

Much less is currently known about echinocandin
resistance in Aspergillus, in part because susceptibility
testing is not routinely performed and because the
methods suffer from technical difficulties and subopti-
mal reproducibility [41, 42]; breakthrough infections
with A. fumigatus showing high minimum effective
concentrations have been reported sporadically [43].
so far, the selection pressure of  candins has risen and
the development of  resistance is presumed to be in-
evitable. 

MEcHanIsM of azolE-REsIstancE In

A. fumigAtus

the triazoles block the ergosterol biosynthetic path-
way at the c14-α-demethylation stage [44]. these anti-
fungals bind to lanosterol 14-α-demethylase (14-α-
dM, or Cyp51p) which is encoded by the Erg11
genes. such step leads to depletion of  ergosterol and
an accumulation of  lanosterol and other toxic 14-α-
methylated sterols. 

several pathomechanisms account for azole resis-
tance in A. fumigatus; these include a modification of
target enzymes, an increased expression of  drug efflux
mechanisms, an overexpression of  target enzymes, an
incorporation of  exogenous cholesterol, an overex-
pression of  HsP90 and of  a sterole-regulatory ele-
ment binding protein [45, 46]. the resistance pheno-
type depends on the amino-acid substitution and more
than one azole can be affected. azole-resistant isolates
have been reported as multidrug resistant [47], multi-
azole resistant [48], azole cross-resistant [27] and mul-
tiple-triazole resistant [26, 33] isolates. In most cases
azole resistance has been associated with point muta-
tions in cyp51A, which represents the target enzyme
of  the azoles [25]; hot spots at codons 54, 98 and 220
are most frequently characterized [26, 33, 35, 48-50].
Interestingly, other mutations have been found in
azole susceptible strains and so are unlikely to be asso-
ciated with resistance [51].  

the resistance mechanisms differ between the dutch
and British azole-resistant isolates; in the netherlands,
the presence of  a single resistance mechanism (denot-
ed by tR/l98H, a point mutation at codon 98 accom-
panied by a tandem repeat in the promoter region), was
found in over 90% of  clinical A. fumigatus isolates. By
contrast, several CYP51A mutations are present in the
uK strains [25, 33] and no prevalence of  any one alter-
ation. the reasons for this might be due to differences
in the patient population from which the isolates origi-
nate [25]. for the dutch isolates, an environmental
source is very likely. azole-resistance may develop due
to exposure of  A. fumigatus to azole fungicides for
plant protection [30, 33]. Howard et al. suggest that the
reasons of  the widespread increase of  azole-resistance
in the uK may be part of  long-term azole drug expo-
sures in patients [29].

MEcHanIsM of EcHInocandIn-REsIstancE

In AsPErgillus sPEzIEs

the β-(1,3)-d-glucan is an integral part of  the fungal
cell wall. Echinocandins are a unique class which block
the β-(1,3)-d-glucan synthesis by inhibiting β-(1,3)-d-
glucan synthase [52]. this process leads to abnormal
hyphal growth in moulds [24]. Much less is currently
known about echinocandin resistance in Aspergillus
and only few clinical isolates associated with treatment
failures have been investigated. In such isolate muta-
tion in the fKs1 target gene was not detected, but ex-
pression of  the fKs1 gene was found to be upregulat-
ed [37]. Manipulated or laboratory-selected strains
with various degrees of  caspofungin resistance have
been described [42, 53, 54]. some of  these strains have
been found to have mutations in the EcM33 gene
(AfuEcm33), encoding cell wall proteins. strains with
mutations in the fKs1 gene encoding a subunit of  the
ß -1,3-d-glucan synthase enzyme have been generated
[42]. In other resistant Aspergillus mutants the glucan
synthase exhibited a wild-type AffKs1 gene se-
quence, where the function, level, and the enzyme it-
self  were susceptible to caspofungin [42, 45].

differences in the susceptibility to the echinocan-
dins exist among the Aspergillus spezies. for example,
Aspergillus niger is much more susceptible to echino -
candins than other species probably in charge of  its
different cell-wall composition [55]. Aspergillus lentu-
lus isolates are less susceptible to caspofungin, al-
though they maintain susceptibility to anidulafungin
and micafungin. the analysis of  the a. lentulus fks se-
quence did not reveal a polymorphism at any of  the
known hot-spot regions of  the gene [56]. 

cRoss REsIstancE aMong azolEs and

EcHInocandIns

cross-resistance patterns are closely linked with the
position of  the mutation in the cyp51A gene [29, 57].
Isolates with alterations at eg codons 98 demonstrate a
pan-azole resistance phenotype. Isolates with muta-
tions at codon 54 remain voriconazole susceptible al-
though cross-resistant to posaconazole. 

cross-resistance patterns in isolates with M220 al-
terations appear to be unpredictable, particularly with
respect to voriconazole. the risk of  cross-resistance
between the azole compounds is high, in one report
74% and 65% of  itraconazole resistant isolates were
cross-resistant to posaconazole and voriconazole re-
spectively [29].

Between itraconazole, voriconazole and ravucona-
zole cross-resistance was demonstrated in 10 clinical
isolates of  A. fumigatus obtained from patients with
long-term exposure to itraconazole or voriconazole
[50]. also, broad-spectrum cross-resistance among all
the azoles has been shown in A. fumigatus in a patient
receiving prolonged itraconazole prophylaxis [47].
overall, there is a limited number of  reported cases
that help us to understand the clinical impact of  azole
resistance on clinical outcome. for example, in a small
case series of  patients with Ia and no respond to
voriconazole, treatment with posaconazole was suc-
cessful in 50% of  infections [58]. on the other hand
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in animal model of  Ia caused by an itraconazole-resis-
tant A. fumigatus strain, posaconazole, which is struc-
turally similar to itraconazole, was active in high doses
[59].

the potential frequency of cross-resistance amongst
echinocandins in Aspergillus species is still unclear and
has not been investigated in detail [60]. at present,
there is no evidence that the activity and efficacy of
other antifungal compounds, such as the polyenes and
echinocandins, is attenuated in azole-resistant isolates
[26, 33]. 
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