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Relationship between CYP2D6 
genotype, activity score 
and phenotype in a pediatric Thai 
population treated with risperidone
Yaowaluck Hongkaew1,2,3, Andrea Gaedigk4,5, Bob Wilffert6,7, Nattawat Ngamsamut8, 
Wiranpat Kittitharaphan8, Penkhae Limsila8 & Chonlaphat Sukasem1,2*

Recently, the Clinical Pharmacogenetics Implementation Consortium (CPIC) have revised 
recommendations for the translation of CYP2D6 genotype to phenotype. Changes affect phenotype 
grouping, as well as the value used to calculate activity score for the CYP2D6*10 allele to better reflect 
the substantially decreased activity of this allele which is the most frequent allele found in Asian 
populations. This study aimed to evaluate whether the lower value for CYP2D6*10 as recommended, 
and the revised phenotype groupings improve the relationship between CYP2D6 genotype and 
risperidone measures. One hundred and ninety-nine children and adolescents with autism treated 
with a risperidone-based regimen for at least four weeks were included. CYP2D6 genotype was 
determined using the Luminex xTAG CYP2D6 Kit assay and translated into phenotype using 
different translation methods. Plasma concentrations of risperidone and 9-hydroxyrisperidone were 
measured using LC/MS/MS. Plasma levels of risperidone, risperidone concentration/dose ratio, and 
risperidone/9-hydroxyrisperidone ratio in patients with an activity score < 1 were significantly higher 
than those ≥ 1 (P value < 0.001 for all three parameters). Plasma risperidone levels and risperidone 
concentration/dose ratios were significantly higher in intermediate metabolizers (defined as AS = 0.25–
0.75) than normal metabolizer (defined as AS = 1–2) patients (1.44 vs. 0.23 ng/ml, P < 0.001 and 1.63 
vs. 0.29 ng/ml/ng, P < 0.001, respectively) as well as risperidone/9-hydroxyrisperidone ratio (0.20 vs. 
0.04, P < 0.001). This is the first study in an Asian population utilizing the revised CPIC-recommended 
method for translating the CYP2D6 genotype to phenotype. In addition to validating that CYP2D6 
genetic variation significantly impacts risperidone metabolism, we demonstrated that revised 
value for the CYP2D6*10 was superior for genotype to phenotype translation. However, at least for 
risperidone, subjects with an activity score of 1 presented as phenotypic normal, and not intermediate 
metabolizers, suggesting that phenotype classification is substrate dependent.

Cytochrome P450 (P450) 2D6 is a major drug-metabolizing enzyme expressed in the liver1. CYP2D6 catalyzes 
the hepatic metabolism of a large number of clinically important medications, including codeine, amitriptyline, 
fluvoxamine, risperidone, fluoxetine, aripiprazole, paroxetine, and dextromethorphan2,3. The CYP2D6 gene is 
highly polymorphic. To date, over 130 allelic variants have been designated by the Pharmacogene Variation 
Consortium (PharmVar)4,5.
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CYP2D6 allele frequencies vary substantially among different ethnic and ancestral populations6–9. The 
decreased function CYP2D6*10 allele (100C > T, P34S) is the most common allele in East Asian populations, 
including Thai, Chinese, Taiwanese, Korean, Vietnamese, and Filipino10–16. This allele is also observed in other 
populations, including Europeans, Africans, and their descendants, its frequency, however, considerably lower8. 
Conversely, the nonfunctional CYP2D6*4 allele is more frequent in European populations but is rarely observed 
in Asian populations8.

CYP2D6 genetic variation leads to a wide range of metabolic capacity ranging from no to increased activity. 
Based on their genotype, individuals are grouped into four phenotype groups, i.e., poor metabolizers (PMs), 
intermediate metabolizers (IMs), normal metabolizers (NMs), and ultrarapid metabolizers (UMs)17. The activity 
score system (AS) has been broadly accepted to translate the CYP2D6 genotype into phenotype and the Clini-
cal Pharmacogenetics Implementation Consortium (CPIC) and the Dutch Pharmacogenetics Working Group 
(DPWG) for their respective guidelines18,19. Briefly, each allele is assigned a value of 0, 0.5 or 1 reflecting no 
function, decreased or normal function, and the sum of the values provides the AS of a genotype. The previous 
CPIC translation method classified AS = 0 as PM, AS = 0.5 as IM, AS = 1 to 2 as NM, and > 2 as UM. In an effort 
to harmonize genotype to phenotype translation, a CPIC-led working group has recently published a revised 
method and recommends using this new method to translate genotype to phenotype19. One major change was 
downgrading the value used for activity score calculation of the decreased function CYP2D6*10 allele from 0.5 
to 0.25 to more accurately reflect the dramatically decreased function of this allele. Furthermore, an AS of 1 is 
no longer categorized as NM, but as IM. While the new system has recently been applied to an in vitro study 
comprising mostly Caucasian liver tissue samples20, there are no investigations to date assessing the performance 
of the new method on any Asian populations with high frequencies of CYP2D6*10. There is also a paucity of 
information regarding the impact of substrate specificity on performance of the new translation method.

The use of a standardized method to infer phenotype from genotype is essential for test reporting and clinical 
implementation to prevent confusion and inconsistencies. We applied the new CPIC-recommended method to 
data obtained from risperidone (RIS)-treated Thai children and adolescents diagnosed with autism spectrum 
disorders (ASDs) and treated with RIS. Since the impact of CYP2D6 genotype on plasma concentrations of RIS 
is well-established21–25, RIS is a well-suited drug to evaluate whether the new translation method is superior 
over the previous method.

The aims of this investigation were to demonstrate whether the revised value for CYP2D6*10 indeed improves 
the relationship between AS and RIS plasma drug levels and to assess whether phenotype groupings, as recom-
mended by CPIC, are appropriate for RIS.

Subjects and methods
Patients.  One hundred and ninety-nine participants with ASD, aged 3–18 years, and diagnosed according 
to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V) criteria in the Yuwaprasart 
Waithayopathum Child Psychiatric Hospital, Samut Prakan, Thailand, were recruited during 2017–2018. All 
patients were treated with a RIS-based regimen for at least four weeks before blood sample collection. Socio-
demographic data were collected by a questionnaire including gender, age at assessment, daily RIS dosage, dura-
tion of RIS treatment, and concomitant medication. Patients were excluded if they were receiving concomitant 
treatments that could potentially affect RIS metabolism. This study was approved by the Ethics Review Com-
mittee on Human Research of the Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand 
(MURA2017/556) and conducted in accordance with the Declaration of Helsinki. The study protocol was clearly 
explained to all participants and/or their legal guardians, and informed consent was given before the study.

Genotyping methods.  Genomic DNA was extracted from EDTA blood with the MagNa Pure automated 
extraction system according to the manufacturer’s instructions. A bead array platform genotyped CYP2D6 based 
on allele-specific primer extension (ASPE) and hybridization to oligonucleotide bound microspheres26 using 
the Luminex xTAG CYP2D6 Kit v3 (Luminex Corporation, Austin, TX, USA) according to the manufactur-
er’s instructions27. The assay interrogates 21 variants including 19 CYP2D6 single nucleotide polymorphisms 
(SNPs): − 1584C > G, 31G > A, 100C > T, 124G > A, 137_138insT, 882G > C, 1022C > T, 1660G > A, 1662G > C, 
1708delT, 1759G > T, 1847G > A, 2550delA, 2616delAAG, 2851C > T, 2936A > C, 2989G > A, 3184G > A, and 
4181G > C, as well as gene deletion and duplication)25. The allelic variants called by this array are CYP2D6*1 
(assigned in the absence of variants; default assignment), *2, *35 (normal function), *9, *10, *17, *29 and *41 
(decreased function), and *3, * 4, *5, *6, *7, *8, *11 and *15 (no function), as well as the presence of duplica-
tions. Patients who were carriers of a CYP2D6 duplication were excluded, because this array did not further 
characterize gene duplications (i.e. copy number or which allele is affected by the duplication). For instance, 
a duplication observed in an individual genotyped as CYP2D6*1/*10 could result in e.g. a CYP2D6*1xN/*10, 
CYP2D6*1/*10xN or a *1/*36 + *10 genotype call.

To calculate the AS, values were assigned to the alleles identified in the study cohort as follows: no function 
alleles (*4, *5) = 0; the decreased function allele *10 = 0.25; other decreased function alleles (*14, *41) = 0.5, and 
normal function alleles (*1, *2, *35) = 1. The AS of each diplotype is the sum of the assigned value to each allele. 
Individuals with an AS of 0 were categorized as PMs, those with an AS of 0.25, 0.5 or 0.75 were categorized as 
IMs, and those with an AS of 1.25, 1.5, 1.75, or 2 were grouped as NMs. To compare translation methods, those 
with an AS of 1 were either categorized as IM (new CPIC method), or NM (previous CPIC method).

Analytical drug assay/plasma concentrations.  Trough plasma concentration of RIS and its 9-OH-
RIS metabolite were quantified, between 8:00 and 10:00 AM, approximately 12 h after the bedtime dose, using 
a validated, previously published high-performance liquid chromatography procedure28. Briefly, we used an 
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Agilent 1260 HPLC system (Agilent Technologies, CA, USA), which was connected to an AB Sciex API 3200 
(Applied Biosystems, Foster City, CA, USA) instrument. Chromatographic separation was achieved on the C18 
column (4.6 cm × 50 mm; 1.8 mm particle size). Integration of peak areas and determination of the concentra-
tions was performed with the Analyst 1.5.2 software (Applied Biosystems, CA, USA). Quadratic regression with 
1/ × weighted concentrations was used. The mean inter- and intra-assay accuracy for both RIS and 9-OH-RIS 
was set within ± 15.0% Relative Error of nominal, and precision < 15.0% Relative Standard Deviation.

Statistical analysis.  Descriptive statistics were used to describe the clinical characteristics of the subjects. 
Data were expressed as mean (standard deviation, SD) or median (interquartile range, IQR) in normal or non-
normal distribution data, respectively. The nonparametric Kruskal–Wallis (comparisons more than two groups) 
and Mann–Whitney U tests (comparisons between two groups) were used to assess the association between 
plasma drug levels and the studied genotypes or predicted phenotypes at each time point. Statistical analyses 
were carried out using SPSS v24 (SPSS Inc., Chicago, IL, USA) for Windows. Statistical significance is reported 
as P < 0.05 for a two-tailed distribution.

Results
Demographic and clinical characteristics.  Our sample consisted of 199 children and adolescents with 
a mean age of 9.25 (SD; 3.93) years who had been diagnosed with autism spectrum disorders. Demographic data 
are presented in Table 1. Participants were treated with a RIS-based regimen. One hundred and eighteen patients 
(59.3%) received RIS monotherapy. The medications that were concomitantly prescribed to patients were meth-
ylphenidate, sodium valproic acid, benzhexol, topiramate, cetirizine, clonazepam, hypodine, phenytoin, and 
phenobarbital. There were no significant differences for RIS or 9-OH-RIS between children and adolescents. 
Most of which were male (174; 87.44%). There were also no significant differences for RIS or 9-OH-RIS between 
males and females nor those receiving monotherapy and polytherapy.

Distribution of the CYP2D6 alleles and genotypes.  The CYP2D6*10 decreased function allele was the 
most common allele identified among the 199 subjects at 51.8%. The frequencies of the normal function alleles 
CYP2D6*1 and CYP2D6*2 were 25.1% and 6.3%, respectively. Another decreased function allele, CYP2D6*41, 
was observed at 6.8%. CYP2D6*4 and CYP2D6*5, both nonfunctional alleles, were found at frequencies of 1.3% 
and 8.3%, respectively. We also observed two subjects with the rare CYP2D6*14 allele (0.50%) in this study 
cohort. CYP2D6 allele frequencies are presented in Table 2. Of the 398 alleles, 125 were normal function (aggre-
gate frequency of 31.4%) and were assigned a value of 1 to calculate the AS while 29 decreased function alleles 
(aggregate frequency of 7.3%) received a value of 0.5 and 38 no function alleles (aggregate frequency of 9.6%) 
received a value of 0.

Genotype frequencies are summarized in Supplementary Table 1. Of the 20 CYP2D6 genotypes identified, 
CYP2D6*1/*10 was the most frequent (29.6%), followed by CYP2D6*10/*10, CYP2D6*5/*10, and CYP2D6*10/*41 
(26.1%, 7.5%, and 7.5%, respectively).

Plasma levels and C/D of RIS, 9‑OH‑RIS, active moiety, and RIS/9‑OH‑RIS ratio in the dif-
ferent CYP2D6 AS groups.  The relationship between CYP2D6 AS, RIS plasma concentration, and the 
9-OH-RIS metabolite was examined in 199 patients (Table 3). Patients were divided into eight groups (AS of 
0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, and 2). The most common AS was 1.25 (35.18%), comprising CYP2D6*1/*10 and 
CYP2D6*2/*10 genotypes. There were significant differences in RIS, the metabolic ratio RIS/9-OH-RIS, and C/D 

Table 1.   Patient demographics (n = 199). RIS risperidone, 9-OH-RIS 9-hydroxyrisperidone, Active moiety, 
the sum of risperidone plus 9-OH-RIS, C/D dose-corrected concentration, SD standard deviation, IQR 
interquartile range.

Clinical information Value

Age (years); mean ± SD 9.25 ± 3.93

Male to female (M:F) ratio 7:1

Daily risperidone dosage (mg/day); median (range), ng/ml 0.75 (0.10–5.00)

Risperidone treatment duration (months); median (IQR), ng/ml 43.47 (16.40–76.60)

Risperidone monotherapy, n (%) 118 (59.30)

Plasma drug levels, median (IQR), ng/ml

RIS level 0.59 (0.06–1.61)

9-OH-RIS level 5.78 (3.38–11.50)

Active moiety level 7.06 (4.26–12.89)

Ratio of risperidone/9-OH-RIS 0.08 (0.02–0.24)

Plasma concentration-to-dose (C/D) ratios, median (IQR), ng/ml/mg

C/D of RIS 0.71 (0.17–2.25)

C/D of 9-OH-RIS 8.45 (5.34–12.65)

C/D of the active moiety 9.60 (6.20–15.76)
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of RIS plasma concentrations between AS of 0.25, 0.5, 0.75, and 1, 1.25, 1.5, 2. There was a significant difference 
between patients when divided into two groups, one with AS < 1 and the other with AS ≥ 1. Plasma levels of RIS 
and RIS/9-OH-RIS ratio, and plasma C/D of RIS in patients with AS < 1 were significantly higher than those in 
patients with AS ≥ 1 (P value < 0.001 among three drug parameters) (Fig. 1A–C). When genotypes with an AS of 
1 were categorized as IM, significance of RIS, RIS/9-OH-RIS ratio, and RIS C/D between AS of 1 and AS > 1 was 
considerably lower as reflected by a P value of 0.412, 0.519, and 0.314, compared to a P value of 0.005, 0.000, and 
0.015 between AS of 1 and AS < 1. Based on these findings, individuals with an AS of 1 presented as NMs rather 
than IMs, while all others fit within their respective phenotype categories. 

Association between plasma RIS parameters and predicted phenotypes.  Based on the above 
findings, patients with an AS of 0, AS of 0.25–0.75, and AS of 1–2 presented as, and were thus classified, as PM, 
IM, and NM, respectively. Fifty-six percentages of patients (n = 111) were NMs, followed by IMs (n = 87, 43.7%). 
There was only one patient with a predicted PM phenotype of 0.5%.

There were statistically significant differences for the plasma RIS concentration (P < 0.001) and RIS/9-OH-RIS 
ratio (P < 0.001) when subjects were categorized as described above (Table 4 and Fig. 1). The plasma concen-
tration of RIS among IMs (AS = 0.25–0.75, 1.44 ng/ml) was significantly higher compared to that among NMs 
(AS = 1–2, 0.25 ng/ml, P < 0.001) and lower when compared to that found in the PM individual (2.67 ng/ml). 
The RIS/9-OH-RIS ratio in IM subjects was statistically significantly higher than the ratio observed in the NMs 
(AS = 1–2, 0.20 vs. 0.04, P < 0.001). These patients also had a significantly higher C/D of RIS than NMs (1.63 vs. 
0.29 ng/ml/mg, P < 0.001).

Discussion
To the best of our knowledge, this is the first study applying the revised CPIC recommendations for the transla-
tion of CYP2D6 genotype to phenotype in an Asian population. This new method is anticipated to have a consid-
erable impact on Asians compared to other populations due to the high frequency of the CYP2D6*10 allele. This 
allele conveys a considerable decrease in function and thus was downgraded, i.e., now receives a lower value for 
AS calculation, to improve the accuracy of phenotype prediction. The CPIC recommendations are drug-agnostic, 
i.e., the phenotype does not take substrate-specificity into account. Thus, in addition to evaluating whether the 
revised value for CYP2D6*10 improves the relationship between RIS, RIS/9-OH-RIS ratio, and C/D of RIS, we 
also assessed whether phenotype groupings, as recommended by CPIC, are appropriate for RIS.

Table 2.   CYP2D6 allele frequencies (n = 199). Allele definitions are per PharmVar at https​://www.pharm​var.
org/gene/CYP2D​6.

Alleles CPIC clinical function Frequency (%)

*1 Normal function 100 (25.1%)

*2 Normal function 25 (6.3%)

*4 No function 5 (1.3%)

*5 No function 33 (8.3%)

*10 Decreased function 206 (51.8%)

*14 Decreased function 2 (0.5%)

*41 Decreased function 27 (6.8%)

Table 3.   Plasma levels and C/D of RIS, 9-OH-RIS, active moiety, and RIS/9-OH-RIS ratio among CYP2D6 
activity scores groups (n = 199). a Statistically significant result (P < 0.05) from AS = 1.0, 1.25, 1.5, and 2.0. Values 
expressed as median (interquartile range). AS activity score (assigned per revised CPIC recommendations), 
C/D dose-corrected concentration, RIS Risperidone, 9-OH-RIS 9-hydroxy-risperidone, Active moiety, the sum 
of risperidone plus 9-OH-RIS.

AS n (%) RIS (ng/ml) 9-OH-RIS (ng/ml)
Active moiety (ng/
ml)

Ratio of RIS/9-
OH-RIS

C/D of RIS (ng/
ml/mg)

C/D of 9-OH-RIS 
(ng/ml/mg)

C/D of active 
moiety (ng/ml/
mg)

AS = 0 1 (0.50) 2.67 1.78 4.45 1.50 10.68 7.12 17.80

AS = 0.25 17 (8.54) 1.43 (0.68–4.20)a 5.11 (3.86–13.56) 8.17 (4.53–22.95) 0.35 (0.17–0.82)a 1.45 (0.82–4.77)a 5.50 (3.86–8.00)d 9.01 (5.47–16.34)

AS = 0.5 55 (27.64) 1.10 (0.35–2.54)a 5.32 (3.11–11.40) 6.11 (4.54–11.96) 0.19 (0.06–0.35)a 1.48 (0.34–2.73)a 8.13 (5.42–11.93) 10.23 (6.32–14.39)

AS = 0.75 15 (7.54) 1.61 (0.92–2.58)a 5.13 (3.78–7.45) 7.25 (5.28–9.76) 0.26 (0.19–0.35)a 2.24 (1.52–3.71)a 10.15 (6.33–16.00) 11.68 (7.83–19.87)

AS = 1.0 17 (8.54) 0.44 (0.05–1.20) 7.56 (2.71–11.63) 7.56 (2.79–12.83) 0.05 (0.02–0.11) 0.27 (0.19–2.40) 10.90 (6.68–21.40) 11.79 (6.81–21.48)

AS = 1.25 70 (35.18) 0.33 (0.05–0.74) 7.27 (4.30–11.23) 7.60 (4.31–12.78) 0.04 (0.02–0.08) 0.36 (0.15–0.99) 9.18 (6.74–14.13) 9.72 (6.74–15.05)

AS = 1.5 9 (4.52) 0.13 (0.05–0.49) 2.28 (1.44–9.75) 4.19 (1.44–9.88) 0.05 (0.04–0.07) 0.40 (0.10–0.61) 6.74 (2.88–8.45) 8.38 (2.88–9.06)

AS = 2.0 15 (7.54) 0.05 (0.02–0.27) 8.36 (6.36–12.87) 8.36 (6.71–13.61) 0.01 (0.00–0.03) 0.05 (0.03–0.49) 7.95 (5.28–19.45) 8.08 (5.33–21.13)

https://www.pharmvar.org/gene/CYP2D6
https://www.pharmvar.org/gene/CYP2D6
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Owing to the revised AS definition, a notable number of subjects would be reclassified as IMs (Fig. 2). Spe-
cifically, 17 subjects with an AS of 1 which were grouped as NM under the old method would be grouped as 
IMs under the new method. Their observed phenotype, however, identified them as NMs suggesting that the 
recommended classification system does not improve phenotype prediction for RIS. In contrast, using the lower 
value of 0.25 for CYP2D6*10 AS calculation did improve the relationship between AS and RIS, RIS/9-OH-RIS 
ratio, and C/D of RIS. Similar findings were observed by Brown et al. who showed that systemic exposure of 
atomoxetine (AUC0-∞) of AS of 1 was not significantly different from that observed for subjects with an AS of 

Figure 1.   Plasma levels of RIS (A), RIS/9-OH-RIS ratio (B), and C/D of RIS (C) among activity score (AS) 
groups. AS was calculated using a value of 0.25 for the decreased function CYP2D6*10 allele.

Table 4.   Plasma levels and C/D ratios of RIS, 9-OH-RIS, active moiety, and RIS/9-OH-RIS ratio among 
CYP2D6 phenotype groups (n = 199). a Statistically significant (P < 0.05) between CYP2D6 IM and NM. 
CYP2D6 PM, AS = 0; IM, AS = 0.25, 0.5, and 0.75; NM, AS = 1.0, 1.25, 1.5 and 2.0. PM poor metabolizer, IM 
intermediate metabolizer, NM normal metabolizer, C/D dose-corrected concentration, RIS Risperidone, 
9-OH-RIS 9-hydroxy-risperidone, Active moiety, the sum of RIS plus 9-OH-RIS.

CYP2D6 predicted 
phenotype n (%) RIS (ng/ml) 9-OH-RIS (ng/ml)

Active moiety 
(ng/ml)

Ratio of RIS/9-
OH-RIS

C/D of RIS (ng/
ml/mg)

C/D of 9-OH-RIS 
(ng/ml/mg)

C/D of active 
moiety (ng/ml/
mg)

PM 1 (0.5) 2.67 1.78 4.45 1.50 10.68 7.12 17.80

IM 87 (43.7) 1.44 (0.65–2.95) 5.22 (3.57–11.40) 6.50 (4.54–14.40) 0.20 (0.13–0.37) 1.63 (0.83–3.66) 7.74 (5.24–11.40) 9.85 (6.20–15.34)

NM 111 (55.8) 0.25 (0.05–0.74) 7.33 (3.68–11.67) 7.88 (4.01–12.89) 0.04 (0.01–0.08) 0.29 (0.09–0.93) 9.03 (6.28–14.13) 9.50 (6.43–16.04)

P valuea < 0.001a 0.185 0.836 < 0.001a < 0.001a 0.105 0.879
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1.5 or 229. In addition, Frederiksen et al30, demonstrated allele-specific metabolism of vortioxetine suggesting 
substantial differences among decreased function allele. Taken together, these findings raise awareness of the 
limitations and pitfalls of drug-agnostic genotype to phenotype translation methods. This is further substanti-
ated by the plasma concentrations of RIS and RIS/9-OH-RIS ratios being significantly higher in AS of 0.25–0.75 
than AS of 1–2 arguing that the former should be classified as IMs and the latter as NMs. Therefore, to predict 
CYP2D6 phenotype for RIS treatment, genotype should be translated into phenotype as shown in Table 5.

Additionally, the CYP2D6 genotype (or AS) had a substantial impact on the trough dose-corrected plasma 
concentration of RIS. In accordance with results we previously reported for a different cohort, there were sta-
tistically significant differences in the plasma concentration for RIS (P < 0.001) and the RIS/9-OH-RIS ratio 
(P < 0.001) among phenotype groups in Thai autism children25,31. Furthermore, PM patients had significantly 
higher RIS C/D than those genotyped as CYP2D6*1/*132. The same pattern was also observed in another study33, 
i.e., the C/D ratio for RIS was significantly different in CYP2D6 PMs. The presence of the CYP2D6*10 allele 
was also associated with significantly higher levels of C/D of RIS levels at week 12 (P = 0.003) in North Indian 
patients with schizophrenia34. Moreover, plasma RIS/9-OH-RIS ratios were significantly higher in patients with 
an AS of 0.5 compared to those with an AS of 2 in an independent cohort of Thai subjects24. Taken together, the 
RIS/9-OH-RIS metabolic ratio is a biomarker for CYP2D6 activity, which may be useful to guide the treatment 
of patients in need of psychotropic drugs35.

There were no significant differences in 9-OH-RIS and total active moiety concentrations among the CYP2D6 
predicted phenotype groups, as found in an earlier study32. Similarly, the total active moiety, sum of the plasma 
concentrations of RIS and 9-OH-RIS, corrected for the dose, did not significantly differ between individuals of 
different genotypes. These findings are consistent with a previous study in another Thai cohort of ASD patients25,31 
that showed no significant differences in 9-OH-RIS and active moiety concentrations. This finding is consistent 
with a previous study using positron emission tomography scans of healthy volunteers after receiving a single oral 
dose of RIS showing that plasma concentrations of the sum of RIS and 9-OH-RIS partly overlapped between the 
NMs and PMs36. Therefore, the plasma concentrations of the 9-OH-RIS and total active moiety are independent 
of the CYP2D6-related metabolism. It has been suggested that the efflux transporter ABCB1, as well as CYP3A5 
can contribute to the steady-state plasma concentration of RIS, 9-OH-RIS, and active moiety37,38.

Figure 2.   Frequencies of each predicted phenotypes using different genotype to phenotype translation 
methods. The previous CPIC method assigned CYP2D6*10 a value of 0.5 and classified subjects with an AS of 
1 as NMs while the revised CPIC method assigns a value of 0.25 to the CYP2D6*10 allele and classifies subjects 
with an AS of 1 as IMs. This study used a value of 0.25 for CYP2D6*10 and classified subjects with an AS of 
1 as NMs to predict phenotype for RIS. PM, poor metabolizer; IM, intermediate metabolizer; NM, normal 
metabolizer.

Table 5.   Comparisons of CYP2D6 predicted phenotypes translation according to CYP2D6 activity score. N/A 
not available.

CYP2D6 predicted phenotype
Previous DPWG activity score 
definition

Previous CPIC activity score 
definition

Revised CPIC and DPWG activity 
score definition This study (Thai autism cohort)

Ultrarapid metabolizer (UM) > 2.5 > 2 > 2.25 N/A

Normal metabolizer (NM) 1.5–2.5 1–2 1.25–2.25 1–2

Intermediate metabolizer (IM) 0.5–1 0.5 0.25–1 0.25–0.75

Poor metabolizer (PM) 0 0 0 0
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As mentioned above, the CPIC-recommended drug-agnostic method to predict phenotype may not accurately 
predict phenotype across all drugs and all allelic variants. Regardless of the imperfections and shortcomings 
of the method, using a standardized system, although imperfect, is preferable because it makes comparisons of 
results among studies easier. However, it also demonstrates the need to develop more sophisticated algorithms 
that take substrate specificity, among other patient-specific information, into account.

We acknowledge the following limitations of the Luminex platform. This test does not quantitatively deter-
mine copy number nor does it determine which allele is duplicated or identify any other structural variants. 
Furthermore, only the most common alleles are tested. We speculate that some subjects may have rare or novel 
alleles which may explain some of the outliers shown in Fig. 1. In conclusion, the new CPIC recommended 
genotype to phenotype translation method, developed to promote standardized phenotype classification has its 
limitations for RIS. Using AS, rather than phenotype may be more accurate for this drug, especially considering 
the broad range of CYP2D6 activity and substrate specify. The findings of our study provide valuable information 
to further the implementation of genotype-guided risperidone treatment.
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