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Abstract

Introduction: Allergic asthma is the most common inflammatory disease of

upper airways. Airway dendritic cells (DCs) are key antigen presenting cells that

regulate T helper 2 (Th2)‐dependent allergic inflammation. Recent studies have

shown critical role of airway DCs in the induction of Th2‐mediated allergic

inflammation and are attractive therapeutic targets in asthma. However, molecular

signaling mechanism that regulate DCs function to Th2 immune responses are

poorly understood. Here we aim to evaluate the immunomodulatory effect of

dimethyl fumarate (DMF), an FDA approved small molecule drug, in the house

dust mite (HDM)‐induced experimental model of allergic asthma.

Methods: DMF was administered intranasally in the challenge period of

HDM‐induced murine model of experimental asthma. Airway inflammation,

airway hyperreactivity, Th2/Th1 cytokine were assessed. The effect of DMF on

DC function was further evaluated by adoptive transfer of HDM‐pulsed DMF

treated DCs to wild‐type naïve mice.

Results: DMF treatment significantly reduced HDM‐induced airway inflamma-

tion, mucous cell metaplasia, and airway hyperactivity to inhaled methacholine.

Mechanistically, DMF interferes with the migration of lung DCs to draining

mediastinal lymph nodes, thereby attenuates the induction of allergic sensitization

and Th2 immune response. Notably, adoptive transfer of DMF treated DCs to naïve

mice with HDM challenge similarly reduces the features of allergic asthma.

Conclusion: This identifies a novel function of DMF on DC‐mediated adaptive

immune responses in the setting of HDM‐induced airway inflammation. Taken

together, our results offer a mechanistic rationale for DMF use to target DCs in

local lung environment as antiasthmatic therapy.

KEYWORD S

allergic asthma, dendritic cells, dimethyl fumarate, house dust mite

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

Abbreviations: AF, Alexa Fluor; AHR, airway hyperresponsiveness; BAL, bronchoalveolar lavage; BMDC, bone marrow–derived dendritic cells; DCs,
dendritic cells; DMF, dimethyl fumarate; Foxp 3, forkhead box protein 3; mLN, mediastinal lymph node; HDM, house dust mite; Tregs, regulatory T cells.

http://orcid.org/0000-0002-3777-0338
mailto:amarjit.mishra@auburn.edu


1 | INTRODUCTION

Dimethyl fumarate (DMF), an α, β‐unsaturated car-
boxylic acid ester is a key derivative of the Krebs cycle
intermediate fumarate and modulates immune cell
functions, whereby effective in the treatment of im-
mune‐mediated diseases.1-3 DMF is an attractive small
molecule drug that is approved by the FDA and
European Medicines for the treatment of autoimmune
diseases such as, psoriasis and multiple sclerosis
(MS).4-6 In immune cells, the fumaric acid ester DMF
and its biologically active metabolite monomethyl fuma-
rate (MMF) inhibit the rate‐limiting GAPDH enzyme
activity by covalently binding with the cysteine residues,
thereby block aerobic glycolysis and averts immune cell
activation.7-9 This represents per se an important
mechanism of DMF action, which reprogram the
metabolic fate and skew immune cells towards inflam-
matory or regulatory functions.10

The electrophilic fumarate ester DMF exerts its
antioxidant effect by covalently modifying nucleophile
cysteine residues (thiol groups) of macromolecules such
as, kelch‐like ECH‐associated protein 1 (KEAP1), which
are known to activate nuclear‐factor (erythroid‐derived
2)‐related factor 2 (Nrf 2)‐dependent antioxidant re-
sponse element (ARE) pathway.11-13 DMF‐mediated
ARE‐dependent transcriptional induction promotes gene
expression of the glutathione S‐transferase A2 (GSTA 2),
hemeoxygenase (HO), and quinone oxidoreductase 1
(NQO1) enzymes, which are essential for cellular
detoxification.14,15 DMF effectively depletes intracellular
glutathione (GSH) storage and induces interleukin 10
(IL‐10) producing dendritic cells (DCs) and T helper 2
(Th2) differentiation, which protects mice from experi-
mental autoimmune encephalomyelitis (EAE) and psor-
iasis.16,17 However, this anti‐inflammatory effect of DMF
is independent of Nrf2 pathway.10 Although, oral DMF
treatment is safe for patients with relapsing‐remitting
MS, psoriasis and other inflammatory diseases, early
stage adverse effect of flushing and GI tract events has
been reported with several clinical trials.4,18 Long‐term
systemic DMF treatment have been shown to impact
circulating immune cells and is associated with lympho-
penia and progressive multiple leukoencephalopathy
(PML).19,20 Perhaps more importantly, DMF treatment
alters T cell subset in peripheral blood and facilitates T
cell polarization toward an anti‐inflammatory state,
thereby correlates with the clinical improvement of MS
patients.21,22

Airway DCs are essential to sample inhaled antigens,
consequently initiate, perpetuate and propagate allergic
immune responses in asthma.23-25 The importance of
airway DCs has been attributed as conditional removal of

DCs reduced all the cardinal manifestations of asthma,
including Th2 cytokine‐driven eosinophilic airway in-
flammation, mucous cell metaplasia, and airway hyper-
reactivity.26 Of interest, the compounds that modulate
DCs function in airways and interfere with their
migration process to draining lymph nodes, likely to be
effective as novel antiasthmatic drugs. However, to avoid
systemic effects, site‐directed delivery of these com-
pounds directly to the lungs via inhalation would
represent the preferred method of administration. The
precise action of DMF on lung DCs function and Th2
adaptive immune regulation remains unknown.

Since DMF application can influence myriad of
therapeutic targets and modify the balance of inflamma-
tory and regulatory immune cell types, we hypothesized
that it might also modulate airway DCs function and
adaptive Th2‐mediated immune responses to house dust
mite (HDM) antigen. We also hypothesized that if local
DMF administration during HDM challenged phase
could abrogate the cardinal features of HDM‐induced
allergic asthma. Our current study shows that local
administration of DMF reduced airway inflammation,
mucous cell metaplasia and airway hyperactivity as well
as impedes migration of DCs to draining mediastinal
lymph node. Furthermore, we show that DMF interferes
with DCs‐driven allergic sensitization and Th2 adaptive
immune responses. This demonstrates a previously
unidentified consequence of DMF treatment and support
the concepts of locally acting compound as to modulate
the regulatory function of airway DCs in allergic asthma.

2 | MATERIALS AND METHODS

2.1 | Quantitative reverse transcription
polymerase chain reaction

RNA was isolated from the splenic DCs following HDM
stimulation with or without DMF treatment using Trizol
reagent (Life Technologies, Grand Island, NY) and com-
plementary DNA (cDNA) was generated using a High
Capacity RNA‐to‐cDNA kit (Applied Biosystems). The
cDNA was pre‐amplified using previously described primers
(Table 1). Ten‐microliter polymerase chain reaction (PCR)
reactions were set up containing 0.1 µL of template DNA at
a concentration of 20 ng/mL, 5 µL of PowerUP SYBR Green
master mix (Applied Biosystems), 0.5 µL of each primer at a
concentration of 20 µM and 3.9 µL of nuclease‐free water.
Quantitative PCR was performed on the QuantStudio 7 Flex
(Applied Biosystems) using the following conditions: one
cycle at 50°C for 2minutes, one cycle at 95°C for 2minutes
and then 40 cycles at 95°C for 15 seconds and 60°C for
1minute, followed by a dissociation stage at 95°C for
15 seconds (1.6°C/s), 60°C for 1minute (1.6°C/s) and 95°C

202 | JAISWAL ET AL.



for 15 seconds (0.15°C/s). After amplification, Cq values
were obtained and analyzed using DataAssist software
(Applied Biosystems).

2.2 | Reagents

DMF was from Selleckchem (Houston, TX) and HDM
(Dermatophagoides pteronyssinus) extract was purchased
from Greer Laboratories (Lenoir, NC) as a freeze‐dried
preparation (item no. B82). Quantitative enzyme linked
immunosorbent assay kits for measurements of CC‐
chemokine ligands were from R&D Systems (Minneapo-
lis, MN). Recombinant mouse granulocyte‐macrophage
colony‐stimulating factor was from BioLegend (San
Diego, CA) and recombinant mouse IL‐4 was from Life
technologies Corporation (Grand Island, NY).

2.3 | Mice

Six‐ to eight‐week‐old female mice were utilized for
experiments and were purchased from The Jackson
Laboratories (Bar Harbor, MA). Murine experimental
protocols were approved by the Animal Care and Use
Committee of the Auburn University (Auburn, AL).

2.4 | HDM sensitization and challenge
models

(a) Female Balb/c mice (6‐8 weeks old) were sensitized by
intraperitoneal injection of HDM (100 µg) emulsified in
200 µL of phosphate‐buffered saline (PBS) containing
3mg of aluminum hydroxide (Sigma‐Aldrich) on days 0
and 4. Mice were challenged by intranasal (i.n.) admin-
istration of HDM (100 µg) in a volume of 40 µL on days 8,
11, and 12 and end points were analyzed on day 14. Mice
were intranasally (i.n.) administered with vehicle (2.8%
dimethyl sulfoxide in PBS) or DMF (0.5 mg/kg bwt) in a
total volume of 40 µL, 30minutes before HDM challenge
in the allergen challenge phase of the experimental

asthma protocol. (b) Adoptive transfer of CD11c+ BMDCs
treated with vehicle and DMF. Bone marrow cells were
isolated from the leg bones of euthanized Balb/c mice
and cultured in T‐25 cm2 tissue culture flask (Nunc) at a
density of 1 × 106 cells/mL in Iscove’s Modified Dulbec-
co’s medium (IMDM) containing 10% heat‐inactivated
fetal bovine serum (FBS), penicillin (100 U/mL), strepto-
mycin (100 µg/mL), L‐glutamine (2 mM), recombinant
mouse granulocyte‐macrophage colony‐stimulating fac-
tor (20 ng/mL), and recombinant mouse IL‐4 (10 ng/mL).
Cultures were replaced (50% of the volume) with fresh
medium on day 3. Nonadherent cells were collected on
day 5 and viable CD11c+ BMDCs were enriched with
MagniSort mouse CD11c positive selection kit (Invitro-
gen, Grand Island, NY). Cells were pulsed with HDM
(100 µg/mL) in the presence or absence of DMF (75 µM).
Overall, 1 × 105 viable CD11c+ BMDCs were adoptively
transferred in 40 µL of PBS via i.n. administration on day
0 to naïve Balb/c recipient mice. Recipient mice received
daily i.n. HDM challenges (50 µg) on days 11 through 13
and end points were analyzed on day 14.

2.5 | Airway hyper‐responsiveness
Trachea was cannulated with a 19G beveled metal
catheter, and airway resistance to increasing concentra-
tions of methacholine (0‐10mg/mL) was directly mea-
sured in mechanically ventilated mice using an Elan RC
Fine Pointe system (DSI, St Paul, MN) and mean ± SEM
values are presented as cm H2O per mL/s.

2.6 | Analysis of BALF and lung
histopathology

Bronchoalveolar lavage (BAL) was performed three times
with 0.5 mL of PBS. RBCs were lysed with ACK buffer for
2minutes at 4°C and cells were resuspended in IMDM
medium with 10% FBS. BALF cell counts were performed
using a hemocytometer, and differential cell counts were

TABLE 1 Real‐time polymerase chain reaction primers

Genes Forward (5′‐3′) Reverse (3′‐5′)

IL 10 AGCCGGGAAGACAATAACTGC CTGCATTAAGGAGTCGGTTAG

ICOS‐L AGCTTGAACTTACAGACCACGC CTCTGAAGTTGTGTCTGACATC

ST2 TGACGGCCACCAGATCATTCACAG GCCAAAGCAAGCTGAACAGGCAATAC

OX40‐L ATGGAAGGGGAAGGGGTTCAACC TCACAGTGGTACTTGGTTCACAG

Batf3 CAGACCCAGAAGGCTGACAAG CTGCGCAGCACAGAGTTCTC

Zbtb46 AGAGAGCACATGAAGCGACA CTGGCTGCAGACATGAACAC

Irf 4 ACAGCACCTTATGGCTCTCTG ATGGGGTGGCATCAT GTAGT

GAPDH CCTGCACCACCAACTGCTTAG GTGGATGCAGGGATGATGTTC
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performed on Wright‐Giemsa‐stained cytospin slides
using Aerospray Hematology ProSeries 2 instrument
(South Logan, UT). In separate experiments, BAL cells
were stained for flowcytometry and differential cell count
analysis. Lungs were inflated with 10% formalin to
pressure of 25 cm H2O, fixed in 10% formalin for
24 hours, dehydrated through gradient ethanol, em-
bedded in paraffin. Lung sagittal sections were cut to
thickness of 5 µm and stained with hematoxylin and
eosin or periodic acid Schiff (PAS).

2.7 | HDM‐specific IgE and IgG1

Ninety six‐well plates were coated overnight with 0.01%
HDM in PBS and blocked with 1% bovine serum albumin
in PBS before the addition of plasma samples that had
been diluted 1:5 in blocking buffer and standards for
1 hour. Plates were washed 6× with PBS containing 0.05%
Tween‐20 before incubation with biotinylated antimouse
IgE or antimouse IgG1 (Pharmingen, San Jose, CA) at a
concentration of 2 µg/mL for 1 hour. Next, plates were
washed for additional six times, streptavidin‐horseradish
peroxidase (R&D Systems) was added for 30 minutes and
the amount of bound HDM‐specific antibody was
determined using TMB substrate.

2.8 | Flow cytometry

Lung cells were isolated by enzymatic digestion using
type IV collagenase, 1 mg/mL and DNase I, 0.1 mg/mL
(Worthington, Lakewood, NJ), in a volume of 2mL per
lung at 37°C for 25minutes with agitation. Cells were
incubated with rat serum to reduce nonspecific binding
before surface staining with staining buffer (containing
PBS, 3% FBS, 2mM EDTA, and 10mM 4‐(2‐hydro-
xyethyl)‐1‐piperazineethanesulfonic acid) at 4°C for
30minutes. Lung myeloid cells were identified using
antibodies against rat antimouse CD45 efluor 450 (clone
30‐F11), CD11c‐APC‐Cy7 (clone N418), MHCII‐PE‐Cy7
(cloneM5/114), SiglecF‐Alexa Fluor 647 (clone E50‐2440),
CD103‐PerCP‐Cy5.5 (clone M290), CD11b‐e‐Fluor 660
(clone M1/70), CD64‐PE (clone X54‐5/7.1), CD24‐Alexa
Fluor 700 (clone M1/69), PDCA1‐Alexa Fluor 488 (clone
e‐Bio 927), all from eBioscience while the fixable viability
yellow zombie dye was from BioLegend. CD3+ T cells
and CD19+ B cells present in the mediastinal lymph node
(mLNs) and peripheral inguinal lymph node (pLNs) were
analyzed using CD3‐Alexa Fluor 647 (clone 17‐A2),
CD19‐APC‐Cy7 (clone eBio1D3). Tregs were analyzed
using CD3‐Alexa Fluor 647 (clone 17‐A2), CD4‐FITC
(clone GK1.5), CD8‐e‐Fluor 605 NC (clone 53‐6.7) and
CD25‐PE‐Cy7 (clone PC61.5), all from eBioscience. For
quantification of intracellular Foxp3, cells were fixed and

permeabilized with Foxp3 staining buffer and reacted
with a Foxp3‐PE antibody (clone NRRF‐30), both from
eBioscience. Broncho alveolar lavage cells were reacted
with rat antimouse CD11c‐APC‐Cy7 (clone N418), CD3‐
Alexa Fluor 647 (clone 17‐A2), CD19‐APC‐Cy7 (clone
eBio1D3), F4/80 (clone BM8), all from eBiosciences
except antimouse CCR3‐PE (clone 83101) (R&D Systems).
All antibodies were utilized at a concentration of 0.5‐
1 µg/mL. Data were acquired on a CytoFlex‐LX flow
cytometer (Beckman Coulter) equipped with 355, 375,
405, 488, 561, 638 and 808 Laser lines using the CytExpert
software and analyzed with the Flow Jo software version
10 (Treestar, San Carlos, CA). Cellular debris was
excluded using forward light scatter/side scatter plot.

For analysis of intracellular cytokines, single cell
suspension of lung cells were suspended in RPMI‐1640
medium supplemented with 10% FBS, L‐glutamine
(2 mM), penicillin (100 U/mL) and streptomycin
(100 µg/mL), cultured in 24‐well flat bottom plates and
stimulated with Cell Stimulation Cocktail (Invitrogen)
(containing phorbol 12‐myristate 13‐acetate (PMA),
ionomycin, brefeldin A and monensin) for 4 hours at
37°C. Cells were washed with PBS, resuspended in Flow
Cytometry Staining Buffer (eBiosciences) containing 10%
rat serum (Jackson ImmunoResearch Inc, West Grove,
PA) and reacted with 5 µg/mL of rat antimouse CD3‐
AF647, and CD4‐FITC (clone GK1.5) for 30minutes,
followed by two additional washes. Cells were resus-
pended in 300 µL of permeabilization buffer (eBios-
ciences) for 20 minutes. Cells were then reacted with
rat antimouse IL‐4‐PE‐Cy7 (clone 11B11), IL‐5‐PE (clone
TRFK5), IL‐13‐Alexa Fluor 488 (clone eBio 13A) and
IFN‐y‐PerCP‐Cy5.5 (clone XMG1.2) (eBiosciences) for
45minutes at 4°C. Cells were washed twice with
permeabilization buffer, resuspended in PBS containing
1% paraformaldehyde and viable CD3+/CD4+ T cells that
expressed IL‐4, IL‐5, IL‐13, and IFN‐γ were enumerated
in the CytoFlex‐LX flow cytometer using FMO (fluores-
cence minus one) as controls using Flow Jo analysis
software.

2.9 | Analysis of DC migration to mLNs

HDM extract (100 µg) was labeled with the Alexa Fluor
647 (AF647) using Protein Labelling Kit (Molecular
Probes, Life Technologies) and administered in 50 µL of
PBS by i.n. instillation to naïve Balb/c mice 30minutes
after vehicle or DMF treatment (0.5 mg/kg bwt in a total
volume of 40 µL). Lungs and mLNs were harvested after
24 hours and the number of Live/SiglecF−/CD11c+/
MHCII hi/SSClo/CD11b+/HDM+ DCs were quantified
with flow cytometry.
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2.10 | Statistics

Data were analyzed using Graph Pad Prism version 7.0a
and are presented as mean ± SEM. A one‐way analysis
of variance with Bonferroni’s or Sidak’s multiple
comparison test, a Mann–Whitney test or an unpaired
t‐test were used for analyses. A P< .05 was considered
significant.

3 | RESULTS

3.1 | Lung administration of DMF
during HDM challenge phase abrogates
the cardinal features of allergic asthma

First, we considered whether local administration of
DMF before HDM challenge would impact the
manifestations of allergic asthma in already sensitized
mice. In these experiments, mice were sensitized with
HDM, followed by multiple i.n. HDM challenges with
or without local DMF administration (Figure 1A).
Bronchoalveolar lavage fluid (BALF) cells and their
differential analysis were enumerated. As shown in
Figure 1B, the number of BALF inflammatory cells
recovered from HDM‐challenged mice that received
DMF treatment were significantly reduced as com-
pared with those from vehicle treated mice, which
represented decreases in eosinophils (Eos), alveolar
macrophages (AM), and lymphocytes (Lym). Similarly,
treatment with DMF before each HDM challenge
showed a decrease in the extent of peribronchial and
perivascular inflammatory cell infiltrates and mucous
cell metaplasia in lung sections compared with HDM‐
challenged control (Figure 1). BALF levels of C‐C
chemokine ligands, CCL24 and CCL22 were also
significantly reduced with DMF treatment as com-
pared with untreated control, whereas there was no
difference in levels of CCL17 and CCL11 (Figure 1D).
HDM sensitized mice treated with either DMF or
vehicle showed no change in plasma levels of HDM‐
specific IgE (Figure 1E) or IgG1 (Figure 1F). In
addition to the reduction in airway inflammation,
DMF treatment also significantly attenuated HDM‐
mediated increases in airway hyperresponsiveness
over the complete dose range with inhaled methacho-
line (AHR; Figure 1G). The HDM‐challenged mice
showed higher average of airway resistance with
increasing methacholine dosage compared with vehi-
cle only, but this airway hyperresponsiveness was
significantly decreased by local DMF treatment.
Collectively, these findings demonstrate that local
administration of DMF during the challenge phase
can attenuate airway inflammation and cardinal

manifestations of experimental HDM‐induced asthma,
including mucous metaplasia and AHR.

3.2 | DMF treatment alters lung
myeloid cell distribution and attenuates
Th2 inflammation

Since, local treatment with DMF was effective in
suppressing airway inflammation and asthma features,
experiments were next conducted to assess the lung
myeloid cell distribution in response to HDM chal-
lenge that might be directly responsible for the
treatment effect. First, we assessed whether the
myeloid cell subsets, B and T cells were altered with
DMF treatment in lungs, draining mediastinal lymph
nodes (mLNs) and peripheral lymph nodes (pLNs)
compared to vehicle control. To delineate different
lung myeloid cell subsets, we used a modified gating
strategy.27 As shown in Figure 2A, interstitial macro-
phages (IM), CD11b+ conventional DCs (cDC2),
CD103+ conventional DCs (cDC1) and plasmacytoid
DCs numbers in the lungs were induced with HDM
allergen challenge as compared with vehicle treated
naïve controls. Lung recruitment of CD11b+ cDC2,
CD103+ cDC1, and interstitial macrophages were
markedly decreased with DMF treatment compared
to untreated control mice. Second, we found a
reduction of a CD11b+ cDC2 numbers in lung draining
mLNs, whereas the number of CD11b+ cDC2 in pLNs
was not altered with local DMF treatment (Figure 2B).
There was no change in the T or B cell numbers from
mLNs and pLNs with DMF treatment compared to
untreated control (Figures 2C and S3A). We also
assessed whether the number of CD3+/CD4+/CD25+/
Foxp3+ regulatory T cells (Tregs) was modified with
DMF treatment. However, we found that there was an
increase of CD4+ Tregs number from mLNs of HDM‐
challenged DMF treated mice as compared to un-
treated (Figure 2D).

Additional experiments were performed to character-
ize further the effects on Th1 and Th2‐cytokine produ-
cing lung cells. Although, there were no changes in lung
CD4+ T cell numbers (Figure 3A), local DMF treatment
strikingly reduced IL4+, IL5+, and IL13+ Th2‐cytokine
producing effector cells in the lungs as compared to HDM
challenged vehicle control (Figure 3B). There were no
difference in IFN‐γ+ Th1‐cytokine producing cell num-
bers. Collectively, these findings demonstrate that local
administration of DMF during the challenge phase can
attenuate the recruitment of lung myeloid DCs, thereby
suppress Th2 mediated airway inflammation in response
to inhaled HDM.
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3.3 | DMF treatment inhibits migration
of lung CD11b+ cDC2 to draining
mediastinal lymph node

Treatment with DMF reduced the total numbers of
CD11b+ cDC2 in the draining mLNs, which is an

indicative of the in vivo effect on the migratory capacity
of lung DCs. Next, to assess the functional significance of
the reduction in numbers of DCs, AF647‐labeled HDM
was administered to the lungs thirty minutes after vehicle
or DMF treatment. Twenty‐four hours following instilla-
tion the number of HDM‐AF647+ DCs were enumerated

FIGURE 1 Continued.
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in the lung or in draining mLNs. The individual cell
intensity of HDM‐AF647 staining showed no change in
lung or mLNs with vehicle or DMF treatment, indicating
that DMF administration did not interfere with the HDM
uptake process (Figure 4A). DMF treatment significantly
increased the retention of HDM‐AF647+ CD11b+ cDC2
in the lung epithelium (Figure 4B). In addition, exposure
to DMF inhibited the migration of lung CD11b+ cDC2 to
the draining mLNs (Figure 4C). Altogether, these
experiments show that local DMF treatment interfere
with the migration process of DCs from lung epithelium
to the draining mLNs, which is an integral step to
generate the immune response and Th2 effector function
in response to inhaled HDM.

3.4 | DCs‐driven airway inflammation
is suppressed by DMF treatment

Having shown that DMF significantly influence DCs in
HDM‐challenged phase, experiments were next conducted
to assess the effect of DMF on DC‐related inflammatory
genes and transcription factors (Figure S1A). HDM
stimulation induced an increase in IL10, ICOS‐L and
ST2 gene expression in DCs as compared to vehicle
control, whereas the reduction in expression of these genes
were not statistically significant with DMF treatment.
DMF significantly suppresses HDM‐induced OX40‐L
expression in DCs that elicits costimulatory signal and
development of Th2 responses.28 We also show that the
transcription factor basic leucine zipper transcription
factor ATF‐like 3 (Batf3), which plays nonredundant
function in DC development were significantly reduced
with DMF treatment (Figure 1B).

Next, adoptive transfer experiments were performed
to confirm that the attenuated HDM‐induced airway
inflammatory responses with local DMF administration
were mediated specifically by DCs. CD11c+ bone
marrow derived dendritic cells (BMDCs) pulsed with
vehicle or DMF and then transferred adoptively to naïve
mice that subsequently received multiple i.n. HDM

challenges to induce DC‐driven allergic airway inflam-
mation (Figure 5A). As a marker for inflammation in
the lungs, BALF cells and their differential analysis
were enumerated using multicolor flow cytometry and
sequential gating analysis (Figure S3B). Lymphocytes
(Lym) were identified as CD3+/CD45R+/MHCII− cells,
and the CD3−/CD45R− cell population were gated as
CD11c+/MHCII+/F4/80+ alveolar macrophages (AM);
F4/80−/SSChi/CCR3− neutrophil (PMN); and SSChi/
MHCII−/CCR3+ eosinophil (Eos). Recipients of adop-
tively transferred HDM‐pulsed DCs that had been
treated with DMF had significant reductions in the
number of BALF inflammatory cells as compared with
recipients of HDM‐pulsed DCs that had been treated
with vehicle alone (Figure 5B). BALF levels of CCL24,
as a proxy measure of eosinophil infiltration, were
significantly reduced in recipients of DMF‐treated
HDM‐pulsed DCs compared to vehicle (Figure 5C).
Consistent with this, lung histology showed a reduction
in peribronchial inflammatory cell infiltrates in reci-
pient of HDM pulsed DCs that had been treated with
DMF, which was associated with a decrease in mucous
cell metaplasia (Figure 5D). Mice that received the
adoptive transfer of HDM pulsed CD11c+ BMDCs and
had been treated ex vivo with DMF demonstrated
significant reductions in the lung alveolar macrophages
and CD11b+ cDC2 (Figure 5E). Although there was
reduction of CD80 and dectin‐1 expressions in lung DCs
from recipients that adoptively received DMF‐treated
DCs, these differences appeared modest in the cell
surface expression level of CD86 and dectin‐2 (Figure
S2). Lastly, recipients of DMF treated HDM pulsed DCs
had reductions in number of CD4+‐IL4+ and ‐IL5+ Th2
cytokine producing lung cells, as compared with
recipients of HDM‐pulsed DCs that had not been
pulsed with DMF (Figure 6). Collectively, these results
demonstrate that DMF‐mediated pharmacological mod-
ulation of DCs impairs their ability to initiate allergic
sensitization and Th2‐driven airway inflammatory
responses.

FIGURE 1 Effect of local DMF treatment on asthma features. A, Mice were sensitized with two i.p. injections of 100 μg HDM on days 0
and 4 and challenged on days 8, 11, and 12 by intranasal administration of HDM (100 μg) before harvest and endpoint analysis on day 14.
Thirty minutes before each HDM challenge, mice received an i.n. administration of vehicle or DMF (dosage at 0.5 mg/kg bwt) in volume of
40 µL). B, The number of total BALF inflammatory cells and inflammatory cell types (Eos, AM, PMN, and Lym from vehicle, HDM, or DMF
treated mice (n= 8‐10 mice, *P < .01, vehicle/HDM‐challenged versus Vehicle/HDM/DMF, one‐way ANOVA with Sidak’s multiple
comparison test). C, Representative lung histology sections stained with H&E or PAS are shown. Scale bars = 100 μm for the ×100 and ×600
images. D, BALF levels of CC‐chemokine ligands from mice treated or not with DMF (n= 5‐10 mice, *P< .05, or P=NS, unpaired t‐test).
Results shown are pooled data from two independent experiments. E,F, Plasma levels of HDM‐specific IgE and IgG1 (n= 9‐10 mice, *P < .01,
Mann–Whitney test, vehicle/HDM‐challenged versus DMF‐treated mice). G, Airway resistance (cm H2O per mL/s) to increasing dosage of
inhaled methacholine from vehicle, HDM‐challenged or DMF treated mice (n= 8‐10 mice) (*P < .05, two‐way ANOVA). AM, alveolar
macrophages; DMF, dimethyl fumarate; Eos, eosinophils; HDM, house dust mite; H&E, hematoxylin and eosin; Lym, lymphocytes; PAS,
periodic acid‐Schiff; PMN, neutrophil
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4 | DISCUSSION

Airway DCs are primary antigen presenting cells that
initiate and maintain allergic sensitization and Th2
adaptive immune responses to inhaled aeroallergen in
asthma.24 DCs in the lung are primarily comprises of two
main subsets of conventional DCs (cDCs) and tolerogenic
plasmacytoid DCs (pDCs). Type 1 cDCs that express α
integrin CD103+ (cDC1) primarily cross present antigen
to naïve CD8+ T cells, inferior in their antigen uptake

capacity, and are redundant for Th2 immune re-
sponse.29,30 In contrast, type 2 conventional DCs (cDC2)
are CD11b+ and efficiently take up and process
aeroallergen, such as HDM, and migrate to the draining
mediastinal lymph nodes to induce T cell differentiation
and production of effector cytokines.31,32 Consistent with
this, mice depleted of DCs during HDM challenge phase
were unable to mount Th2 responses to HDM, whereas
adoptive transfer of DCs were sufficient to induce Th2
immunity and restore airway features.24,26 Therefore,

FIGURE 2 Effect of local DMF treatment on lung myeloid cell distribution. A, Changes of myeloid‐cell subsets during HDM‐induced
airway inflammation and DMF treatment. Single cell suspension of enzymatically digested mouse lungs were prepared and myeloid‐cell
subsets were identified and enumerated. Difference between groups were compared using one‐way ANOVA with Sidak’s multiple
comparison test (*P < .01 or P=NS, vehicle/HDM‐challenged versus vehicle/HDM/DMF). B, Enumeration of CD11b+ DCs, (C) T and B cells
from lung draining mLNs or pLNs, and (D) CD25+/FoxP3+ Tregs (CD4+ and CD8+) in draining mLNs from HDM‐challenged and DMF
treated mice. *P < .05 or P=NS, vehicle/HDM‐challenged versus vehicle/HDM/DMF, one‐way ANOVA with Sidak's multiple comparison
test). Data are representatives of at least two independent experiments and represents means ± SEMs (n= 8‐10 mice). DMF, dimethyl
fumarate; HDM, house dust mite; mLV, mediastinal lymph node; pLN, peripheral lymph node
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airway DCs are attractive therapeutic targets for devel-
opment of antiasthmatic drugs.

Limited or conflicting data, however, exist regarding
the mechanism of DMF action and their effect on DC
function.33,34 Prior studies using monocyte derived DCs
have found that DMF inhibited the GMCSF and IL4
driven maturation and differentiation process by indu-
cing apoptosis, thereby failed to proliferate lympho-
cytes.34,35 A recent study, however, have shown that
DMF increases HO expression and deplete the intracel-
lular pool of reduced glutathione (GSH) level, and
promotes IL10 production to induces IL4+ autoreactive
Th2 cells in Th1 and Th17‐mediated autoimmune

diseases.16 This immune deviation is mediated by
inhibition of STAT1 phosphorylation and suppression
of IL12 and IL23 production. However, the inhibition of
Th1/Th17 cells and induction of IL10 producing DCs and
IL4+Th2 cells appears after more than 4 weeks of DMF
therapy for clinical improvement.36,37 In contrast, short‐
term feeding of DMF to rodents for 2 weeks was shown to
increase GSH level and inhibits phosphorylation and
ubiquitination of IκB and induces NF‐κB activa-
tion.38,39 However, the immunomodulatory effects of
DMF on DC‐mediated allergic airway inflammation and
adaptive Th2 immunity has not been elucidated pre-
viously.

FIGURE 3 Local DMF administration attenuates CD4+ Th2‐cytokine producing cells in lungs. A, The total number of CD4+ T cells, as
well as (B) IL‐4+/CD4+, IL‐5+/CD4+, IL‐13+/CD4+, and IFN‐γ+/CD4+ T cells in lung, was quantified by flowcytometry (n= 9‐10 mice,
*P< .01 or P=NS, Mann–Whitney test, vehicle/HDM‐challenged versus DMF‐treated mice). Results are pooled data from at least two
independent experiments. DMF, dimethyl fumarate; HDM, house dust mite

FIGURE 4 Effect of local DMF administration on lung DC migration to the lung draining mLNs. On day 0, mice were administered
with HDM extract (100 μg) labeled with Alexa Fluor 647 with or without DMF (10 μg) treatment. A, MFI and (B,C) percent of HDM‐AF647+

CD11b+ and CD11b− DCs from lung and draining mLNs were enumerated 24 hours after installation of labeled HDM. SiglecF−/CD11c+/
MHCIIhi/AF647+ DCs were gated for evaluation (n= 8‐12 mice per group, *P< .01, or P=NS, unpaired t‐test, vehicle/HDM‐challenged
versus DMF‐treated mice). Data represents means ± SEMs. DC, dendritic cell; DMF, dimethyl fumarate; HDM, house dust mite
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Here we investigated whether local administrations of
DMF is effective to suppress DC‐mediated induction and
allergic sensitization of airway inflammation and Th2‐
mediated adaptive immune response. First, we show that
i.n. administration of DMF in HDM challenge phase
attenuate airway inflammation, mucous cell metaplasia,
airway resistance to inhaled methacholine. Furthermore,
DMF administration increased recruitment of lung draining
mLNs Tregs. This is consistent with prior reports demon-
strating local administration of the oral immunosuppressant

small molecule sphingosine 1‐phosphate agonist FTY720 via
inhalation are effective to attenuate allergic airway inflam-
mation and Th2 immune response without accompanying
lymphopenia as serious adverse effect.40 However, we were
unable to found any significant changes in the lung Treg
population with DMF treatment. In particular, FTY720
inhibit the migration of airway DCs from epithelium to the
draining mediastinal lymph nodes, thereby suppress Th2
immune response in a murine model of experimental
asthma.40,41 We also show that the immunomodulatory

FIGURE 5 The adoptive transfer of HDM‐pulsed CD11c+ BMDCs treated with DMF have an impaired ability to induce allergen‐mediated
airway inflammation. A, DMF treated BMDCs were pulsed ex vivo with vehicle or HDM (100 µg/mL) for 16 hours. CD11c+ DCs (0.1 × 106) were
adoptively transferred to naïve Balb/c recipient mice by means of intranasal administration on day 0, and intranasal HDM challenges (50 µg) were
administered on day 11 through day 13, to all recipient mice before endpoint analysis on day 15. B, Enumeration of BALF inflammatory cell subtypes
in recipient mice by flow cytometry. BALF lymphocytes (lym) were identified as CD3+/CD45R+/MHCII− cells, and the CD3−/CD45R− cell
population were gated as CD11c+/MHCII+/F4/80+ alveolar macrophages (AM); F4/80−/SSC hi/CCR3− neutrophil (PMN); and SSC hi/MHC II−/
CCR3+ eosinophil (Eos) (n=8‐16 mice per group). *P< .05, or P=NS, HDM‐pulsed DMF treated versus HDM‐pulsed, or HDM‐pulsed versus
vehicle, one‐way ANOVA with Sidak's multiple comparison test. C, BALF levels of CCL24 from recipient mice that received HDM‐pulsed DMF‐
treated DCs or HDM‐pulsed untreated DCs. *P< .05, HDM‐pulsed DMF treated versus HDM‐pulsed, unpaired t‐test, (n=4‐8 mice per group). D,
Representative histologic lung sections stained with H&E and PAS. Scale bars= 100 μm for the ×100 and ×600 images. E, Quantitation of PAS+

mucous cell metaplasia. F, Lung myeloid cells in recipient mice sensitized with HDM‐pulsed DMF‐treated DCs or HDM‐pulsed untreated DCs.
Results are representative of least two independent experiments and expressed as means± SEMs (n=4). Difference between groups were compared
using one‐way ANOVA with Sidak’s multiple comparison test (*P< .01 or P=NS, HDM‐pulsed DMF treated versus HDM‐pulsed). DC, dendritic
cell; DMF, dimethyl fumarate; H&E, hematoxylin and eosin; HDM, house dust mite
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small molecule DMF attenuates all manifestations of HDM‐
induced allergic asthma when administered before or during
HDM challenge. This is also highly relevant to the DMF
effect, which suppressed airway inflammation without
altering the lymphocyte distribution in the lung and in the
periphery. We also showed that local DMF application
significantly inhibited the lung recruitment of CD11b+ cDC2
and suppress cytokine secreting CD4+IL4+, CD4+ IL5+, and
CD4+IL13+ Th2 effector cells. Therefore, we propose that in
presence of DMF, DCs might have an impaired ability to
induce Th2 mediated adaptive immune responses to HDM.

Here we demonstrate that the number of mediastinal LNs
DCs are significantly reduced with inhaled DMF treatment,
which could be resultant of reduced airway inflammation in
the HDM challenged lung and associated reduced influx of
lung DCs into the draining mLNs.42 We demonstrate that
single DMF treatment before administration of fluorescent
labeled HDM to naïve mice inhibit the migration of CD11b+

cDC2 to the draining mLNs associated with an accumulation
of DCs in the lung tissues. In line with others, DMF and its
active MMF interfere with adhesion molecule expression and
inhibit leukocyte chemotaxis in a hydroxycarboxylic acid
receptor 2 (HCA2)‐dependent manner, thereby exerts its
protective effect.43-45

We also assessed whether pharmacological treatment of
DCs with DMF are effective to ameliorate DCs‐driven
allergic sensitization and airway inflammation. First, we

showed that the adoptive transfer of HDM‐pulsed CD11c+

BMDCs treated with DMF had an impaired ability to
induce allergic sensitization, as indicated by reduced BALF
inflammatory cell infiltration associated with reductions in
CCL24 level, as well as reduced airway inflammation and
mucous cell metaplasia. CD11b+ cDC2 in the lung are
known for their superior antigen presenting capacity and
induce Th2 responses by expression of IRF4 (interferon
regulatory factor‐4) target genes.31,46 Exposure to HDM is
recognized by the innate C‐type lectin receptors dectin 1
and dectin 2, which are present on cDC2 and induces
chemokine receptor expression and migration of DCs to
mLNs.47-49 Consistent with this, in response to HDM
challenge dectin1−/− mice failed to mount Th2 immune
response and eosinophilic airway inflammation, and
showed reduced CCR7 expression on cDC2 and less
migration of DCs to mLNs.49 Similarly, mice that received
DMF treated DCs displayed a phenotype of reduced cell
surface expression of the costimulatory molecule CD80 and
dectin 1, as well as reduced numbers of CD4+ Th2 cytokine
producing cells, with no effect on CD4+ IFN‐γ+ T cells.
Furthermore, we found that DMF treatment significantly
reduced the HDM‐induced TNF‐superfamily member
OX40‐L expression in DCs, which are required for Th2 cell
differentiation.50

In summary, we have identified a novel mechanism of
DMF action in the lung, where it effectively interferes

FIGURE 6 DMF treated DCs induces
Th2 immune responses. The total number
of (A) lung CD4+ T cells and (B) CD4+/
CD25+/FoxP3+ Tregs in mediastinal LNs,
as well as (C) IL‐4+/CD4+, (D) IL‐5+/
CD4+, (E) IL‐13+/CD4+, and (F) IFN‐γ+/
CD4+ T cells from recipient mice lungs
that received HDM‐pulsed DMF‐treated
or untreated DCs (n= 4‐8 mice per
group). Results are representative of at
least two independent experiments.
One‐way ANOVA with Sidak's multiple
comparison test (*P < .01 or P=NS,
HDM‐pulsed DMF treated versus HDM‐
pulsed). DC, dendritic cell; DMF,
dimethyl fumarate; HDM, house dust
mite; Th2, T helper 2
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with DC migration to the draining mLNs and subsequent
induction of allergic sensitization and Th2 immunity to
HDM. Our results in this report validates the concept, for
what we believe for the first time, that lung DMF
administration inhibits the Th2‐driven cardinal manifes-
tation of allergic asthma by altering the airway DCs
function without causing systemic lymphopenia. This
identifies the mechanistic rationale of the small molecule
drug DMF to target airway DCs in allergic asthma.
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