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Abstract: Umbilical cord blood transplantation (UCBT) has been an important donor source for
allogeneic hematopoietic stem cell transplantation, especially for patients who lack suitable matched
donors. UCBT provides unique practical advantages, such as lower risks of graft-versus-host-disease
(GVHD), permissive HLA mismatch, and ease of procurement. However, there are clinical
challenges in UCBT, including high infection rates and treatment-related mortality in selected
patient groups. These clinical advantages and challenges are tightly linked with cell-type specific
immune reconstitution (IR). Here, we will review IR, focusing on T and NK cells, and the impact
of IR on clinical outcomes. Better understanding of the immune biology in UCBT will allow us to
further advance this field with improved clinical practice.

Keywords: umbilical cord blood transplantation; NK cells; T cells; immune reconstitution;
acute myeloid leukemia (AML); acute lymphoblastic leukemia (ALL); relapse; treatment-related
mortality; leukemia free survival; overall survival

1. Introduction

Since umbilical cord blood transplantation (UCBT) was first implemented for children and adults,
it has been a valuable alternative donor source for allogeneic transplantation given its logistic advantages
and comparable clinical outcomes to other types of hematopoietic stem cell transplantations (HCTs).
Umbilical cord blood (UCB) grafts contain a unique cell composition in lymphocytes, and immune
reconstitution (IR) of T and NK cells following UCBT appears to be somewhat different from other
donor types. Here, we review immune cell composition in UCB, IR with focus on T and NK cells,
and clinical relevance of IR in UCBT outcomes.

2. Lymphocyte Subsets in the UCB Graft

The immune cell composition and properties of UCB units is different from peripheral blood or
bone marrow. Functional and physiological relevance of the lymphocytes in UCB graft can be assessed
by comparing to adult peripheral blood (PB) [1]. The absolute numbers of T, B, and NK cells per
volume and the fraction of NK and B cells are higher in UCB than PB (Figure 1) [1]. The median T cells,
NK cells, and B cells are 61%, 23%, and 16% in UCB, respectively, whereas 75%, 13%, and 12% in PB.
In UCB, there are two lymphocyte populations (CD45dim and CD45bright), whereas in PB, lymphocytes
are all CD45bright population [2]. The CD45dim lymphocyte population contains higher fractions of B
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and NK cells than CD45bright lymphocytes in UCB. The phenotypic and functional characteristics of T
and NK cells in UCB grafts are further discussed below and summarized in Figure 2.
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Figure 1. Cell composition in the umbilical cord blood (UCB) graft. The majority of T cells are CD4+

and naïve T cells in the UCB graft. The ratio of CD56dim/CD56bight NK cells is similar to that of PB.
However, the cytotoxicity of CD56dim NK cells in the UCB graft is poor compared to that of PB NK
cells. UCB, umbilical cord blood; PB, peripheral blood; CD, cluster of differentiation; NK, natural killer.
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Figure 2. The immunophenotypic and functional characteristics of T and NK cells in the UCB graft.
(A) Naïve T cells, the major subset of UCB T cells have a better plasticity to transform into memory T
cells and iTreg cells than PB T cells. The UCB graft contains a distinct Treg population. The fractions of
memory, effector, activated T cells are low in UCB graft. (B) NK cells of the UCB graft are characterized
by the phenotype of immaturity. The cytotoxicity of resting UCB NK cells is markedly low. However,
the UCB NK cells acquire potent cytotoxicity with phenotypic maturation upon cytokine stimulation.
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2.1. CD3+ T cells

As compared to PB, the UCB CD3+ compartment has a lower number of NK-T and TCRγδ+ T
cells [1]. CD4+ and CD8 T cells are 72% and 28%, respectively, in UCB, whereas 65% and 35% in
PB. The fractions of naïve (CD45 RA+/RO−) and memory T cells (CD45 RA−/RO+) are also different
from PB (Figure 1); the median naïve T cells is 85% and memory T cells is 6% in UCB, whereas
naïve T cells 39% and memory T cells 50% in PB. UCB contains a significantly greater percentage
of CD45+/CD62L+ “recent thymic emigrants”, naïve CD4 and naïve CD8 T cell subsets with lower
numbers of memory CD8+ T cells [1,3]. Cytotoxic T lymphocyte (CTL, CD8+/CD45RA+/CD27−) and
suppressor T cell (CD8+/CD57+/CD28−) populations are absent, with a lower percentage of effector
(CD8+CD11b+), activated (HLA-DR+), Th1-type (CCR-5+) T cells [1]. Cutaneous lymphoid antigen
(CLA) is expressed on T cells preferentially homing to cutaneous inflammatory areas. Interestingly,
CLA is not expressed on UCB T cells, potentially relevant to a lower incidence of GVHD in UCBT [1,4].
Upon phytohemagglutinin (PHA) and interleukin-2 (IL-2) stimulation, newborn CD4+CD45RA+

naïve T cells convert more rapidly into CD4+CD45RO+ memory T cells than the adult counterpart,
suggesting a greater capability of UCB naïve T cells to transform into memory T cells [5]. However,
IFNγ and TNFα, as well as IL-2 production of UCB lymphocytes, are markedly lower than adult PB
lymphocytes [3], possibly due to the reduced expression of NFAT-dependent genes [6]. Notably, UCB T
cells have powerful allogeneic antitumor activities with a higher tumor-infiltrating CD8/Treg ratio and
rapid differentiation into memory/effector cells than adult PB T cells [7].

2.2. Tregs

Tregs are conventionally defined as a subset of CD4+CD25+ T cells that maintain self-tolerance
and immune suppression. Forkhead box protein P3 (FoxP3) is the master transcription factor for
development of Tregs [8,9]. Tregs are either developed in the thymus (nTregs) or transformed from
CD4+CD25− naïve T cells in the presence of transforming growth factor beta (TGFβ) in peripheral
lymphoid tissues (iTregs) [8,10]. UCB possesses a distinct CD25+ population within the CD4+ T cell
compartment [11]. The majority of UCB regulatory T cells (Tregs) are inexperienced with antigen
stimulation, hence, cannot suppress “antigen-specific” alloreactive T cells [12,13]. However, after UCB
Tregs are expanded and activated by TCR engagement and cytokine stimulation (e.g., stimulation
with anti-CD3/CD28 mAb-coated beads and IL-2), their suppressive potency for allogeneic T cells
become significantly greater than Tregs isolated from adult PB [11]. Furthermore, UCB Tregs possess
a higher capacity for expansion [14], and Tregs (CD4+CD25+CTLA4+) are more readily inducible
from CD4+CD25− T cells in UCB than adult PB [13]. Notably, early phase clinical trials using ex vivo
UCB-derived nTreg expansion have shown promising clinical efficacy to prevent acute GVHD [15,16].

2.3. NK Cells

NK cells are known to be the main effector for graft-versus-leukemia (GVL) reactions early
after HCT [17,18], and are enriched comprising up to 30% in the UCB graft (Figure 1) [1,19–21].
The CD56bright/CD56dim ratio of UCB NK cells is similar or slightly higher than that of PB NK cells
(Figure 1) [20,22,23]. Notably, the cytotoxicity of CD56dim NK subset is poorer than that of CD56bright

NK cells in the UCB graft, whereas CD56dim NK cells exert stronger cytotoxic effects in PB [22].
Cytotoxicity of CD56bright subset of UCB NK cells is comparable to that of PB NK cells, whereas
cytotoxicity of CD56dim NK cells of UCB is greatly diminished compared to the counterpart of PB.
A conjugate forming assay revealed that binding of CD56dim NK cells of UCB to leukemic targets was
significantly impaired secondary to a lower expression of adhesion molecules, including CD2, CD11a,
CD18, and DNAM-1 [22]. In another report, L-selectin, ICAM-1 expression was significantly lower in
NK cells of UCB than PB [20,23]. The expression of chemokine receptors in UCB NK cells are different
from PB NK cells. CXCR1 expression in UCB CD56dim NK cells is significantly reduced, whereas
CXCR4 expression in both UCB CD56dim and CD56bright NK cells is increased [23]. Hence, UCB NK
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cells may be less responsive to inflammatory stimulation (involved in CXCR1 expression), but better
capable of homing to the bone marrow (CXCR4), perhaps accounting for the effective GVL of UCBT [24].
Compared to PB NK cells, UCB NK cells less express maturation markers such as KIR, CD16, and CD57,
whereas the expression of NKG2A/CD94, a phenotypic marker of NK cell immaturity, is higher in
UCB NK cells [20,21,23]. In terms of NK cell activation receptors, the expression of NKG2C/CD94 and
NKp46 (in CD56bright) is lower, but TLR-4, GITR, 2B4, and CD48 (in CD56bright) expression is higher in
UCB NK cells than PB NK cells [2,23].

Immature CD56−/CD16+ NK cells are a distinct population identified in the UCB graft, but rarely
found in healthy adults [18,25,26]. CD56−/CD16+ NK cells can differentiate into CD56+/CD16+ NK
cells under IL-2 or IL-15 stimulation, acquiring enhanced cytotoxicity [26]. The expansion of UCB
NK cells is less responsive to low-dose IL-2 stimulation (200 IU/mL) than PB NK cells. This is likely
secondary to lower expression of CD25 (IL-2Rα) in CD56dim NK cells in UCB [23]. While resting,
UCB CD56dim NK cells express lower levels of CD107a, IFNγ, granzyme B, perforin, and FAS-L, thereby
exert a lower cytotoxicity than PB NK cells. UCB NK cells can acquire a potent cytotoxicity with an
enhanced production of IFNγ and cytotoxic granules by high-dose IL-2 stimulation (1000 IU/mL) [23].
Furthermore, the response of UCB NK cells to IL-12 and IL-18 stimulation measured by IFNγ production
and CD69 expression is higher than that of PB NK cells [27,28].

3. Immune Reconstitution in UCBT

Immune reconstitution after HCT may impact clinical outcomes such as incidence of
transplant-related mortality and GVHD, the risks of infections and relapse, and, ultimately, survival.
Numerous factors influence IR after HCT, including conditioning regimen (myeloablative vs.
nonmyeloablative, use of antithymocyte globulin, and total body irradiation), immune suppression
regimen, the graft source, cell compositions of the graft, and viral infections in HCT [29]. In this
section, we will focus on T and NK cell reconstitution after UCBT, and compare with other donor types
when possible.

3.1. T cells

T cell reconstitution is delayed after UCBT as compared to bone marrow transplantation (BMT) [30]
and peripheral blood stem cell transplantation (PBSCT) [31]. T cell reconstitution after HCT occurs in
two distinct pathways: (1) Peripheral expansion of mature T cells (thymus-independent pathway),
and (2) thymopoiesis from donor hematopoietic progenitors (thymus-dependent pathway) [32,33].
Early after HCT, T cell reconstitution takes place through peripheral expansion by T cells transferred
from the graft or recipient T cells which have survived conditioning therapy (thymus-independent
pathway). The mature T cells compete for homeostatic cytokines, such as IL-7 or IL-15, and self-MHC
molecules presented by antigen-presenting cells (APCs) [34]. In the lymphopenic condition, IL-7 and
IL-15 are constantly produced by immune and non-immune cells, but little is consumed. Hence,
there are high plasma levels of these cytokines early after HCT [35]. The mature T cells transferred
from the graft have greater access to IL-7 or IL-15 and self-MHC on APCs, which, in the context of
lymphopenia, promotes expansion with limited competition [34,36]. Naturally, the T cells undergo
rapid expansion with multiple cell divisions, leading to accelerated telomere shortening in the first
year post-HCT [37]. In contrast to memory T cells, naïve T cells require TCR engagement with MHC
molecules presented by APC, in addition to cytokine stimulation, for survival and expansion [34,38].
As a result, peripheral expansion of memory T cells is greater than naïve T cells after HCT. Another
unique aspect of early immune reconstitution is the inverted CD4/CD8 ratio, secondary to better
peripheral expansion of memory CD8 T cells [29]. In certain donor/recipient pairs, seropositivity to
viral pathogens like CMV can polarize T cell expansion towards the viral antigens, narrowing the T cell
repertoire that predominantly proliferates towards antigen-specific memory T cells, limiting polyclonal
expansion [39]. In UCBT, early T cell reconstitution is primarily dependent on the peripheral expansion
and may have limited T cell repertoire due to delayed thymopoiesis (especially in adults), as compared
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to other donor types [40]. Furthermore, CD4+ and CD8+ T cells at day +100 after UCBT have reduced
capability to produce IFNγ upon superantigen and CMV stimulation, possibly indicating impaired T
cell functions early after UCBT [41]. In a pediatric study using myeloablative conditioning (MAC)
with antithymocyte globulin (ATG), median time to T cell recovery (CD3+ T cells >0.5 × 109/L) was
6.3 months in UCBT group vs. 3.2 months for unrelated BM group (p = 0.008) [30]. This was apparently
driven by CD8+ T cell reconstitution (>0.25 × 109/L) that took a median of 7.7 months after UCB vs.
2.8 months after unrelated BM. However, recovery of the CD4+ T cell (CD4+ T cells >0.5 × 109/L)
numbers was faster after UCBT, with median time for CD4+ T cell recovery 9.3 months vs. 12 months
in unrelated BMT (p = 0.003). Hence, the inverted CD4/CD8 ratio is not observed early after UCBT
because of the delayed CD8+ T cell recovery after UCBT [42].

The reconstitution of T cell repertoire diversity from donor-derived naïve T cells occurs in
the thymus following peripheral expansion of mature T cells post HCT (thymus-dependent pathway).
This process, termed thymopoiesis, requires a longer period of time in which donor-derived lymphoid
progenitors enter the thymus and undergo maturation processes (positive and negative selection) [43].
Thymopoiesis occurs weeks after HCT and can last up to 6 years [44]. After the sequential positive and
negative selections, only small fractions of T cells can survive and exit the thymus, so-called recent
thymus emigrant (RTE) [45]. This de novo process can be measured by T cell receptor (TCR) excision
circle (TREC), naïve T cell counts, and T cell repertoire diversity [44,46,47], and is critical for broad
and self-tolerant T cell immunity [32,46]. After UCBT, TREC levels correlate with CD3+CD4+45RO−

naïve T cell counts (r = 0.83, p = 0.0001), and TCR repertoire diversity (r = 0.83, p = 0.0001) [48].
Long-term T cell reconstitution (CD3 >1.5 × 109/L) is similar between UCBT and unrelated BMT (9.3 vs.
10 months) in the pediatric population [30]. In an age- and GVHD-matched comparison of children
and young adults between UCB [median age 12.6 years (3–34.6)] and matched sibling recipients, TREC
and CD4+CD45RO− naïve T cells were significantly higher, whereas CD8+ activated and memory T
cells were lower at 2 years in UCB as compared to matched sibling donor group, indicating efficient
thymopoiesis in UCBT [48].

3.2. NK Cells

Natural killer cells are the first lymphocytes reconstituting after HCT. NK cell immunity plays a
critical role in GVL, especially early after UCBT, because of the low absolute counts and functional
immaturity of T cells transferred with the UCB graft. The time to NK cell reconstitution (>0.1 × 109/L)
was similar between UCBT (1 month) and unrelated BMT (1.4 months), when both groups received
ATG as part of the conditioning regimen [30]. Notably, after UCB with no ATG in the conditioning
regimen, NK cell count reconstitution at 1 month after UCBT was similar to healthy controls [49,50].
Moreover, a better NK cell reconstitution with higher NK cell counts was observed over a 24-month
period in UCBT than PBSCT [31,51].

NK cell reconstitution 1–3 months after UCBT is polarized to CD56bright NK cells (approximately
40% of the total NK cells), as compared to healthy donor controls [49,50]. Three months after UCBT,
NK cells express high levels of NKG2A and CD62L and low levels of CD16, CD8, and CD57 [49].
Even in CD56dim NK cells, the expression of CD94/NKG2A, an inhibitory receptor recognizing HLA-E
antigen, is higher early after UCBT, but gradually returns to levels similar to that of healthy controls’
by 1 year after UCBT [50]. The expression of KIR2DL2/3 and KIR3DL1 of NK cells is significantly
lower in the UCB graft, but becomes comparable within 3 months after UCBT to healthy donors,
indicating acquisition of NK cell education [49,50]. However, KIR2DL1 levels of CD56dim NK cells are
persistently lower than that of healthy controls during the first 6 months after UCBT, consistent with
the sequential acquisition of KIR commonly observed in other types of HCT [49,50,52,53]. Interestingly,
NKp30, NKp46 (natural cytotoxicity receptors involving NK cell activation), and CD69 (an activation
marker) of CD56dim NK cells are transiently higher for the first couple of months after UCBT than
healthy controls [50], potentially providing advantages in GVL reactions. The HLA-DR expression of
NK cells is significantly higher during the first year of UCBT than that of healthy controls and UCB
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grafts [49]. DNAM-1 (an activating NK cell receptor) expression of CD56dim NK cells is significantly
lower in the UCB graft, but gradually increases, and becomes similar to the level of healthy control NK
cells within a year after UCBT [50].

NK cells acquire unique functional characteristics after UCBT, as evidenced by high IFNγ

production in the first 1–3 months [49,50]. Direct cytotoxicity of NK cells during the first 6 months
post-UCBT against K562 targets and HLA mismatched primary acute myeloid leukemia (AML) samples
is robust, and similar to that of healthy controls [50]. However, antibody-dependent cellular cytotoxicity
(ADCC) of NK cells within 3 months after UCBT is significantly impaired [50], consistent with low
expression of CD16 early after UCBT [49].

4. Clinical Factors Associated with Immune Reconstitution in UCBT

As summarized in Figure 3, multiple clinical factors potentially influence the reconstitution of T
and NK cells after UCBT. Selected factors are reviewed below.
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Figure 3. Impacts of clinical factors on immune reconstitution of T and NK cells in UCBT. Advanced
age, acute and chronic GVHD, HLA mismatch, infection, myeloablative conditioning, and ATG result
in impaired thymopoiesis. Furthermore, relatively low T cells in the UCB graft cause delayed T cell
recovery. Double UCBT enhances early T cell IR and thymopoiesis (in adults). Contrarily, NK cell IR
in UCBT is comparable or better, compared to other types of HCT, given relatively high fractions of
NK cells in the UCB graft. ATG and myeloablative conditioning are known to further prompt NK
cell IR. GVHD, graft-versus-host disease; UCB, umbilical cord blood; UCBT, umbilical cord blood
transplantation; NK, natural killer; IR, immune reconstitution; HCT, hematopoietic cell transplantation.

4.1. Viral Infections

High incidence of HHV-6 (up to 70–80%) has been associated with delayed engraftment after
UCBT in multiple reports [54,55]. HHV-6 infection can also interfere with T cell reconstitution, both in
a thymus-dependent and independent pathways, resulting in dysfunctional T cell population after
HCT [56]. A recent retrospective study with time-dependent analysis revealed that high HHV6 viral
load (>105 copies/mL) was associated with impairment of both CD4+ and CD8+ T cell reconstitution
after HCT, including UCBT [57]. Interestingly, HHV6 infection negatively affected reconstitution of
naïve, but not effector memory CD4+ T cells. In addition, reactivation of HHV-6 early after UCBT
was associated with T cells expressing CD57, NKG2A, and KIR2DL2/3, surface markers of T cell



J. Clin. Med. 2019, 8, 1968 7 of 16

senescence, and hypofunction, and it was associated in inferior clinical outcomes [58]. Other viral
infections may result in limited and skewed TCR diversity towards a specific viral antigen, as observed
in individuals with Epstein-Barr virus (EBV) and cytomegalovirus (CMV) infections than those without
these infections [59].

4.2. GVHD

Glucocorticoid (GC) is the cornerstone of treatment for acute and chronic GVHD. GC is known to
induce in vivo Treg expansion [60,61], and inhibit the JAK-STAT signaling pathway induced by IL-2,
IL-4, IL-7, and IL-15 in T cells [62]. A murine HCT model suggests CD8+ T cells as the main target of
GC [63]. Taken together, CG used for treatment of GVHD profoundly affects in the T cell function.
GC also prevents upregulation of MHC class II and costimulatory molecules on dendritic cells [64,65],
hence, compromises T cell responses against foreign or allo-antigens. High-dose GC can also induce T
cell apoptosis [65]. Furthermore, GVHD can directly damage the thymus by inducing apoptosis of
thymocytes (thymic GVHD) [66,67]. Among allo-HCT recipients, absolute counts of naïve T cells were
significantly lower at 12 months, with narrower and more skewed TCR repertoires in patients with
aGVHD than without aGVHD [47,48]. Furthermore, both sjTREC and βTREC were significantly lower
in the aGVHD group, but sj/βTREC ratio was comparable between groups with and without aGVHD,
indicating that aGVHD primarily impairs early-stage thymopoiesis [47]. In addition, patients with
cGVHD developed markedly lower TREC [44,48]. Interestingly, steady increases in TREC levels in
both CD4+ and CD8+ T cells were observed in UCBT patients receiving immunosuppression without
active GVHD, suggesting that GVHD prophylaxis with immunosuppression alone does not necessarily
cease thymopoiesis [44].

4.3. Conditioning Regimen

ATG has been frequently used in the conditioning regimen in UCBT. ATG delays T cell
reconstitution by depleting naïve and memory T cells transferred with the graft required for early
peripheral expansion of mature T cells [68]. In contrast, ATG exposure is associated with strong
recovery of B and NK cells 30 days after transplant, enabling B and NK cells to compensate T cell defects
in UCBT [41,43]. In addition, the timing, dose of ATG administration, and serum level at the time of the
allograft infusion may influence incidence and grade of GVHD and T cell subset reconstitution [68,69].
In the absence of exposure to ATG, better T cell reconstitution after UCBT is observed, which may
contribute, at least in part, to better leukemia control and lower all-cause mortality [68,70,71].

Reduced intensity regimen (RIC, Fludarabine 30 mg/m2 for 5 days, Cyclophosphamide 50 mg/kg,
and TBI 200cGy) without ATG in adults employed at the University of Minnesota was associated with
comparable lymphoid reconstitution at day 180 post-HCT and significantly lower chronic GVHD at
1 year post-HCT in UCBT compared to matched sibling donor HCT. In a pediatric UCBT study where
all patients received ATG in the conditioning [72], NK cell counts after transplant were higher in the
MAC group. Multivariate analysis revealed that the MAC group had a higher risk of developing
acute GVHD (HR 6.1, p = 0.002), increased treatment-related mortality (TRM) (OR 26.8, p = 0.008),
and overall mortality (HR = 4.1, p = 0.0001). In another adult study [73], CD3+ T cell recovery
was observed at 6–12 months after UCBT with higher number of CD45RA+ T cells, more diverse
T cell repertoire in patients treated with nonmyeloablative regimen (NMA) (fludarabine 30 mg/m2,
cyclophosphamide 500 mg/m2, and ATG 30 mg/kg) when compared to a historical MA group [40].
Furthermore, TREC was detected at 12 months in NMA group, whereas at 18–24 months in the MA
group [40,73]. Taken together, RIC may provide better T cell reconstitution, whereas MAC may favor
NK cell reconstitution.

4.4. Age

Age is one of the most significant host factors to influence T cell reconstitution and thymopoiesis
following UCBT. In adult patients with TBI- and ATG-based conditioning regimen, the number of
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CD8+ T cells reached normal ranges a year after UCBT, but total T cell counts remained below normal
for 2 years from UCBT, and memory T cells remained 70% of the total T cell population until 12 months
post-UCBT [40,41]. These data suggest that T cell reconstitution and thymopoiesis are delayed in adult
UCBT. In contrast, the long-term immune recovery, including after UCBT, was similar to those who
underwent adult unrelated donor [30,74] and haploientical donor HCT [75] in children, suggesting
faster thymus-dependent T cell reconstitution. In a pediatric population, TREC numbers recovered to
the pre-UCBT levels by 6 months [75], and reached within normal limits by 1 year [40,45], whereas
in adults, sjTREC recovery took a median of 3 years after UCBT [40,41]. Furthermore, diverse T cell
repertoires were observed at 1–2 years post-UCBT in children, whereas it took 3–4 years in adult
patients [40]. Hence, in part, driven by reduced thymopoiesis, the delay of T cell numbers and
repertoire reconstitution is a challenge in adults undergoing UCBT.

4.5. Cell Dose: CD34+ Progenitor Counts in Grafts and Single vs. Double Unit(s) of UCBT

CD34+ count (>107/kg vs. <107/kg) in the allograft correlates with the TREC levels after HCT
in children, suggesting that CD34+ cell dose plays a role in thymopoiesis [76]. However, despite a
higher combined CD34 cell dose in children receiving double (dUCBT) UCB grafts, reconstitution of
lymphocyte subsets was similar to that of single UCBT (sUCBT) in children (and young adults) at
1–2 years after UCBT [77,78]. While data directly comparing single with double UCBT in adults are
not available, in adult dUCBT without ATG, the TCR diversity measured by TCR deep sequencing
at 6 months after HCT approached that observed in a healthy control group [59]. Others reported
that, despite administration of ATG, adult patients undergoing dUCBT had a steep rise in TREC
numbers between 6 and 12 months after transplant [79], while the recovery of T numbers between 6
and 12 months approached that of recipients of sibling and unrelated donors grafts in the absence of
ATG [80,81]. In summary, dUCBT seems to provide better T cell reconstitution in adults. At least in part,
this may be explained by the “threshold effect” of CD34+ cell doses in thymopoiesis [76] (i.e., a single
UCB graft may contain sufficient CD34+ progenitors to reach the “threshold” of thymopoiesis for
pediatric but not for adult recipients). This effect, however, has to be considered in the context of
conditioning regimen intensity and administration of ATG.

5. Clinical Impacts of Immune Reconstitution on Outcomes of UCBT

Reconstitution of lymphocyte subsets after UCBT is influenced by multiple clinical factors, as
discussed above. Conversely, immunological and genetic characteristics of T and NK cells are critical
determinants of clinical outcomes in HCT. Figure 4 summarizes the potential impact of lymphocyte
reconstitution on UCBT outcomes.
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Figure 4. Impacts of T and NK cell IR on major clinical outcomes in UCBT. (A) Impacts of T cell IR
on clinical outcomes. CD4+, naïve T cell IR, thymopoiesis measured by TREC, viral antigen-specific
T cell immunity significantly impact clinical outcomes. (B) NK cell effects on clinical outcomes in
UCBT. Immunogenetic factors such as recipients’ HLA typing play a critical role in clinical outcomes in
UCBT by KIR–HLA interactions. Furthermore, the NK cell function (e.g., cytotoxicity against K562)
and the phenotype (CD16, HLA-DR expression) can affect clinical outcomes. There are conflicting
data in the literature on effects of KIR-L mismatch in clinical outcomes. * treatment-related mortality;
# leukemia-free survival; % overall survival.

5.1. Infections

Infection is a major cause of death in UCBT. Szabolcs et al. reported that 58% of deaths within
6 months in UCBT were due to infection in children [82]. A better T cell reconstitution at day
50 post-UCBT, including higher absolute CD4+ T cell counts, was observed in the group without
subsequent opportunistic infections (OI) than with OI at day 100 post-UCBT. This finding indicates
that T cells play a critical role to prevent opportunistic infection. Additionally, both CD34+ and
CD3+ cell doses were associated with lower death from OI at 6 months. In a retrospective study
where UCBT recipients constituted more than a half of the entire cohort, delayed CD4+ T cell
reconstitution was predictive of adenovirus, EBV, and HHV6 infections [83]. Moreover, CD4+ T cell
reconstitution (≥50 × 106/L) within 100 days was associated with a shorter duration of adenovirus
infection. CMV infection is a major life-threatening complication in HCT. In a large cohort study
(n = 332) at the University of Minnesota, 51% of recipients with hematological malignancies undergoing
UCBT developed CMV reactivation [84]. CMV-specific CD8+ T cells transferred from the UCB graft
alone could not eradicate CMV viremia, but clearance of CMV viremia occurred later and seemed
to depend on CD4+CD45RA+ T cells by thymopoiesis [79]. However, the Seattle group identified
intact CMV-specific T cell priming early after UCBT (at day +42), suggesting that failure to control
CMV reactivation is likely due to insufficient numbers of these T cells in vivo [85]. Nevertheless,
successful T cell reconstitution by thymopoiesis is required for an optimal control of CMV reactivation.
Additionally, NK cells may play an important role in CMV control. A recent study demonstrated that
low NKG2C copy number of NK cells in the UCB graft was independently associated with increased
risk of developing CMV reactivation (HR = 2.72, p < 0.0001) [86].

5.2. Major Clinical Outcomes: Relapse, Mortality, and Survival

Poor T cell reconstitution is associated with increased risks of relapse in HCT. Clave et al.
reported that relapsed pediatric patients with hematological malignancy had lower β-TREC levels
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at 6 months before and after HCT (including UCBT), suggesting an association between impairment
of early intra-thymic T cell development and increased relapse risks [75]. Regardless of graft types,
both low CD4+ and naïve T cell reconstitution are significantly associated with increased risks of
treatment-related mortality at day 100 post-HCT [87]. Successful CD4+ T cell reconstitution at day
100 after UCBT by less exposure to ATG is associated with lower non-relapse mortality (NRM), lower
relapse-related mortality (particularly for AML), better event-free survival, and better overall survival
(OS) [68]. Furthermore, early CD4+ T cell reconstitution (defined by CD4+ T cell >50 × 106/L within
100 days after UCBT) resulted in better leukemia-free survival (LFS) (HR = 0.24, p = 0.003), improved OS
(HR = 0.16, p = 0.0014) with lower NRM (HR = 0.20, p = 0.0072). Again, lower RI (HR = 0.31, p = 0.041)
in association with improved T cell reconstitution was observed in AML [88]. Successful CD8+ T
cell reconstitution and high TREC levels, as well as CD4+ T cell reconstitution, are associated with
improved OS [79]. Moreover, CMV-specific T cell response and high NK cell counts are independently
associated with better progression-free survival (PFS). As T cells in the UCB graft are unlikely to
have encountered antigens of herpes viruses, herpes antigen-specific T cell response represents T cell
reconstitution occurring in vivo. Hence, Parkman et al. measured herpes antigen-specific proliferative
T cell responses as measurement of successful T cell IR [89]. In pediatric patients with acute leukemias
undergoing ATG-based MA sUCBT, the earliest herpes-antigen specific T cell response was observed
within the first month. Notably, negative antigen-specific T cell response was independently associated
with higher leukemia relapse (HR = 3.7, p = 0.003) and lower relapse-free survival (HR = 3.6, p = 0.0002),
indicating that successful T cell reconstitution plays a critical role in relapse prevention.

Transplant outcomes in UCBT are also tightly associated with NK cell IR. In RIC UCBT for AML,
the low CD16 and high HLA-DR expression on NK cells are significantly associated with increased
risks of TRM [49]. In addition, KIR-HLA typing is associated with overall survival (OS) [49]. HLA C2
homozygous recipients have much poorer event-free survival (EFS) (HR = 6.19, p = 0.002), OS (HR = 6.12,
p = 0.001), and higher TRM (HR = 9.44, p = 0.026) than HLA C1/x recipients. Furthermore, poor direct
cytotoxicity of NK cells against K562 measured by CD107a expression was significantly associated
with poor overall survival as well.

6. Closing Remarks

UCBT has been a valuable alternative donor for transplantation for the past several decades.
It has clinical advantages, including readily available grafts, relatively lower incidence of GVHD,
and lower disease relapse [4,24,77,90]. While there have been some challenges in UCBT, advances have
been made by modifying conditioning regimens [87,91], double UCB grafts [77]. More sophisticated
utilization of ATG has substantially improved clinical outcomes [68–70]. Emergence of more robust ex
vivo expansion techniques have enabled to meet the adequate cell doses for larger patients [92,93].
In addition, a recent report described the powerful GVL effect of UCB in those with acute leukemia
and minimal residual disease [24]. Better understanding of the immune biology in UCBT will lead to
improved graft engineering in the future.
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