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A B S T R A C T   

The fields of Metagenomics and Metatranscriptomics involve the examination of complete nucleotide sequences, 
gene identification, and analysis of potential biological functions within diverse organisms or environmental 
samples. Despite the vast opportunities for discovery in metagenomics, the sheer volume and complexity of 
sequence data often present challenges in processing analysis and visualization. This article highlights the critical 
role of advanced visualization tools in enabling effective exploration, querying, and analysis of these complex 
datasets. Emphasizing the importance of accessibility, the article categorizes various visualizers based on their 
intended applications and highlights their utility in empowering bioinformaticians and non-bioinformaticians to 
interpret and derive insights from meta-omics data effectively.   

1. Introduction 

The total number of microbial cells on Earth is estimated to be 1030 

[1,2], outnumbering the stars of our Milky Way Galaxy (~100 billion 
stars). Microorganisms, ubiquitous in nature, wield significant influence 
over Earth’s biosphere. Every organism, spanning from humans to 
plants, interacts with the microorganisms in their environment. Never-
theless, a staggering percentage of > 98% remains largely unexplored 
due to the challenges of culturing them [3,4]. In the human gut alone, 
microbial populations are estimated to range from 1013 to 1014 micro-
bial cells, outnumbering human cells [5]. The study of the genomic 
material in metagenomes/metatranscriptomes allows researchers to 

gain insights into the genomic characteristics, functional potential, and 
ecological roles of specific microorganisms within complex microbial 
communities. It contributes to our understanding of microbial diversity, 
interactions, and the overall functioning of ecosystems. 

Metagenomics and Metatranscriptomics [6,7] are critical approaches 
in studying microbial communities and uncultured organisms. A meta-
genome encompasses the collective genomic content of a microbial 
community in a particular environment and includes the total genetic 
information from all the microbes present, including bacteria, archaea, 
viruses, and eukaryotic microorganisms such as protozoa or unicellular 
algae and fungi. Metagenomic analysis [8–11] entails sequencing and 
analysis of DNA extracted directly from an environmental sample 
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without the need for isolating and cultivating individual organisms. This 
approach allows researchers to explore the genetic diversity and func-
tional potential of entire microbial communities. 

Similarly, Metatranscriptomics [12–14] is a field of study that delves 
into the complex world of gene expression within microbial commu-
nities present in environmental samples. Unlike traditional tran-
scriptomics, which focuses on the gene expression of individual 
organisms, metatranscriptomics examines the collective gene expression 
of all microbes within a given sample. A metatranscriptome represents 
the collection of all RNA transcripts (e.g., mRNA, rRNA, tRNA) produced 
by the microorganisms in a particular environment at a given point in 
time, and provides insights into the gene expression patterns and ac-
tivities of the microbial community. A typical metatranscriptomic 
analysis involves the sequencing and analysis of the RNA transcripts, 
revealing which genes are actively being transcribed. One of the primary 
goals of metatranscriptomics is to elucidate the functional activities and 
metabolic processes occurring within microbial communities in their 
natural habitats. By analyzing the transcriptome, researchers can gain 
valuable insights into which genes are actively expressed, how they are 
regulated, and how microbial communities respond to changes in their 
environment. Overall, metatranscriptomics provides a powerful tool for 
exploring the functional potential and activities of microbial commu-
nities in diverse environments, offering valuable insights into their roles 
and interactions within ecosystems and their implications for human 
health and biotechnology. 

Metagenome-assembled Genomes (MAGs) refer to the process of 
reconstructing individual genomes (at various levels of completion and 
possible contamination) of specific microorganisms from a meta-
genomic dataset. The process of extracting genomes from metagenomes 
is challenging due to the complex and diverse nature of metagenomic 

samples. However, advances in sequencing technology and computa-
tional methods have made it possible to extract and characterize ge-
nomes from metagenomes with increasing accuracy. These extracted 
genomes can provide valuable insights into the diversity and function of 
microbial communities, which can aid in the discovery of new organ-
isms, metabolic pathways, and potential biotechnological applications. 

A typical Shotgun Metagenomic analysis involves steps (Fig. 1) such 
as:  

• Sequencing: Initially, researchers perform metagenomic sequencing 
on a sample, generating a dataset that contains DNA fragments from 
various microorganisms present in the environment.  

• Quality control: Raw metagenomic sequences are checked for 
quality and cleaned of contaminants such as adapters and primers.  

• Assembly/Read Mapping: In this step, short DNA fragments (reads) 
are aligned to reconstruct longer genomic sequences. The cleaned 
sequences are assembled into contigs and scaffolds using various 
assembly methods such as de novo assembly (no existence of refer-
ence genome), reference-based assembly (if a reference genome ex-
ists), or hybrid assembly (reference-guided and partially de novo). 

• Binning and Genome Reconstruction: Assembled contigs (contig-
uous DNA sequences) are grouped into similar operational taxo-
nomic units based on similarities in nucleotide composition, 
coverage, and other features. The genomes that are reconstructed 
through binning are typically referred to as Metagenome Assembled 
Genomes (MAGs)  

• Annotation: MAGs are annotated with functional and taxonomic 
information similar to the isolate genomes. 

Similarly, a typical Metatranscriptomics analysis involves steps such 

Fig. 1. Different steps of a typical metagenomic analysis: (i) Marker gene detection and taxonomic assignment, (ii) De novo assembly towards the generation of 
larger contigs, and (iii) Map to reference genome (if it exists). 
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as:  

• Sample collection and RNA extraction: Samples are collected from 
the environment of interest, such as soil, water, or the human gut. 
Then, the extraction of total RNA from the collected samples follows 
to capture the actively transcribed genes.  

• cDNA synthesis: In this step, the extracted RNA is converted into 
complementary DNA (cDNA) using reverse transcription.  

• Sequencing library preparation: In this step, sequencing libraries 
from the cDNA samples are prepared, often using methods such as 
fragmentation and adapter ligation.  

• Sequencing: High-throughput sequencing of the prepared libraries 
using platforms like Illumina or PacBio is performed.  

• Data preprocessing: Like in metagenomics, data preprocessing such 
as adapter sequence trimming, low-quality read removal, and 
filtering out ribosomal RNA (rRNA) sequences is required.  

• Read mapping: The sequenced reads are mapped to a reference 
genome or transcriptome to identify the expressed genes and quan-
tify their abundance. 

• Differential expression analysis: In this step, genes that are differ-
entially expressed under different conditions or between different 
samples are identified.  

• Functional annotation and pathway analysis: In this step, the 
differentially expressed genes are annotated to assign putative 
functions based on databases like NCBI’s RefSeq [15] or UniProt [16] 
as well as functional pathways enriched in the differentially 
expressed. The aim is to understand the biological processes at play. 

In this review, we focus on the metagenomic visualization tools that 
aim at analyzing and displaying metagenomic data, including DNA se-
quences, functional information, and metadata. Visualization is crucial 
in the field of metagenomics as it allows researchers to understand 
complex microbial community structures, taxonomic compositions, and 
functional potentials. Although several visualization tools have been 
developed to aid researchers in exploring and interpreting metagenomic 
data, the field of metagenomic visualization is still in its infancy and the 
challenges regarding complexity, functionality, scalability, and inter-
operability remain open. Nonetheless, metagenomic visualization al-
lows the automation of several important tasks:  

• Interactive and intuitive exploration and visualization of extensive 
datasets aid in the identification of patterns and trends within the 
data. 

• Comparison of multiple samples facilitates the recognition of simi-
larities and differences, thereby enhancing comprehension of the 
diversity and complexity inherent in metagenomic data.  

• Integration of various data types, including functional, taxonomic, 
and metadata, contributes to a comprehensive understanding of 
metagenomic dataset(s).  

• Sharing of data and results among researchers fosters stronger 
collaboration and promotes improved reproducibility in research 
endeavors. 

2. Databases and repositories 

Currently, available metagenomes and metatranscriptome datasets, 

Table 1 
Databases and Repositories.  

Database Name Description Data Types Accessibility User 
Submission 

GenBank Archive for sequencing data Genomes, Metagenomes, 
Metatranscriptomes, Amplicons 

Publicly 
accessible 

Yes 

Sequence Read Archive (SRA) Archive for sequencing data Raw sequencing data Publicly 
accessible 

Yes 

European Nucleotide Archive 
(ENA) 

Archive for all publicly available nucleotide sequences Genomes, Metagenomes, 
Metatranscriptomes, Amplicons 

Publicly 
accessible 

Yes 

DOE Systems Biology 
Knowledgebase (KBase) 

A platform for sharing, integrating, and analyzing microbial, plant, 
and community data 

Genomes, Metagenomes, 
Metatranscriptomes, Amplicons 

Publicly 
accessible 

Yes 

Genomes OnLine Database (GOLD) Repository for genome projects and metadata (ecosystems) Ecosystems Publicly 
accessible 

Yes 

Integrated Microbial Genomes & 
Microbiomes (IMG/M) 

Community-driven repository hosting genomes of cultivated and 
uncultivated microbial taxa, metagenomes, metatranscriptomes, 
amplicons, plasmids, and genome fragments 

Metagenomes, 
Metatranscriptomes, 
Amplicons, Genomes 

Publicly 
accessible 

Yes 

MGnify Archive for exploration, and analysis, of microbiome sequencing 
datasets 

Metagenomes, 
Metatranscriptomes, 
Amplicons, MAGs 

Publicly 
accessible 

Yes 

Metagenome RAST (MG-RAST) Microbiome repository with a unified pipeline for automated 
analysis of metagenomic samples 

Metagenomes Registered 
users 

Yes 

Integrated Microbial Viral Genomes 
(IMG/VR) 

Viral genomes and metagenomes Viral Genomes, Viral 
Metagenomes 

Publicly 
accessible 

Yes 

NMPFamsDB Novel protein families from IMG’s metagenomes and 
metatranscriptomes 

Protein Families Publicly 
accessible 

No 

FESnov catalog Catalog reporting functionally unannotated proteins derived from 
MAGs 

Proteins Publicly 
accessible 

No 

NIH Human Microbiome Project Metagenomes from human host-associated systems, such as the gut 
microbiome 

Human Microbiome 
Metagenomes 

Publicly 
accessible 

No 

TerrestrialMetagenomeDB Annotation of metagenomes obtained from soil samples Soil Metagenomes Publicly 
accessible 

Yes 

MarineMetagenomeDB Annotation of metagenomes obtained from marine samples Marine Metagenomes Publicly 
accessible 

Yes 

HumanMetagenomeDB Annotation of metagenomes obtained from human microbiome 
samples 

Human Microbiome 
Metagenomes 

Publicly 
accessible 

Yes 

SPIRE Searchable resource of ecosystem metadata obtained from MAGs Ecosystem Metadata Publicly 
accessible 

No 

Marine Metagenomics Portal 
(MMP) 

Collection of databases annotating marine-oriented metagenomic 
datasets 

Marine Metagenomes Publicly 
accessible 

No 

National Microbiome Data 
Collaborative (NMDC) 

A platform for collaboration and data sharing among researchers 
studying microbiomes across diverse ecosystems 

Microbiome Data Publicly 
accessible 

Yes  
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including raw reads, sequencing scaffolds, predicted genes and anno-
tations, and associated metadata, are hosted in a wide range of publicly 
available repositories and databases [17] (Table 1). These include both 
standard sequence archives such as GenBank [18], the DNA Database of 
Japan (DDBJ) [19] and the European Nucleotide Archive (ENA) [20], 
(all three of which are members of the International Nucleotide 
Sequence Database Collaboration), the Sequence Read Archive (SRA) 
[21], or the Genomes OnLine Database (GOLD) [22], and specialized 
resources focusing exclusively on metagenomes. The most prominent 
databases in the latter category include IMG/M [23,24], MGnify [25], 
SPIRE [26], and MG-RAST [27]. 

The Integrated Microbial Genomes & Microbiomes (IMG/M) data-
base is a community-driven repository that hosts genomes of cultivated 
and uncultivated microbial taxa from all domains of life, metagenomes 
and metatranscriptomes, amplicons, plasmids and genome fragments of 
interest, generated by targeted sequencing [23,24]. IMG/M [23,24] 
features a well-established, continuously updated metagenome analysis 
pipeline (DOE JGI Metagenome workflow), allowing researchers to 
submit their own genome or metagenome datasets, and automatically 
perform several types of analyses, including gene calling, taxonomic 
assignment, and functional annotation [28]. As a result, while a portion 
of the database’s content comes from other established sequence re-
positories, such as GenBank [18] or the SRA [21], the majority of its 
content is derived from user-submitted projects. Similar to IMG/M, 
MGnify [25] is a freely available database aimed at archiving, exploring, 
and analyzing microbiome sequencing datasets. The database accepts 
user-submitted data and provides a versatile annotation pipeline to 
cover the analysis of a wide range of dataset types, from studies tar-
geting taxonomic markers (e.g., amplicon studies) to shotgun 
sequencing of metagenomes and metatranscriptomes, as well as 
metagenome-assembled genomes (MAGs). Furthermore, MGnify offers 
the option to provide assembly for user-submitted raw reads upon 
request [25]. Finally, the Metagenomes RAST service (MG-RAST) is 
another major microbiome repository and one of the earliest approaches 
to provide a unified pipeline for the automated analysis of metagenomic 
samples [27]. In contrast to other databases, MG-RAST imposes access 
limitations to its contents, with its database being restricted to its 
registered users. It focuses on the analysis of metagenome reads and 
mapping of the latter to reference genomes, rather than also analyzing 
other dataset categories (amplicons, assembled contigs/scaffolds, or 
MAGs). 

In addition to IMG/M, MGnify, and MG-RAST, several, more 
specialized metagenomic databases are also available, focusing on spe-
cific microbiome types. For example, IMG/VR [29,30] is a subset of 
IMG/M focusing exclusively on viral genomes and metagenomes [31], 
which has utilized specialized predictors to reanalyze IMG/M datasets 
and identify samples based on viral gene structure and virus-specific 
marker regions [32]. The DOE Systems Biology Knowledgebase 
(KBase) [33] is a freely accessible software and data platform facilitating 
the sharing, integration, and analysis of microbial, plant, and commu-
nity data. NMPFamsDB [34,35] hosts novel protein families [36] from 
IMG metagenomes and metatranscriptomes which do not have any hit to 
any known Pfam domain or similarity to any known reference genomes. 
Similarly, the FESnov catalog reports functionally unannotated proteins 
derived from MAGs [37]. Both databases offer several tools for the 
visualization of their data. Another similar, but more focused example is 
the Ocean Microbiomics Database [38], which hosts biosynthetic gene 
clusters formed by integrating isolate genomes from marine ecosystems 
with reconstructed draft genomes coming from seawater samples. The 
NIH Human Microbiome Project focuses on metagenomes from human 
host-associated systems, such as the gut microbiome [39], Terres-
trialMetagenomeDB [40], MarineMetagenomeDB [41], and Human-
MetagenomeDB [42] annotate metagenomes obtained from soil, marine, 
and human microbiome samples, respectively, originally deposited to 
GenBank [18], SRA [21], and MG-RAST [27]. SPIRE, hosted by EMBL, 
provides a searchable, planetary-scale resource of ecosystem metadata, 

obtained from MAGs [26]. Finally, the Marine Metagenomics Portal 
(MMP) [43] is a collection of databases annotating marine-oriented 
metagenomic datasets, retrieved from MGnify as well as super studies 
conducted by large microbiome initiatives, such as AtlantECO or the 
Tara Oceans expedition [44]. 

Finally, the National Microbiome Data Collaborative (NMDC) [45] is 
an innovative initiative designed to foster collaboration and data 
sharing among researchers studying microbiomes across diverse eco-
systems. It serves as a centralized platform where scientists can access, 
analyze, and contribute to microbiome data, advancing our under-
standing of microbial communities and their impact on various envi-
ronments and organisms. Through its collaborative framework, NMDC 
aims to accelerate discoveries and facilitate the development of novel 
solutions in fields ranging from healthcare to environmental science. 

3. Sequence space 

In this section, we describe today’s sequence metagenomic/meta-
transciptomic space across the aforementioned repositories (snapshot 
April 2024). IMG/M currently hosts 207,655 datasets, encompassing 
54,030 metagenomic and 14,411 metatranscriptomic datasets 
(65,987,169,755 scaffolds). Similarly, the IMG/VR database, known for 
its comprehensive collection of uncultivated virus genomes contains a 
total of 14,203,973 viral genomes from metagenomes and 8023,647 
viral OTUs. MGnify hosts 573,344 datasets derived from 2932 studies. 
Among these datasets, 459,617 are amplicons, 39,605 metagenomes, 
and 2581 metatranscriptomes. Additionally, MGnify features 429,448 
genomes cataloged within 11 Metagenome-Assembled Genome (MAG) 
catalogs. The MGnify protein database hosts over 2.4 billion unique 
sequences predicted from metagenomic assemblies. SPIRE includes 
99,146 metagenomic samples from 739 studies. With a total meta-
genomic assembly size of 16 terabase pairs (Tbp), SPIRE contains 35 
billion predicted protein sequences and 1.16 million newly generated 
metagenome-assembled genomes (MAGs) of medium to high quality. 

4. Pipelines 

Metagenome annotation refers to the identification and functional 
characterization of genes and other genomic structure features in a 
metagenomic sample. The process can be performed using any number 
of sequence analysis tools [46]. However, due to the intricate nature of 
metagenome datasets, characterized by their complexity and diverse 
composition, dedicated pipelines are commonly used for effective 
analysis. Notable web-based examples include the DOE JGI Metagenome 
workflow [24,28], EBI Metagenomics [30], and Metagenome RAST 
pipelines [27], integrated into the IMG/M, MGnify and MG-RAST da-
tabases, respectively. In addition, several standalone solutions also exist, 
including MetaErg [47], Prokka [48], MetaGOflow [49] (marine sam-
ples), PEMA [50] (metabarcoding analysis), PGAP [51], DFAST [52], 
and nf-core/mag [53]. 

While each pipeline may adopt different approaches and integrate 
different analysis methods, all currently available workflows focus on 
three main procedures: i) the identification of non-coding RNA genes 
(ncRNAs) and other marker regions, ii) the prediction of protein-coding 
genes, and iii) functional and taxonomic annotation of the sample. 
ncRNAs (e.g., rRNAs, tRNAs.) and marker regions (e.g., CRISPR ele-
ments) are detected by running searches against dedicated databases (e. 
g., Rfam [54]) with tools such as INFERNAL [55], or detecting sequence 
features with specialized tools (e.g., tRNAscan-SE [56] for tRNAs, 
CRISPRCasTyper [57] for spacer detection, CRT-CLI [58] for CRISPR 
sequences, geNomad for the identification of viruses and plasmids [59]). 
Protein gene calling can be performed using a wide array of gene pre-
diction tools, most notable of which are Prodigal [60], GeneMark [61], 
its various implementations (GeneMarkS-2 for prokaryotic genes and 
GeneMark-ES/ET for eukaryotes) as well as FragGeneScan [62]. 

Following gene calling, functional annotation can be performed by 
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searching the predicted genes against reference databases (e.g., RefSeq 
[15], UniRef90 [63], UniProtKB [16], Pfam [64], InterPro [65]) with 
pairwise alignments (e.g., BLAST [66], DIAMOND [67], MMseqs2 [68]) 
or Hidden Markov Model (HMM) - based methods (e.g., HMMER [69], 
HH-suite [70]). Finally, the taxonomic characterization of the dataset is 
based on the identified ncRNA genes, combined with the top most sig-
nificant results of homology searches for the protein genes. In addition, 
detailed phylogenetic analysis can be performed using specialized tools 
such as Kraken 2 [71], PhymmBL [72] or MetaPhlAn [73]. 

5. Central visualization layouts used in metagenomics 

Even though metagenomes are heterogeneous and complex to visu-
alize, common visualization concepts can always be used for certain 
purposes (Fig. 2). 

5.1. Circos 

It is a circular data visualization tool that displays relationships be-
tween different entities arranged along the circumference of a circle 
(Fig. 2A). It was originally developed for genomics and bioinformatics 
applications but has since been used in various fields for visualizing 
complex relationships and patterns. In a Circos diagram, data is 

represented by ribbons or arcs connecting points on the circle. The po-
sition of each point along the circle represents a specific entity or cate-
gory, and the ribbons indicate connections or relationships between 
them. The thickness or color of the ribbons can be used to encode 
quantitative information, making it effective for illustrating genomic 
data, such as genomic rearrangements, interactions between elements, 
or correlations in large datasets. Circos diagrams provide a unique and 
visually engaging way to represent intricate relationships and patterns 
in complex datasets. For example, NMPFamsDB [34,35] is a database for 
novel protein families from metagenomes and offers the Ecosystem & 
Phylogeny option to allow users to visualize the association of a family 
with its organism categories or ecosystems at various levels via Circos 
plots. 

5.2. Upset plots 

An UpSet plot is a data visualization tool used to represent the in-
tersections and cardinalities of sets in a more detailed and informative 
way than traditional Venn diagrams (Fig. 2B). UpSet plots are particu-
larly useful when dealing with larger sets or multiple intersections be-
tween sets. They were designed to address some limitations of Venn 
diagrams, such as difficulties in scaling to a large number of sets and 
presenting the size of intersections. Key features of an UpSet plot 

Fig. 2. Different visualization concepts. (A) Circos diagram. (B) Upset plot & its corresponding Venn diagram. (C) HeatMap. (D) Bar chart (species). (E) Network. (F) 
Sunburst chart (Krona). (G) Treemap. (H) Phylogenetic tree. (I) Sankey plot. (J) Bubble chart. (K) Hive plot. (L) PCA map. All plots have been created using 
simulated data. 
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include: (i) Matrix Display - Instead of using overlapping circles, UpSet 
plots use a matrix to represent the intersections of sets. Each row in the 
matrix corresponds to a unique combination of sets, and the cells indi-
cate whether that particular combination is present or absent. (ii) Bars 
for Set Sizes - The plot typically includes bars or histograms that show 
the sizes of individual sets, providing a clear understanding of the dis-
tribution of elements across sets. (iii) Intersection Size Bars - The plot 
also includes bars that represent the size of each intersection, allowing 
for a quick comparison of the magnitudes of different intersections. (iv) 
Annotations - UpSet plots may include additional annotations or labels 
to provide context or highlight specific features of the data. For example, 
FLAME [74,75], a web dedicated to functional enrichment, uses inter-
active UpSet plots to show overlapping annotations or enriched terms 
for various gene lists as well as the unions and intersections of the im-
ported gene/protein lists. 

5.3. Venn diagrams 

This is a graphical representation that shows the relationships 
(unions and intersections) between sets or groups of elements (Fig. 2B). 
It consists of overlapping circles, each representing a set, and the 
overlaps or intersections between the circles represent the elements 
shared between those sets. The primary purpose of a Venn diagram is to 
visually depict the commonalities and differences between different 
groups or categories. Key components of a Venn diagram include (i) 
Circles or Ellipses - Each circle or ellipse in the diagram represents a set 
or category. The elements belonging to that set are enclosed within the 
circle. (ii) Overlap - The overlapping areas between circles indicate el-
ements that are common to both sets. The size of the overlap reflects the 
extent of the shared elements. (iii) Non-overlapping Regions - The non- 
overlapping parts of each circle represent elements unique to that spe-
cific set. Venn diagrams are widely used in various fields, including 
metagenomics, to visualize the relationships and overlaps between 
different sets of elements such as taxonomic composition, functional 
gene annotations, comparing conditions or environments, and commu-
nity structure. For instance, NMPFamsDB, a database housing novel 
protein families derived from microbial metagenomes and metatran-
scriptomes, utilized a Venn diagram in its graphical abstract. The dia-
gram illustrates the distribution and coverage of novel protein families 
across the various domains of life. This visual representation effectively 
conveys that numerous novel protein families encompass members from 
multiple taxonomic groups, highlighting an intriguing discovery 
regarding the conservation and significance of these proteins. 

5.4. Heatmap 

It is a graphical representation that uses colors to visualize the in-
tensity of a variable across a matrix or grid of data (Fig. 2C). It illustrates 
the values of a primary variable by arranging them in a grid of colored 
squares, with two axis variables divided into ranges similar to a bar chart 
or histogram. The color of each cell signifies the value of the main 
variable within the corresponding range of the axis variables. In the 
context of metagenome analysis, a heatmap can be employed to display 
the abundance or presence of specific microbial taxa or functional genes 
across different samples or conditions. Rows and columns in the heat-
map may correspond to individual microbial taxa or genes and different 
samples, respectively, with colors indicating the relative abundance or 
occurrence of each element. This visualization type is valuable for 
identifying patterns, clustering related taxa or genes, and gaining in-
sights into the composition and dynamics of microbial communities in 
metagenomic datasets. For instance, in [76], a heatmap is employed for 
the characterization of novel tissue microbiota using an optimized 16 S 
metagenomic sequencing pipeline. It visualizes the relative abundance 
of each bacterial family from sequencing of different mouse tissue 
samples performed in triplicate (three different mice for each tissue). 
Each line corresponds to a bacterial family. Each of the three columns for 

a tissue corresponds to a different mouse. 

5.5. Bar Graphs 

They represent data based on statistics and numerical figures. A bar 
graph uses the two axes to plot rectangular bars (Fig. 2D). One of the 
axes represents the observation/category which is usually a fixed vari-
able, while the other axis represents the numerical magnitude that the 
observation carries. Typical types of bar graphs include horizontal bar 
charts, vertical bar charts, double bar graphs, multiple bar graphs, and 
bar lines. In the field of metagenomics, bar plots provide a useful visu-
alization for representing the abundance or distribution of different 
taxonomic groups (e.g., species, genera, phyla) within a biological 
sample. Examples of such bar charts are the: (i) Stacked Bar Chart, (ii) 
Grouped Bar Chart, and (iii) Relative Abundance Bar Chart. In a 
stacked bar chart, each bar is divided into segments, with each segment 
representing a different taxonomic group. The height of each segment 
corresponds to the abundance of that group within the sample. A 
grouped bar chart can be used to compare the abundance of different 
taxonomic groups across multiple samples. Each group of bars repre-
sents a different sample, and within each group, bars represent the 
abundance of different taxonomic groups. A relative abundance bar 
chart displays the relative abundance of each taxonomic group rather 
than absolute counts. It can be useful for comparing the proportions of 
different taxa within a sample. For instance, in [77], a stacked barplot is 
employed to depict the distribution of symbiotic bacteria among species 
categorized as core or non-core. This study investigates honey collected 
across three harvesting seasons from a stable apiary to elucidate the 
diversity of species constituting the core and non-core bacterial com-
munities. Through the use of a stacked barplot, the visualization effec-
tively highlights differences in the characterization of core honeybee 
microbiota stability and the seasonal dynamics of five non-core bacterial 
strains. 

5.6. Networks 

In a general sense, a network visualization represents the connec-
tions and relationships between elements within a system, where these 
elements are nodes and the connections between them are edges. By 
using graphical representations, network visualization provides a clear 
and intuitive means to understand the structure, dependencies, and in-
teractions within complex networks (Fig. 2D). Networks can be used to 
visualize data from several scientific fields. In Biology networks are 
often used to provide information about connectivity or other relation-
ships between biological systems, samples, or entities [78,79]. Typical 
cases of Biological Network Visualization are: (i) Biological Pathway 
Maps - These visualizations illustrate the sequences of biochemical re-
actions and molecular interactions involved in specific biological path-
ways. They provide a holistic view of how different molecules, such as 
proteins and metabolites, collaborate to perform essential cellular 
functions. (ii) Protein-Protein Interaction Networks - They are graph-
ical representations of interactions between proteins that elucidate the 
intricate web of connections within cellular systems. Nodes represent 
proteins, and edges indicate interactions, allowing researchers to 
analyze the functional relationships critical for cellular processes. (iii) 
Gene Regulatory Networks - Visualization of gene regulatory networks 
demonstrates how genes control each other’s expression. Nodes repre-
sent genes, and edges signify regulatory interactions, shedding light on 
the complex regulatory mechanisms governing cellular functions. (iv) 
Metabolic Networks - They depict the interconnected metabolic path-
ways within cells. Nodes represent metabolites, and edges indicate 
enzymatic reactions, providing insights into how cells process nutrients 
and energy. (v) Signaling Networks - They illustrate the pathways 
through which cells communicate with each other. (vi) Disease Net-
works - They capture the relationships between genes, proteins, and 
other biomolecules associated with specific diseases. (vii) Phylogenetic 
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Networks - They represent the evolutionary relationships among 
different species. (viii) Ecological Networks - They Describe the in-
teractions between different species in an ecosystem. This includes food 
webs, where species are connected by predator-prey relationships. For 
instance, in [35], networks were used to represent the distribution and 
association of novel protein clusters reported in NMPFamDB and their 
ecosystems. Eight ecosystem types were applied according to the GOLD 
ecosystem classification, represented by central, colored nodes (hubs). 
Gray peripheral nodes represent the protein clusters whereas edges 
represent the protein cluster–ecosystem associations. 

5.7. Sunburst chart (Krona) 

It is known by multiple names such as ring chart and radial treemap, 
and is used to visualize a hierarchical dataset (Fig. 2F). It demonstrates 
hierarchy by employing a series of concentric rings, where each ring 
corresponds to a specific level in the hierarchy. The segments within 
each ring are proportionally divided to represent the details at that level. 
By focusing on a segment within a ring, one can understand the rela-
tionship of that segment to the entire hierarchy and its parent ring 
segment. The Sunburst chart utilizes a radial layout, providing an 
immersive visualization experience for categorized datasets. Unlike a 
rectangular layout used in a Treemap, the Sunburst chart is space-filling 
and showcases how each ring is subdivided into sequential segments, 
effectively illustrating the hierarchical breakdown of the data. This vi-
sual representation of taxonomy in the chart proves to be valuable for 
metagenome analysis. Its radial layout allows for an intuitive explora-
tion of the relationships between different taxonomic levels, offering 
insights into the composition and distribution of microbial communities. 
For example, a KRONA plot is employed in [80]. The plot provides in-
sights into the major microbial taxonomies and functions within biogas 
plants (BGPs). It offers a comprehensive overview of the microbial 
community structure and metabolic functionality by summarizing 
identified microbial families and biological processes. The KRONA plot 
depicts the distribution of identified bacteria, archaea, and viruses 
across various taxonomic levels, from superkingdom to family, with 
abundances represented based on the number of identified spectra 
summed over all BGPs. 

5.8. Treemap 

It is a visualization that represents hierarchical data through nested 
rectangles (Fig. 2G). Each rectangle in the treemap corresponds to a 
specific category or sub-category, and the size of the rectangles reflects 
the quantitative value of the data they represent. The hierarchy is 
depicted by the nesting of rectangles within one another, with the top- 
level rectangle representing the overall dataset and subdividing it into 
smaller rectangles for each subsequent level. Treemaps are effective for 
displaying hierarchical structures and facilitating the intuitive explora-
tion of complex datasets, making them particularly useful in areas such 
as information visualization, financial analysis, and project manage-
ment. In metagenome analysis, treemaps can be applied as a visualiza-
tion tool to represent hierarchical structures within microbial taxonomic 
or functional data. For instance, in [81], a treemap was utilized to 
visualize T-Cell Epitope Repertoire frequency patterns (TCEMs) within 
pathogen proteomes. Each rectangle within the treemap represents a 
distinct TCEM-sharing relationship among bacterial species and is sized 
proportionally to the number of motifs within that particular 
combination. 

5.9. Phylogenetic trees 

They are a specific type of tree diagram (dendrogram), useful for 
representing taxonomic relationships (Fig. 2H). These diagrams con-
structed from metagenomic data help illustrate the evolutionary re-
lationships among these microorganisms by depicting the branching 

patterns based on genetic similarities, providing insights into the 
biodiversity and evolutionary history of entire microbial communities in 
a given ecosystem. For example, [82] presents a phylogenetic tree, 
showing the bacterial and archaeal tree of life, and presenting an 
updated view of domain-level relationships. 

5.10. Sankey plots 

A Sankey plot, also known as a Sankey diagram or flow diagram, is a 
visual representation that illustrates the flow of resources or information 
between multiple entities [83,84] (Fig. 2I). The diagram consists of 
nodes (representing entities or categories) and direct links (weighted 
lines or arrows) that show the direction and quantity of the flow be-
tween the nodes. The width of the links is proportional to the quantity of 
the flow, allowing viewers to easily grasp the relative magnitudes of 
different pathways within the system. In metagenomic analysis, Sankey 
plots find application in illustrating the distribution and transitions of 
taxonomic or functional categories across different biological samples or 
conditions. These plots can represent the flow of microbial taxa or 
functional gene abundances, showcasing how these entities shift or 
remain consistent between various environmental samples, experi-
mental treatments, or time points. The width of the links in the Sankey 
plot corresponds to the relative abundance of taxa or functional cate-
gories, providing a visual insight into the dynamics of microbial com-
munities. For instance, BioSankey [85], facilitates the visualization of 
microbial communities over time. This tool assists in gaining a 
comprehensive understanding of experimental data and harnessing the 
full potential of a dataset by creating intuitive and interactive Sankey 
diagrams to depict changes in microbial species in microbiome studies 
across different time points. 

5.11. Bubble charts 

It is a visual representation that displays three-dimensional data 
using circles of varying sizes on a two-dimensional plane (Fig. 2J). Each 
circle, or "bubble", represents a data point and is positioned based on its 
values along two axes. The position on the chart conveys the relation-
ship between two variables, while the size of the bubble indicates the 
magnitude of a third variable. In biology, a bubble chart can be applied 
to represent multivariate data, such as comparing species abundance 
across different habitats. The position of each bubble on the chart might 
signify environmental parameters, while the size of the bubbles could 
represent the population size of a particular species. This visualization 
method is powerful for identifying patterns, correlations, and potential 
ecological trends within diverse datasets. For example, [86] includes a 
bubble plot illustrating the relative taxonomic abundance of the sam-
ples. The size of each bubble indicates the taxon’s abundance relative to 
its maximum abundance, with larger bubble sizes indicating higher 
abundance. Additionally, the size of each circle is scaled logarithmically 
to represent the number of Open Reading Frames (ORFs) assigned 
directly to the taxon. This visualization aids in comprehending the 
taxonomic composition of the microbial community and their potential 
roles in biogeochemical manganese cycling. 

5.12. Hive Plots 

The basic concept behind a hive plot is to visualize relationships or 
connections between multiple variables or categories in a structured and 
intuitive manner (Fig. 2K). It’s often used to represent complex networks 
or datasets with multiple dimensions [87]. Overall, the key strength of 
hive plots lies in their ability to visualize multidimensional data in a 
concise and interpretable format, making them a valuable tool for 
exploratory data analysis, network visualization, and pattern recogni-
tion across diverse domains. They can be a useful tool for visualizing 
microbiome data, which often involves complex relationships between 
various microbial taxa and environmental factors. Microbiome data 
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typically consists of abundance or presence/absence information for 
different microbial species or taxa across multiple samples. For instance, 
in [88], a three-axis hive plot was used to assess the characteristics of 
microbial networks associated with apparently healthy and diseased 
corals. 

5.13. Dimensionality reduction methods 

Dimensionality reduction methods [89–95] play a crucial role in 
analyzing high-dimensional datasets by transforming them into 
lower-dimensional representations while preserving important infor-
mation. Principal Component Analysis (PCA) (Fig. 2L) is a widely 
used linear technique that identifies the axes of maximal variance in the 
data. It projects the data onto these axes to reduce dimensionality while 
retaining the most significant features. A PCA map is a visual repre-
sentation employed to explore and understand the relationships among 
samples based on their overall composition. For instance, in [96], a 3D 
PCA plot is utilized to show the clustering result of four metagenomes 
from oil samples and 948 environmental metagenomes from the IMG 
database using the KO abundance. Such visualization can aid in exam-
ining the relationship among the functional compositions of meta-
genomes across diverse environments. 

Other well-known dimensionality reduction methods include Uni-
form Manifold Approximation and Projection (UMAP), t-distributed 
Stochastic Neighbor Embedding (t-SNE), and Latent Dirichlet Allocation 
(LDA). Uniform Manifold Approximation and Projection (UMAP) is a 
nonlinear dimensionality reduction method that preserves both global 
and local structure in the data, making it effective for visualizing com-
plex datasets. UMAP finds frequent application in the realm of Meta-
genomes, where its utilization is prevalent. The integration of such 
nonlinear machine learning methods is anticipated to significantly 
enhance our comprehension of the metagenome. t-distributed Stochastic 
Neighbor Embedding (t-SNE) is another popular nonlinear method 
focusing on preserving local relationships between data points, often 
used for visualizing high-dimensional data in two or three dimensions. 
Latent Dirichlet Allocation (LDA) is a probabilistic generative model 
commonly used for topic modeling in natural language processing. It 
reduces dimensionality by representing documents as distributions over 
topics, allowing for the exploration of underlying themes in large text 
corpora. Overall, these dimensionality reduction methods provide 
powerful tools for visualizing and exploring complex datasets across 
various domains (e.g., scRNA-seq, see SCALA application [97]). 

5.14. Rarefaction curves 

It is a method that adjusts for the variations in metagenomic clone 
library sizes across samples to aid comparisons of alpha diversity. The 
concept of rarefaction involves selecting a specified number of samples 
that are equal to or less than the number of samples in the smallest 
sample and then randomly eliminating reads from larger samples until 
the number of remaining samples reaches the threshold. Based on these 
subsamples of equal size, diversity metrics can be calculated to contra-
dict ecosystems and are independent of disparity in sample sizes. 
Calculated rarefaction is represented by a line graph. The rarefaction 
curve not only copes with the sample coverage but also depicts whether 
the sampling depth was sufficient or not to estimate the diversity. A 
curve indicates sufficient sampling depth, while an ascending graph 
implies insufficient sampling depth. A rarefaction curve is commonly 
used in ecology and biodiversity studies to assess the sampling effort’s 
adequacy in capturing the diversity of a biological community 
[98–100]. This curve plots the number of observed species or unique 
entities against the number of samples taken. Initially, as more samples 
are collected, the curve steeply rises, reflecting the discovery of new 
species. However, it eventually plateaus, indicating that the majority of 
the community’s diversity has been sampled. Rarefaction curves assist 
researchers in estimating species richness, evaluating the effectiveness 

of sampling efforts, and making informed decisions about the compre-
hensiveness of their data collection in ecological studies. Rarefaction 
analysis is used to standardize diversity measures across different sam-
ple sizes, enabling fair comparisons between ecosystems or study sites. 
In [35], rarefaction curves have been used to show that while protein 
families from reference genomes seem to increase linearly, the equiva-
lent families from metagenomes reveal exponential growth, thus never 
plateauing. Consequently, the study focuses on larger clusters for further 
analysis, yet highlights the vast unexplored protein sequence space. 

5.15. Gene Map 

Often referred to as a genetic map or genome map, it is a visual 
representation of the arrangement and location of genes on a particular 
chromosome or across an entire genome. Like Circos, it provides a 
graphical overview of the genetic structure, indicating the relative po-
sitions of genes, markers, and other genetic features. Gene maps are 
crucial tools in genomics and metagenomics research, aiding in the 
understanding of gene linkage, genetic distances, and the organization 
of genetic material. High-resolution gene maps are particularly impor-
tant for studies involving gene identification, marker-assisted breeding, 
and investigations into the genetic basis of various traits or diseases. 
Advances in technology, such as next-generation sequencing, have 
significantly improved the accuracy and precision of gene mapping, 
contributing to our understanding of the genetic landscapes of various 
organisms, including humans. For instance, in [101], a gene map is used 
to show the extrication of the microbial interactions of activated sludge 
used in the textile effluent treatment of an anaerobic reactor through 
metagenomic profiling. This circular gene map illustrates the location 
and size of genes encoding for aldehyde dehydrogenase and numerous 
hypothetical proteins. Such visualization aids in comprehending the 
microbial organisms participating in degradation pathways and their 
interactions within the microbial community. 

5.16. Tree Diagram 

It is a graphical representation that depicts a hierarchical structure or 
relationship between different elements or components. It is called a 
"tree" because it often resembles an inverted tree with a single root or 
starting point, branching out into various branches and sub-branches. 
The structure of a tree diagram consists of nodes connected by edges, 
where each node represents a specific entity or concept, and the edges 
indicate the relationships or connections between them. Tree diagrams 
are commonly used in various fields such as computer science, linguis-
tics, probability theory, and organizational charts to visually organize 
and illustrate hierarchical structures. 

5.17. Space-filling maps 

Space-filling curves like the one of Hilbert are intricate geometric 
patterns that traverse and cover a two-dimensional space in a contin-
uous and non-overlapping manner. The Hilbert curve (or any other in 
this category) manifests as a continuous fractal structure, its formation 
rooted in the recursive subdivision of a square into four smaller sub-
squares, followed by the connection of their centers in a specific 
sequence. This intricate curve systematically traverses all points within 
a designated region, maintaining proximity between points on the 
original curve and their spatial arrangement on the plane. Historically, 
Hilbert curves have been used to produce genomic maps for large 
scaffolds (e.g., human chromosomes) and whole genome alignments for 
bacterial genomes [102]. Expanding the scope, this concept can be 
adapted for metagenomics in the configuration of a space-filling map. In 
this representation, each position or pixel corresponds to a genome 
within the reference collection. The intensity color value at a given 
position reflects the relative abundance of a particular genome in the 
metagenomic sample. These microbiome maps offer a versatile tool for 
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exploration, enabling the investigation of taxonomy, ecosystem abun-
dance, simultaneous comparison of multiple samples, and the analysis of 
microbial community dynamics through time-series analysis. In contrast 
to conventional visualization methods that often prioritize elements 
with the highest abundances in a population, Hilbert curve-based maps 
provide a more nuanced perspective. They offer enhanced resolution for 
taxa with smaller abundances, addressing a limitation commonly 
encountered in traditional visualization techniques. For example, the 
Meander application [102] has been used to compare chromosome 1 
between strain ICE153 from central Asia and strain ICE97 from southern 
Italy, showing a deletion and a tandem duplication supported by both 
pair-end and read-depth information at higher resolution with the help 
of Hilber curves. 

In the realm of metagenomic analysis, navigating through complex 
datasets and understanding intricate relationships among microbial 
communities pose significant challenges. To address these challenges, a 
diverse array of visualization concepts that are presented can be useful. 
In this table (Table 2), we focus on the major challenges encountered in 
metagenomic visualization, ranging from representing complex re-
lationships to handling large datasets and understanding taxonomic 
hierarchies. Each visualization concept listed in the table offers unique 
functionalities tailored to address specific metagenomic challenges, 
providing researchers with invaluable tools to explore, analyze, and 
interpret complex biological data. 

6. Main applications of metagenomic visualization tools 

Within this segment, we present an assortment of visualization tools, 
organizing them according to their primary functions. Although our 
compilation may not be exhaustive, we focus on spotlighting well- 
established tools, to illuminate a range of options available for visual-
izing metagenomic data in the ever-evolving landscape of data visuali-
zation. The tools are categorized into primary groups, including quality 
control, binning, assembly, genomic content viewers, taxonomy, com-
munity, and networks (Table 3). 

6.1. Quality control 

In metagenomic analysis, a common practice involves generating 
scaffolds or metagenome-assembled genomes (MAGs) from raw 
sequence data. A crucial initial phase in this procedure is conducting 
quality control (QC) on the raw data. This encompasses assessing read 
and base quality, trimming adapters, analyzing GC distribution, elimi-
nating contaminated reads, addressing enrichment bias, generating 
quality metrics, and various other steps. Numerous tools have been 
created for this objective, generating visual representations of the 

aforementioned statistics, such as FastQC, LongQC [103], MinIONQC 
[104], and NanoPack [105] which, as implied by its name, is a package 
of a specific sub-category of tools consisting of NanoPlot, NanoComp, 
NanoQC, PHASIUS, Kyber, SOAPnuke, and SequelTools. 

6.2. Assembly 

Genome assembly is a complex process that involves piecing together 
the DNA sequences, essentially constructing extended DNA sequences 
(contigs) of an organism’s genomic data, in an attempt to reconstruct its 
complete genome. The genome of an organism is its entire DNA content, 
including genes and non-coding regions. If a reference genome is 
available, reads are aligned to that genome, while in the absence of a 
reference genome, de novo assembly is employed. De novo assembly is 
particularly important for studying non-model organisms, genomes with 
significant structural variations, or populations with diverse genomes. 

Assembly visualization refers to the graphical representation of the 
results of genome assembly processes and aids researchers in under-
standing the structure and characteristics of assembled genomes. Visu-
alizing genome assemblies is essential for quality assessment, 
identifying potential issues, and gaining insights into the overall 
genomic architecture. To this end, a plethora of tools can be used for the 
de novo metagenome assembly [166–170] (Fig. 3). Omega [171] 
assembler uses overlap graphs and has been specifically developed for 
metagenome assembly. Velvet [172] is designed for short-read 
sequencing data and an extension of it, MetaVelvet [173], is available 
aiming at the assembling of, specifically, metagenomic data using 
de-Bruijn graphs. MEGAHIT [174] uses succinct de Bruijn graphs for 
assembling large and complex metagenomic data while, BCALM 2 [175] 
aims to improve the scalability of the process by implementing the 
compaction of de Bruijn graphs. Another tool that uses de Bruijn graphs is 
metaSPAdes [176] which constitutes an extension of SPAdes adapted to 
the intricacies of metagenomic data. MetaCarvel [177] performs meta-
genome assembly, while at the same time, it can detect genomic vari-
ants. Some notable visualizers include ABySS-Explorer [108], AGB 
[109], Bandage [178], GfaViz [110], MetagenomeScope, Pan-
Graphviewer [112], and SGTK [111]. 

6.3. Binning 

Вinning is a crucial step in metagenomic analysis, which involves 
grouping genomic fragments (contigs) to reconstruct draft microbial 
genomes (MAGs) [179] (Fig. 3). Tools like MetaBAT [180,181], Bina-
Rena [113], ICoVeR [182], MyCC [183], gbtools [184], CONCOCT 
[114], VizBin [116], and MetaWRAP [115] aid in this process, 
employing different visualization methods and interactive interfaces to 
enable user-friendly exploration and refinement of bin assignments. 
BinaRena [113] offers a comprehensive interface, allowing scatter plot 
visualization of contigs and bin association editing. At the same time, 
ICoVeR [182] focuses on bin curation based on multiple binning algo-
rithms using parallel coordinates and dimensionality reduction plots. 
MyCC [183] streamlines binning via a virtual machine, emphasizing 
marker gene-based clustering and genomic signature analysis. Gbtools 
[184] excels in visualizing coverage, GC content, and taxonomic anno-
tations, aiding bin annotation and refinement. MetaWRAP [115], a 
modular pipeline, automates metagenomic data processing, extraction, 
and refinement of high-quality bins, offering taxonomy assignment, 
abundance estimation, functional annotation, and versatile visualization 
tools. These tools collectively address the need for accurate and efficient 
binning, catering to researchers’ varying expertise levels and improving 
overall metagenomic analysis outcomes [179]. 

6.4. Community detection 

Metagenomic analysis unfolds in several key steps, each contributing 
to a comprehensive understanding of the microbial communities. 

Table 2 
Visualization concepts organized by their relevance to metagenomic visualiza-
tion challenges.  

Visualization Challenge Visualization Concept 

Representing complex 
relationships 

Circos, Networks 

Handling large sets or intersections Upset plots, Venn diagrams 
Visualizing abundance across 

samples 
Heatmap, Bar graphs 

Displaying hierarchical data 
structures 

Treemap, Trees, Sunburst charts (Krona) 

Understanding taxonomic 
relationships 

Trees, Sunburst charts (Krona) 

Illustrating flow or transitions Sankey plots, Networks, Hive plots 
Visualizing multidimensional data Hive plots, 3D networks, Dimensionality 

Reduction methods 
Standardizing diversity measures Rarefaction curves 
Visualizing genetic arrangements Gene Map, Genome viewers 
Linear representations at higher 

resolutions 
Space-filling maps/curves  
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Table 3 
Representative tools are organized by their main functionality.  

TOOL CATEGORY BY MAIN 
FUNCTION 

INPUT DATA TYPE LICENSE TYPE IMPLEMENTATION LAST 
UPDATE 

FastQC Quality Control Raw sequence data (before any alignment or assembly 
steps) 

Open source Stand-alone 2023 

LongQC[103] Quality Control Raw Long-Read Sequencing Data (before any 
alignment or assembly steps - PacBio Sequencing, 
Oxford Nanopore Sequencing) 

Open source Stand-alone 2023 

MinIONQC[104] Quality Control Raw sequence data (before any alignment or assembly 
steps - FASTQ, FAST5 format) 

Open source Stand-alone 2020 

NanoPack[105] Quality Control Raw sequence data (before any alignment or assembly 
steps - FASTQ, FAST5 format) 

Open source Suite of tools 2023 

SOAPnuke[106] Quality Control Raw sequence data (before any alignment or assembly 
steps - FASTQ format) 

Open source Stand-alone 2024 

SequelTools[107] Quality Control Raw Long-Read Sequencing Data (before any 
alignment or assembly steps - PacBio Sequencing, 
Oxford Nanopore Sequencing) 

Open source Stand-alone 2020 

ABySS-Explorer[108] Assembly ABySS Assemblies (scaffolds or contigs in FASTA 
format), Raw sequence data 

Open source Stand-alone 2018 

Assembly Graph 
Browser (AGB)[109] 

Assembly Assembly Graph Files (GFA (Graphical Fragment 
Assembly)) 

Open source Stand-alone 2019 

GfaViz[110] Assembly Assembly Graph Files (GFA (Graphical Fragment 
Assembly)) 

Open source Stand-alone 2019 

SGTK[111] Assembly Assembly Graph Files (GFA (Graphical Fragment 
Assembly)) 

Open source Toolkit Archived in 
2023 

PanGraphViewer[112] Assembly/Pangenome Pangenome graphs (rGFA, GFA_v1, VCF), Annotation 
Files (BED, GTF / GFF) 

Open source Stand-alone 2022 

MetagenomeScope Assembly GFA, FASTG, GML, LastGraph Open source Web-based tool 2020 
BinaRena[113] Binning (Human) Assembled Data (FASTA) BSD 3-Clause 

License 
Web application 2023 

CONCOCT[114] Binning Metagenomic Sequencing data, Contig Sequence Open source Stand-alone 2019 
MetaWRAP[115] Binning Metagenomic sequencing data (FASTQ format), 

Assembled contigs (FASTA), 
Open source Pipeline 2020 

VizBin[116] Binning Metagenomic Fragments (Contigs / reads)(FASTA) BSD License (4- 
clause) 

Stand-alone 2019 

Anvio[117] Contig & Genome Viewer 
/ Communities / 
Taxonomy 

DNA sequence (FASTA), Contigs (FASTA), Short reads 
(FASTA), External / Internal genome database 

Open source Stand-alone 2023 

CGViewer.js[118] Contig & Genome Viewer JSON files Open source Web-based tool 2019 
CRAMER[119] Contig, Genome & MSA 

Viewer 
Metagenomic sequence data (Raw DNA sequence / 
FASTA files) 

Open source Stand-alone 2019 

Elviz[120] Contig & Genome Viewer Metagenomic sequence data (Raw DNA sequence / 
FASTA files) 

Open source Web-based application 2024 

GDV[121] Contig, Genome & MSA 
Viewer 

RNA-seq data, ChIP-seq data, Genome Sequence Data, 
Proteomic Data & Epigenomic Data 

Open source Web-based application 2021 

Gosling[122] Contig, Genome & MSA 
Viewer 

Metagenomic sequence data (Raw DNA sequence / 
FASTA files) 

Open source Toolkit 2021 

IMG/M[23], IMG/VR 
[30] 

Contig and Genome 
Viewer 

Visualization of IMG/M and IMG/VR contig 
annotations 

Open source Web-based platforms 2023 

IGV[123] Genome Viewer Metagenome sequence data (FASTA), Alignment 
Data, Variant Calls, Gene Annotations (GFF) 

Open source Stand-alone 2023 

JBrowse[124] Genome Viewer Metagenome sequence data (FASTA), Alignment 
Data, Variant Calls, Gene Annotations (GFF) 

Open source Stand-alone 2024 

MetaErg[47] Contig Viewer Metagenomic Contig, Gene Prediction File, 
Taxonomic Information File 

Open source Stand-alone pipeline 2020 

Tablet[125] Genome Viewer SAM (Sequence Alignment/Map) and BAM (Binary 
Alignment/Map), Variant Call Format (VCF), 
Metagenome Sequence, Genome Assembly Files, 
Sequence Read Files 

BSD-2-Clause 
license 

Stand-alone 2021 

UCSC Genome Browser 
[126] 

Genome & MSA Viewer Genome Sequence Data, Annotation Data (GFF), ChIP- 
Seq Data, RNA-seq Data, Multiple Sequence 
Alignments (MSA) 

Open source Online portal 2022 

ENSEMBL[127] Genome Viewer Genome Sequence Data, Annotation Data (GFF), ChIP- 
Seq Data, RNA-seq Data, Multiple Sequence 
Alignments (MSA) 

Open source Suite of tools 2024 

Artemis[128] Genome Viewer Genome Sequence Data, Annotation Data (Genebank, 
EMBL format) 

Open source Stand-alone 2011 

UGENE[129] Genome Viewer Genome Sequence Data (FASTA, GFF, SAM/BAM, 
BED), Annotation Data (Genebank, EMBL format, 
BED, GFF), Multiple Sequence Alignments (MAF), 
Expression Data Files 

Open source Stand-alone 2023 

Geneious[130] Genome Viewer Genome Sequence Data (FASTA, GFF, SAM/BAM, 
BED), Annotation Data (Genebank, EMBL format, 
BED, GFF), Multiple Sequence Alignments (MAF), 
Expression Data Files 

Free trial - 
Requires 
subscription 

Part of a software suite 2023 

BV-BRC[131] MSA Viewer Multiple Sequence Alignments (MSA) Portal Web-based resource 2022 

(continued on next page) 
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Clustering is a fundamental technique in bioinformatics and meta-
genomic analysis, allowing the uncovering of underlying patterns and 
relationships within complex datasets. Hierarchical clustering stands 
out as a significant non-graph-based methodology. It organizes se-
quences into a hierarchy of clusters, typically visualized as dendro-
grams, providing an insightful representation of the relationships 
between microbial entities. The agglomerative approach, where indi-
vidual clusters progressively merge, and the divisive approach, where a 
single cluster iteratively divides, are two primary strategies. Widely used 
algorithms for agglomerative hierarchical clustering include single- 

linkage, complete-linkage, centroid-linkage, and average-linkage 
methods, as well as neighbor-joining [185] and the unweighted pair 
group method with arithmetic mean (UPGMA). Each iteration produces 
a new level in the dendrogram, and cutting thresholds, often 
user-defined or automated using methods like Dynamic Tree Cut or PAC 
Bayesian, delineate distinct clusters. While hierarchical clustering is 
powerful, its applicability to large-scale analyses is limited due to the 
requirement of a full-distance matrix and its high computational 
complexity. 

Another approach is to apply graph-based clustering [186,187] to 

Table 3 (continued ) 

TOOL CATEGORY BY MAIN 
FUNCTION 

INPUT DATA TYPE LICENSE TYPE IMPLEMENTATION LAST 
UPDATE 

MSAViewer[132] MSA Viewer Multiple Sequence Alignments (MSA) Open source Web-based application 2023 
Strudel[133] MSA Viewer Metadata (CSV,TSV), Aligned Sequence Data, 

Phylogenetic Tree Data, Annotation Data (GFF) 
Open source Stand alone 2015 

SuiteMSA[134] MSA Viewer Multiple Sequence Alignments (MSA) Open source Stand alone 2013 
JalView[135] MSA Viewer Multiple Sequence Alignments (ex FASTA, Clustal, 

Stockholm) 
Open source Stand alone 2023 

MSABrowser[136] MSA Viewer Multiple Sequence Alignments (MSA) Open source Stand-alone web-based 
application 

2021 

Seaview[137] MSA Viewer Multiple Sequence Alignments (ex FASTA, Clustal, 
Stockholm, PHYLIP) 

Open source Stand-alone or helper 
application 

2024 

Panache[138] Pangenome Viewer Graphical Fragment Assembly (GFA) Open source Web-based interface 2022 
Pan-Tetris[139] Pangenome Viewer Pangenome map files (ex PanGee), meta-information 

(TIGRFAM) 
Open source Software tool 2015 

PanViz[140] Pangenome Viewer Pangenome Matrix (pattern of each gene group) and 
functional annotation files (GeneOntology) 

Open source Pipeline 2017 

PanX[141] Pangenome Viewer Set of annotated bacterial strains (NCBI RefSeq, users 
input in GeneBank format) 

Open source Pipeline 2018 

Pantools[142] Pangenome & 
Panproteome Viewer 

Annotation Files (GTF / GFF), Multiple Sequence 
Alignment File (FASTA), Genomic Sequence Files 
(FASTA), Variations adding (VCF files and a PAV 
table) 

Open source Stand-alone 2024 

Bifrost[143] Pangenome Viewer Annotation Files (GTF / GFF), Multiple Sequence 
Alignment File (FASTA), Genomic Sequence Files 
(FASTA), 

Open source Stand-alone 2024 

PanGenome Graph 
Builder[144] 

Pangenome Viewer Annotation Files (GTF / GFF), Multiple Sequence 
Alignment File (FASTA), Genomic Sequence Files 
(FASTA) 

Open source Stand-alone 2024 

TwoPaCo[145] Pangenome Viewer Annotation Files (GTF / GFF), Multiple Sequence 
Alignment File (FASTA), Genomic Sequence Files 
(FASTA) 

Open source Stand-alone 2022 

Minigraph-Cactus[146] Pangenome Viewer Annotation Files (GTF / GFF), Multiple Sequence 
Alignment File (FASTA), Genomic Sequence Files 
(FASTA) 

Open source Pipeline 2024 

Jasper/Microbiome 
Maps[147] 

Abundance analysis / 
Taxonomy / Ecosystem 
visualization 

Abundance profiles / OTU table Not open source Stand-alone 2023 

QIIME / QIIME 2[148] Communities/ Taxonomy raw DNA sequence reads Open source Analysis package 2024 
Phyloseq[149] Communities/ Taxonomy OTU table (operational taxonomic units), 

phylogenetic tree 
Open source R package 2013 

MicrobiomeAnalyet 
[150] 

Communities/ 
Taxonomy/PCA 
visualization 

OTU table (operational taxonomic units), taxon list, 
gene list, Gene abundance table, BIOM file 

Open source Web-based platform 2024 

MetagenomeSeq[151] Communities/ 
Taxonomy/PCA 
visualization 

Taxonomic or Functional Annotations, Count Data 
Table 

Open source R package 2019 

MEGA[152] Taxonomy Metagenome sequence data (FASTA), Phylogenetic 
Data (NEXUS, NEWICK) 

Open source Can be used as stand-alone 
and as part of a pipeline 

2022 

PAUP[153] Taxonomy Metagenome sequence data (FASTA), Phylogenetic 
Data (NEXUS, NEWICK) 

Proprietary, and 
thus commercial 

Stand-alone 2007 

FigTree Taxonomy Phylogenetic Data (NEXUS, NEWICK) Open source Stand-alone 2018 
iTOL[154,155] Taxonomy Phylogenetic Data (NEXUS, NEWICK) Open source Web-based platform 2023 
PhyD3[156] Taxonomy Phylogenetic Data (NEXUS, NEWICK) Open source Web-based tool 2017 
Dendroscope[157] Taxonomy (viewer) Phylogenetic Data (NEXUS, NEWICK) Open source Stand-alone 2023 
Cytoscape[158,159] Network visualization Graphs - Lists (source - destination) Open source Stand-alone 2023 
Gephi[160] Network visualization Graphs - Lists (source - destination) Open source Stand-alone 2023 
Pajek[161] Network visualization 

Large Networks 
Has its file format Open source Stand-alone 2023 

Arena3Dweb[162,163] Network visualization 
3D Multilayered 
Networks 

Network lists (source - destination but by defining 
their layers) 

Open source Web server and stand-alone 2023 

NORMA[164,165] Network and group 
visualization 

Network lists (source - destination) and annotation 
files (nodes and the annotation group they belong to) 

Open source Web server and stand-alone 2022  
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detect communities on a constructed network (e.g., a Sequence Simi-
larity Network [188], or an Average Nucleotide Identity (ANI) network 
[189]). Scalable graph-based clustering such as HipMCL [190], Louvain 
[191], or SPICi [192], can be directly applied to such networks. Notably, 
pairwise similarity comparisons can be made with scalable bio-
informatic tools such as PASTIS [193,194], last [195], or MMseqs [68]. 
ClusterMaker [168] is a Cytoscape plugin [136] that includes several 
network-based clustering algorithms. 

Several tools facilitate clustering and visualization in metagenomic 
analyses like QIIME 2 [148], Anvi’o [196], and Phyloseq [149]. For 
example, the Quantitative Insights Into Microbial Ecology (QIIME, 
version 2) tool integrates hierarchical clustering methods for microbial 
community analysis and offers visualization through interactive plots 
[148,197]. Additionally, Anvi’o [196], not only incorporates hierar-
chical clustering but also provides interactive interfaces for exploring 
and visualizing metagenomic data, enhancing the interpretability of 
complex microbial community structures. With its extensive interactive 
visualization capabilities, Anvi’o [196] is a comprehensive platform that 
integrates many aspects of the state-of-the-art computational strategies 
of data-enabled microbiology, such as phylogenomics, pangenomics, 
metagenomics, metatranscriptomics, genomics, and microbial popula-
tion genetics, in a way that is user-friendly and seamless. Phyloseq [149] 
is an R package for analyzing and visualizing microbiome data. It offers 
a range of visualization options, including interactive plots and 

heatmaps, to explore the diversity and composition of microbial 
communities. 

Principal Component Analysis (PCA) [198], aids in highlighting 
variations among microbial communities, providing a holistic view of 
the relationships between samples based on their compositional and 
abundance profiles. Tools that perform PCA analysis and visualization 
can be very useful. EMPeror [199] was one of the most useful tools for 
PCA analysis embedded into the QIIME suite. 

The current version of QIIME2 [148] supports PCA visualization, 
enabling the interactive exploration of PCA results. QIIME2 offers dy-
namic and customizable plots that enhance the interpretability of met-
agenomic data. Additional tools for PCA analysis and visualization are 
MicrobiomeAnalyst [150], and MetagenomeSeq [151]. Micro-
biomeAnalyst [150] is a web-based platform that integrates diverse 
statistical and bioinformatics tools. It includes PCA visualization as part 
of its multivariate statistical analysis suite, providing interactive visu-
alizations for exploring the separation and clustering of microbial 
communities. MetagenomeSeq is an R package designed for the statis-
tical analysis of metagenomic sequencing data. It incorporates PCA as a 
method for exploring variation across samples. Researchers can utilize 
the package to generate PCA plots and gain insights into the factors 
influencing the observed patterns in microbial community data. 

Fig. 3. (A-C) Graph-based visualization of sequence assembly of Escherichia coli str. K-12 substrate MG1655 with (A) Bandage, (B) GFAviz, and (C) AbyssExplorer 
(NCBI:txid511145). (D) Heatmap visualizing the bin abundances of draft genomes using MetaWrap (Bioproject Accession: PRJEB2054, ID: 203783). (E) Binning of 
MAGs highlighting 214 bins of E.coli using BinaRena (BioProject: PRJNA382010). (F) CGView: Genome Contigs Viewer of Escherichia coli PA2 (NCBI RefSeq assembly 
GCF_000335355.2) in a circular format. (G-H) Scaffold visualization of E.coli K-12 with (G) IMG and (H) UCSC genome viewers. (I) Example of a pangenome graph. 
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6.5. Genome/Contig viewers 

Genome viewers are tools used to visualize and analyze genomic data 
by providing researchers, scientists, and bioinformaticians with a 
graphical representation of genetic information, allowing them to 
explore, interpret, and understand the complexities of genomes [200]. 
Genome browser tools like CGViewer.js [118], Elviz [120], IMG/M [23], 
IMG/VR [30], Gosling [122], IGV [123], UCSC Genome Browser [126], 
GDV, JBrowse [124], Anvio [196], MetaErg [47], Tablet [125], Strudel 
[133], and CRAMER [119] offer diverse advantages and functionalities 
for the exploration of genomic data [201]. These tools enable multidi-
mensional navigation through metagenome assemblies, plotting pa-
rameters such as GC content, relative abundance, phylogenetic 
affiliation, and contig length. They facilitate interactive exploration 
with real-time navigation, search, filtering, and drilling down from 
community profiles to individual gene annotations. Additionally, these 
browsers support flexible integration of various data types, including 
clinical data, aligned sequence reads, mutations, copy numbers, RNAi 
screens, gene expression, and genomic annotations. Users can benefit 
from the efficient exploration of large datasets across multiple resolution 
scales, resembling the seamless zoom and often pan functionality of 
Google Maps. These tools provide customizable track displays, metadata 
access, context menus for features, and diverse track selection methods, 
enhancing user interaction and data visualization. 

Pangenome viewers are tools or software applications designed to 
visualize and analyze pangenomic data. These tools assist researchers in 
exploring the genetic diversity within a species or group of related or-
ganisms by providing interactive and informative visual representations 
of the pangenome [202–204]. Among others, popular pangenome 
viewers include Panache [138], Pan-Tetris [139], PanViz [140], and 
PanX [141] which were specifically created for gene-based pangenomes 
and struggle to handle extensive eukaryotic investigations. Other rele-
vant tools include PanGP [205], Roary [206], Panseq [207], Pan-
GraphViewer [112], Pantools [142], Bifrost [143], PanGenome Graph 
Builder [144], Minigraph-Cactus [146], and TwoPaCo [145]. 

Contig visualization tools are used to represent and analyze contig-
uous sequences of DNA or other biomolecules assembled from short 
DNA sequencing reads. Visualizing contigs is crucial for assessing the 
quality of a genome or transcriptome assembly, identifying structural 
variations, and gaining insights into the organization of genomic re-
gions. Established tools are Bandage [178], Tablet [125], IGV (Inte-
grative Genomics Viewer) [123], Artemis [128], UGENE [129], and 
Geneious [130]. Bandage is a graphical viewer to explore the connec-
tions between contigs, identify structural variations, and visualize the 
overall assembly graph. While IGV is primarily known as a genome 
browser, it also allows users to visualize contigs and their alignments. It 
is a versatile tool widely used for examining genomic data, including 
various types of sequencing data. Artemis is a genome browser and 
annotation tool that enables the visualization of contigs, genes, and 
other genomic features. It is particularly useful for annotating bacterial 
and archaeal genomes. Geneious is a comprehensive platform that in-
cludes tools for sequence analysis and assembly. It provides a 
user-friendly interface for visualizing contigs, exploring assemblies, and 
performing various molecular biology tasks. 

Finally, Multiple Sequence Alignments (MSAs) are essential for 
comparing and understanding the similarities and differences between 
homologous sequences. Multiple Sequence Alignment (MSA) visualizers 
such as AlignmentViewer, BV-BRC [131], MSAViewer [132], Seaview 
[137], JalView [135], MSABrowser [136], NCBI MSA viewer, SuiteMSA 
[134], are used to display and analyze the alignment of multiple 
genomic sequences (DNA, RNA, or proteins). 

6.6. Taxonomy 

Taxonomy aims at the classification of organisms based on shared 
characteristics and evolutionary relationships. The classification system 

is presented in a hierarchical framework that ranges from broader to 
more specific categories. The Genome Taxonomy Database (GTDB; 
https://gtdb.ecogenomic.org) offers the most advanced genome-based 
taxonomy for prokaryotes that is both phylogenetically coherent and 
rank-normalized [208]. Various types of graphical representations are 
used to visualize the evolutionary ties between different organisms 
(Fig. 4). There are several tools and algorithms available for visualizing 
taxonomic connections [209]. Some phylogenetic tree visualization 
tools such as FigTree, iTOL [154,155], MEGA [152], and Dendroscope 
[157] are designed with a user-friendly interface and also possess 
interactive capabilities. These tools offer a range of customization op-
tions, allowing the user to present, explore, and modify the appearance 
of phylogenetic trees. VAMPS (Visualization and Analysis of Microbial 
Population Structures) [210] is a repository that can provide visualiza-
tion tools for the comparison of taxonomic distributions from different 
datasets. Additionally, Python toolkits such as ETE Toolkit (Environ-
ment for Tree Exploration) [211], DendroPy [212], and Bio.Phylo 
[213], which is all open-source, can be utilized for the analysis and 
visualization of phylogenetic trees. R packages such as Phyloseq [149], 
ampvis2 [214], and MetagenomeSeq [151] analyze and visualize met-
agenomic data using various statistical techniques. In addition to these, 
other visualization tools, including Treemap, Krona [215], and Bio-
Sankey [85] provide alternative representations for taxonomic data. 
Software tools like MEGA [152], and PAUP [153] are focused on mo-
lecular evolution and can be used for sequence alignment and phylo-
genetic tree construction. PhyD3 [156] is also utilized for DNA and 
amino acid sequence alignment. Anvi’o [196] provides tools for the 
visualization of taxonomic relationships within microbial communities. 

6.7. Networks and associations 

Leveraging networks within the realm of metagenomics offers 
valuable insights into the intricate interactions among microorganisms 
within a community. For instance, Taxonomic Networks aid in under-
standing relationships among diverse microbial taxa by employing 
taxonomic classifications. Nodes within these networks represent taxo-
nomic units, while edges signify the extent of similarity or co- 
occurrence. Functional Networks enable the exploration of relation-
ships among microbial genes or pathways, constructed based on func-
tional annotations. Co-occurrence Networks illustrate patterns of co- 
existence among various microbial species or functional genes, shed-
ding light on potential symbiotic or antagonistic relationships. Ecolog-
ical Networks are employed to analyze community dynamics, identify 
keystone species, assess network stability, and gauge the influence of 
environmental factors on microbial interactions. Phylogenetic Networks 
display the evolutionary relationships among microbial species, 
unveiling patterns and aiding in the identification of closely related taxa 
with shared functions. A Host-Microbial Network represents the intri-
cate interactions and relationships between a host organism and the 
microbial communities that inhabit various body sites. Humans, for 
example, are vulnerable to a vast array of microorganisms, including 
bacteria, viruses, fungi, and other microbes. Alternatively, a Disease 
Association Network plays a role in investigating the correlation be-
tween microbial communities and host health. Similarly to the previous 
category, these networks are constructed to encompass host-microbe 
and microbe-microbe interactions, providing pertinent insights into 
the microbiome’s role in health and disease. Finally, a Microbiome 
Epidemiological Network denotes the interlinked associations among 
microorganisms within a population, concentrating on the epidemio-
logical dimensions of microbial communities. This form of network 
analysis entails the examination of the dispersion, transmission, and 
elements impacting the prevalence of microorganisms in a population. 

To this end, network visualizations, either individually or in com-
bination, can contribute to the extraction of conclusions. For instance, 
examining temporal and spatial dynamics allows for the illustration of 
how microbial networks evolve over time or in diverse spatial locations, 
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offering insights into the temporal and spatial shifts within microbial 
communities. Additionally, networks enable functional prediction. Uti-
lizing network-based approaches facilitates the prediction of gene 
functions based on the functions of neighboring genes in the network, 
particularly beneficial in cases where functional annotations are 
incomplete. 

All aforementioned relations can be captured and viewed in the form 
of networks [79,216–220]. Network visualization tools are usually topic 
agnostic, in the sense that their functionalities are of general purpose, 
and the resulting network’s scientific field only depends on the type of 
input data. Widely used network visualization software in bioinfor-
matics includes Cytoscape [158,159], Graphia, Gephi [160], and Pajek 
[161]. However, for specific scenarios, dedicated network visualization 
tools can be employed. For instance, Arena3Dweb [162,163,221] facili-
tates interactive, multi-layered visualizations in 3D space to reveal 
intriguing data patterns. It allows network pseudo-alignment and excels 
in efficiently visualizing heterogeneous information, employing a 
multi-layered concept that proves particularly effective for time series 
analysis. Another specialized tool is NORMA [164,165], which enables 
the highlighting of annotations over communities of nodes and supports 
layouts based on user-defined annotated groups. In the context of met-
agenomics, these nodes might for example represent bacterial species, 
whereas the overlaid annotations could indicate pathological functions, 
metabolic pathways, resistance to antibiotics, or symbiotic 
relationships. 

Several examples involving the use of network visualization to 
describe metagenomic datasets are presented in Fig. 5a-c, created using 
data taken from the NMPFamsDB database. Fig. 5a presents a network 

visualization for the distribution of all available novel metagenome 
protein families (NMPFs) across eight major biome types (Freshwater, 
Marine, Soil, Plants, Human, Mammals, Other Host-associated and 
Engineered environments), rendered using Gephi. The biomes are rep-
resented by central, colored nodes (hubs), whereas the gray peripheral 
nodes represent the NMPFs, and edges represent NMPF-biome associa-
tions. Through this representation, NMPFs appearing in multiple bi-
omes, as well as NMPFs confined to a specific biome can be visualized. 
Fig. 5b displays a three-dimensional (3D), multilayered network, 
featuring all the NMPFs connected with four major human microbiome 
systems (skin, respiratory, digestive, and reproductive systems), created 
with Arena3Dweb. In addition, each NMPF is annotated with annotation 
on the nature of its source microbiome sample (metagenome or meta-
transcriptome), and on whether it has a predicted protein structure 
model or not. This information is organized in multiple layers. The 
protein families themselves are depicted in the central layer, with nodes 
corresponding to NMPFs and intra-layer edges depicting the co- 
existence of NMPFs in the same metagenome sample. Inter-layer edges 
connect each NMPF with its corresponding annotation, including the 
association with a particular biome, the nature of the source dataset, and 
the availability of a 3D protein model. Finally, Fig. 5c displays a network 
representation of a gene neighborhood for a novel metagenome protein 
family (F006270) from NMPFamsDB, rendered using NORMA. The 
neighborhood of the family consists of proteins with hits to known Pfam 
domains (e.g., p450) and/or associations with COG functions (e.g., 
‘Defense mechanisms’ or ‘metabolite biosynthesis’). Through these associ-
ations, a potential function for the unannotated genes of the protein 
family can be inferred. Overall, these examples demonstrate the 

Fig. 4. (A) Sunburst chart (Krona) showing taxonomy. (B) Taxonomy with Sankey plot (Pavian). (C) Tree of Life visualized by iTOL. (D) Taxonomy visualized as a 
Bubble chart. (E) Taxonomy visualized as a Treemap. (F) Taxonomic Ordering with the use of Hilbert curves visualized by Jasper/Microbiome Maps. All the plots 
above have been created using example data provided with each tool. 
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capabilities of networks in providing advanced methods in the visuali-
zation, analysis, and annotation of metagenomic data and metadata. 

6.8. Gene neighborhood and synteny conservation analysis 

In prokaryotic genomes, functionally related genes tend to be 
grouped, sharing common regulatory mechanisms and forming 

conserved gene neighborhoods. The study of these neighborhoods is 
usually performed in the form of a synteny conservation analysis, in 
which multiple genomes or, in the case of metagenomics, multiple 
metagenome scaffolds, are compared to investigate the existence of 
common coordinate patterns around one or multiple studied genes. 
Genome synteny refers to the conservation of the relative order of genes 
and other genomic elements in the chromosomes of different species and 

Fig. 5. (A-C) Various network visualization schemes for data retrieved from NMPFamsDB. (A) 2D Network visualization of NMPF distribution across different bi-
omes, rendered using Gephi. (B) 3D, multi-layered network visualization of NMPFs associated with 4 human microbiomes, as well as additional annotation (sample 
type and availability of 3D model), created using Arena3Dweb. (C) A gene co-occurrence network describing the gene neighborhood of a novel metagenome protein 
family (F006270), constructed with data from NMPFamsDB and rendered using NORMA. The functional annotation of F006270’s neighboring genes is presented in 
the form of colored groups. (D) Gene neighborhood visualization for multiple MAGs through synteny conservation analysis, rendered using GeCoViz and the FESNov 
catalog. (E) Tree visualization of metagenome ecosystems, using the GOLD classification system. The number of metagenomic datasets associated with each 
ecosystem is given in parentheses. (F) Chronological progression of different SARS-Cov-2 strains in the form of a histogram, rendered using NextStrain. (G-H) Map 
visualizations of the geographical distribution across Europe (G) and global dispersion patterns of COVID-19 (H) rendered using NextStrain. 
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is often used to study evolutionary relationships between species and to 
identify orthologous genes, which are genes in different species that 
evolved from a common ancestral gene. Identifying common gene 
contexts among different scaffolds can be used to functionally annotate 
previously unknown metagenomic sequences (e.g., NMPFamsDB [34, 
35], FESnov catalog [37]), predict protein-protein interactions, or 
discover novel functional roles. Synteny conservation can be explored 
through various means, ranging from simple MSAs to whole genome 
alignment visualization and, most notably through the use of synteny 
browsers. The latter are specialized genome browsers designed for the 
comparative analysis of multiple genomes/scaffolds, although standard 
browsers such as UCSC do offer limited synteny functionality. Examples 
include standalone tools such as JAX synteny browser [222], ALLMAPS 
[223] or GeneSpy [224] and web applications such as KEGG Synteny, 
WebFlaGs [225], and GeCoViz [226], including metagenome-oriented 
tools like FeGenie [227] and the EFI enzymology tools [228]. A com-
plementary analysis to synteny conservation can be performed through 
the use of gene co-occurrence networks. In this approach, a gene 
neighborhood can be represented as an interaction network, in which 
the edges between genes represent their proximity to each other in 
multiple genomes or scaffolds. By annotating the neighbors (e.g., 
through association with Pfam, KEGG pathways, or COG functions), the 
potential function of an unannotated gene can also be inferred. Notable 
tools capable of providing this functionality include general-purpose 
network viewers such as Cytoscape, or specialized tools such as 
NORMA [164,165]. Examples of gene neighborhood analysis, both 
through an association network and through a synteny browser, are 
shown in Fig. 5c-d. 

6.9. Biome distribution / ecosystems / geographical distribution 

Biome distribution, ecosystems, and geographical distribution are 
interconnected concepts that play a crucial role in understanding the 
diversity of life on Earth and the intricate relationships between living 
organisms and their environment. Biomes are large geographic regions 
characterized by distinct climates, vegetation, and animal life. The dis-
tribution of biomes across the planet is influenced by factors such as 
temperature, precipitation, and sunlight. Examples of biomes include 
tropical rainforests, deserts, tundras, and grasslands. Each biome has 
unique ecological features, and the global distribution of biomes con-
tributes significantly to the Earth’s biodiversity. Ecosystems are smaller, 
localized communities of living organisms interacting with their phys-
ical environment. These ecosystems, ranging from freshwater ponds to 
coral reefs, forests, or grasslands, experience distribution influenced by 
climate, topography, soil composition, and other environmental factors. 
Geographical distribution refers to the spatial arrangement of organ-
isms on Earth, encompassing patterns of occurrence and abundance 
across regions. Factors such as climate, landforms, and human activities 
contribute to the geographical distribution of life forms. Understanding 
geographical distribution is essential for studying biodiversity, ecolog-
ical patterns, and the impact of environmental changes on various 
species. 

Biome distribution, ecosystems, and geographical distribution are 
intricately linked through complex ecological dynamics. The charac-
teristics of a biome shape the types of ecosystems it harbors, and the 
geographical distribution of species is often associated with the specific 
biomes and ecosystems they inhabit. Environmental changes, whether 
natural or human-induced, exert profound effects on these in-
terconnections, influencing the distribution of biomes and ecosystems 
over time. 

Visualizing Biome Distribution, Ecosystems, and Geographical Dis-
tribution is instrumental in unraveling the intricate tapestry of Earth’s 
biodiversity and ecological dynamics. Through advanced visualization 
techniques, researchers can map the global distribution of biomes, 
highlighting the distinct climates, vegetation, and animal life charac-
terizing different geographic regions (See COVID-19 example in Fig. 5f- 

h). These visualizations not only provide a comprehensive understand-
ing of the relationships between biomes, ecosystems, and geographical 
features but also serve as powerful tools for communicating complex 
ecological concepts to a broader audience, fostering environmental 
awareness and stewardship. While custom biome visualizations can be 
achieved using methods outlined in Section 4 (Visualization Concepts), 
various pre-built viewers are also accessible within metagenome re-
sources. Databases such as IMG/M, MGnify, or SPIRE, use the GOLD 
ecosystem classification (Fig. 5e) and provide geolocation data visuali-
zation for each submitted dataset. GOLD also offers a specialized 
browser for exploring the geographical distribution of biomes based on 
microbiome metadata. NMPFamsDB provides visualization for the 
ecosystem and geographical distribution of each NMPF. In addition, the 
database offers dedicated tools for generating custom plots (bar charts, 
Venn diagrams, Circos plots, color-coded matrices, and Upset plots) 
measuring the ecosystem and phylogeny distribution of user-selected 
NMPFs, as well as the geographical spread of each NMPF. Finally, the 
Microbiome Maps resource uses Jasper [147] to visualize ecosystem 
distribution with Hilbert curves. 

7. Discussion 

Visualization tools represent indispensable assets in the analysis and 
interpretation of complex biological data in genomics and meta-
genomics. Genomics and metagenomics research have witnessed an 
exponential surge in data generation, necessitating robust visualization 
tools to unravel the intricacies encoded within these datasets. While 
advancements in visualization technologies have greatly enhanced re-
searchers’ ability to explore and interpret biological data, several chal-
lenges persist: 

7.1. Conveying complexity 

Despite advancements, visualization tools often struggle to effec-
tively convey the complexity inherent in genomic and metagenomic 
datasets. For instance, the visualization of microbial community dy-
namics within ecological niches may oversimplify intricate interactions, 
leading to potential misinterpretation of ecological patterns. 

7.2. Computational demands 

Certain visualization tools impose significant computational de-
mands, rendering them inaccessible to researchers with limited access to 
high-performance computing resources. For instance, tools that employ 
complex algorithms for three-dimensional visualization of genomic 
structures may require substantial computational power, limiting their 
utility in resource-constrained settings. 

7.3. Compatibility issues 

Compatibility issues between visualization tools, data formats, and 
operating systems pose substantial challenges. For example, the inter-
operability between bioinformatics pipelines and visualization plat-
forms may necessitate complex data preprocessing steps, introducing 
potential errors and hindering seamless data analysis workflows. 

7.4. Scalability limitations 

The scalability of visualization tools is often tested when confronted 
with large-scale genomic and metagenomic datasets. For instance, tools 
designed for visualizing microbial community diversity may exhibit 
reduced performance or increased computational time when analyzing 
datasets encompassing diverse microbial populations or extensive 
sequencing depths. 
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7.5. Learning curve 

Some visualization tools entail steep learning curves, requiring re-
searchers to invest significant time and effort in mastering their 
functionalities. 

7.6. Adjustment to future technologies 

Visualization tools are poised to undergo a transformative evolution 
as they adapt to future technologies, such as virtual reality (VR). The 
integration of VR capabilities into visualization tools holds immense 
promise for revolutionizing how researchers explore and interact with 
biological data. By leveraging VR technology, visualization tools can 
offer immersive and interactive experiences that transcend the limita-
tions of traditional 2D visualizations. For example, researchers could 
navigate through three-dimensional representations of genomic land-
scapes, manipulate molecular structures with hand gestures, or explore 
intricate biological networks in immersive virtual environments. 
Furthermore, the emergence of augmented reality (AR) technologies 
offers exciting possibilities for overlaying virtual data visualizations 
onto the physical world, enabling researchers to seamlessly integrate 
biological insights into their laboratory experiments or fieldwork. As VR 
and AR technologies continue to advance, visualization tools will play a 
pivotal role in harnessing the full potential of these immersive tech-
nologies to unlock new insights into the complexities of biological sys-
tems and accelerate scientific discovery. 

Despite the challenges, advancements in visualization tools include a 
plethora of cutting-edge innovations. These advancements encompass a 
broad spectrum of transformative features such as: 

7.7. Intuitive representations 

Contemporary visualization tools offer intuitive representations that 
facilitate data exploration and interpretation. For instance, tools such as 
Krona utilize interactive sunburst visualizations to depict taxonomic 
hierarchies, enabling researchers to discern microbial community 
compositions with ease. 

7.8. Interactive features and dynamic exploration 

The incorporation of interactive features enables dynamic explora-
tion of genomic and metagenomic data. Notable examples include 
Anvi’o which allows users to interactively visualize and annotate met-
agenomic assemblies, facilitating real-time exploration of genomic 
contexts. 

7.9. Data integration 

Bioinformatics visualization tools exhibit advanced data integration 
capabilities, revolutionizing researchers’ ability to synthesize diverse 
omics datasets and unravel complex biological phenomena. These tools 
facilitate seamless integration of genomics/metagenomics, tran-
scriptomics,/metatranscriptomics proteomics, and metabolomics data, 
enabling holistic analyses of biological systems. 

7.10. Community engagement and continuous development 

Popular visualization tools often boast active user communities, 
fostering collaborative development and continuous improvement. 
Galaxy for genomic analysis and Cytoscape for network analysis and 
visualization are two characteristic examples. 

7.11. Customization flexibility 

Tools that offer customization options empower researchers to tailor 
visualizations to their specific research questions and preferences. An 

exemplary tool in this regard is Circos which enables the creation of 
highly customizable circular plots for visualizing genomic data, allow-
ing researchers to highlight genomic features of interest with precision. 

7.12. Reproducibility 

Genomic visualization tools play a crucial role in ensuring repro-
ducibility by providing transparent and replicable means to visualize 
and analyze genomic data. 

In conclusion, visualization tools represent indispensable assets for 
genomics and metagenomics research, offering valuable insights into 
complex biological phenomena. While recent advancements have 
significantly enhanced the utility and accessibility of visualization tools, 
several challenges persist, necessitating ongoing innovation and 
refinement. By addressing these challenges and capitalizing on emerging 
technologies, researchers can harness the full potential of visualization 
tools to advance our understanding of the intricacies of genomic and 
metagenomic landscapes. 
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Glossary 

Accessory genome: A gene set commonly shared within only one or some strains 
Adapters: Short oligonucleotides ligated to the ends of DNA fragments of interest so that 

they can be combined with primers for amplification 
Amplicon: A piece of DNA or RNA that is the source and product of amplification or 

replication events. It can be formed naturally through gene duplication, or artificially 
with polymerase chain reactions 

Annotation: The process of deriving the structural and functional information of a protein 
or gene from a raw data set 

Assembly: The process of reconstructing a complete genome sequence from fragmented 
DNA sequences obtained through sequencing techniques. 

Average Nucleotide Identity (ANI): A measure of nucleotide-level genomic similarity 
between the coding regions of two genomes 

Binning: The process of grouping reads or contigs into individual genomes and assigning 
each group to a specific taxon 

Biomes: Large geographic regions characterized by distinct climates, vegetation, and an-
imal life 

Centroid-linkage method: A method of hierarchical clustering that defines the distance 
between clusters as being the distance between their centers/centroids 

Clustering: A data science technique that groups similar unlabeled objects 
Convolutional Neural Networks (CNN): A network architecture for deep learning that 

learns directly from data 
COI marker genes: The mitochondrial cytochrome oxidase subunit 1 (COI) gene is one of 

the most popular markers used for molecular systematics 
Complete-linkage method: A method of Hierarchical clustering that defines the link be-

tween two clusters as a combination of all element’s pairs and the distance between 
those two clusters as the distance between two elements (one in each cluster) that are 
farthest away from each other. 

Contig: A set of DNA segments or sequences that overlap in a way that provides a 
contiguous representation of a genomic region 

Core genome: The core genome is defined as the set of genes that are ubiquitous—or nearly 
ubiquitous—to a set of genomes 

CRISPR elements: CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) 
elements are specialized stretches of DNA found in the genomes of bacteria and other 
microorganisms. They are part of the microbial immune system, acting as a defense 
mechanism against foreign genetic material, such as viruses and plasmids. CRISPR 
elements consist of repeating sequences interspersed with unique spacer sequences 
derived from previous encounters with foreign genetic elements. They function in 
conjunction with CRISPR-associated (Cas) proteins to recognize and cleave specific 
sequences of foreign DNA or RNA, providing protection against future invasions. 
Additionally, CRISPR systems have been adapted for use in genetic engineering and 
gene editing technologies. 

De Bruijn graph (DBG): A directed graph representing overlaps between sequences 
De novo assembly: De novo assembly is a method for constructing genomes from a large 

number of (short- or long-) DNA fragments, with no a priori knowledge of the correct 
sequence or order of those fragments. 

Ecosystem: A localized community of living organisms interacting with their physical 
environment 

Enrichment bias: A phenomenon where certain features are overrepresented or under-
represented in a sample or dataset due to experimental or analytical procedures 

Functional annotation: The process of attaching biological information to sequences of 
genes or proteins 

GC distribution: A measure that indicates the proportion of G and C bases out of an implied 
four total bases. 

Gene calling: The prediction of valid open reading frames (ORFs) for protein-coding genes 
in a sequence assembly 

Gene neighborhood: Segments of the genome with specific characteristics associated with 
them 

Gene prediction: The process of identifying the regions of genomic DNA that encode genes 
Genome synteny: The physical co-localization of genetic loci on the same chromosome 

within an individual or species 
Graph-based clustering: A method aims to partition a set of graphs into different groups 

that share some form of similarity. 
Hierarchical clustering: An unsupervised clustering technique which involves creating 

clusters in a predefined order 
Hybrid assembly: A technique that combines data from different sequencing technologies 

to create a more precise and complete genome sequence (reference-guided and 
partially de novo) 

ITS marker gene: The Internal transcribed spacer (ITS) is one of the most popular markers 
used for molecular systematics 

Metabarcoding analysis: The combined use of universal DNA barcodes and high- 
throughput sequencing (HTS) to characterize biological communities from genetic 
material collected from environmental samples 

Metadata: The descriptive data about the sample that a DNA/RNA sequence was obtained 
from 

Metagenome-assembled genome (MAGs): A single-taxon assembly based on binned met-
agenomes that represents an entire individual genome 

Metagenome: The total amount of sequenced genetic material (DNA) from an environ-
mental sample 

Metatranscriptome: Metatranscriptomics involves examining and analyzing the mRNA 
found within a metagenomic sample (known as the metatranscriptome). This 
approach reveals insights into the regulation and expression patterns of diverse mi-
crobial communities within the sampled environment. 

Multiple sequence alignment (MSA): A bioinformatics technique used to align three or 
more biological sequences (such as DNA, RNA, or protein sequences) simultaneously. 
It aims to identify regions of similarity among the sequences, highlighting conserved 
motifs, domains, and functional elements 

NcRNAs: Functional RNA molecules that are not translated into proteins. Examples 
include rRNAs, tRNAs, micro-RNAs 

Neighbor-joining: A bottom-up (agglomerative) clustering method for the creation of 
phylogenetic trees 
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NMPFams: Novel Metagenome Protein Families (no similarity to Pfam or reference 
genomes) 

Overlap-Layout Consensus (OLS): A computational method used in bioinformatics to 
assemble DNA sequences by identifying overlapping regions between shorter DNA 
fragments and merging them to reconstruct longer contiguous sequences 

OTU: An operational taxonomic unit (OTU) is an operational definition used to classify 
groups of closely related individuals. A vOTU is a viral operation taxonomic unit. 

Pangenome: The entire set of genes from all strains within a clade 
Phylogenetic analysis: The study of the evolutionary relationship between the organisms 
Principal Component Analysis (PCA): A versatile statistical method for reducing a cases- 

by-variables data table to its essential features, called principal components. 
Reference genomes: A digital nucleic acid sequence database, assembled by scientists as a 

representative example of the set of genes in one idealized individual organism of a 
species 

Reference-based assembly: A method for reconstruction of genomes or genetic sequences 
by aligning and assembling short DNA sequence reads against a known reference 
sequence 

Relative abundance: The evenness of distribution of individuals among species in a 
community. 

Scaffold: A portion of a genome sequence reconstructed from end-sequenced whole- 
genome shotgun clones. Scaffolds are composed of contigs and gaps 

Sequence alignment: A technique of arranging the sequences of DNA, RNA or protein to 
identify regions of similarity that may be a consequence of functional, structural or 
evolutionary relationships between the sequences 

Shotgun sequencing: A technique for determining the DNA sequence of an organism’s 
genome. The method involves randomly breaking up the genome into small DNA 
fragments that are sequenced individually. A computer program looks for overlaps in 
the DNA sequences, using them to reassemble the fragments in their correct order to 
reconstitute the genome 

Single-linkage method: A method of hierarchical clustering. It is based on grouping 
clusters in a bottom-up fashion (agglomerative clustering), at each step combining two 
clusters that contain the closest pair of elements not yet belonging to the same cluster 
as each other. 

Standalone tool: Any application or software that does not need to be bundled with other 
software or applications, nor does it require anything else to function 

Synteny conservation analysis: The analysis of the maintenance of the relative ordering of 
genes or genomic regions across different species, often used to infer evolutionary 
relationships and identify conserved genomic regions 

Taxonomic assignment: The process of classifying or assigning biological sequences (such 
as DNA sequences obtained from metagenomic or genomic data) to their respective 
taxonomic categories 

Trimming: The process of removing unwanted or low-quality regions from sequences, 
typically in the context of DNA or RNA sequences obtained from sequencing 
experiments 

Unweighted pair group method with arithmetic mean (UPGMA): A hierarchical clustering 
algorithm used to construct dendrograms that illustrate the genetic or evolutionary 
relationships between biological sequences or taxa by sequentially merging the closest 
pairs of entities based on their pairwise distances. 
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