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Artemisinin is an anti-malarial drug that has been in use for almost half century. Recently,
novel biological effects of artemisinin on cancer, inflammation-related disorders and
cardiovascular disease were reported. However, neuroprotective actions of artemisinin
against glutamate-induced oxidative stress have not been investigated. In the current
study, we determined the effect of artemisinin against oxidative insult in HT-22 mouse
hippocampal cell line. We found that pretreatment of artemisinin declined reactive
oxygen species (ROS) production, attenuated the collapse of mitochondrial membrane
potential induced by glutamate and rescued HT-22 cells from glutamate-induced
cell death. Furthermore, our study demonstrated that artemisinin activated Akt/Bcl-
2 signaling and that neuroprotective effect of artemisinin was blocked by Akt-specific
inhibitor, MK2206. Taken together, our study indicated that artemisinin prevented
neuronal HT-22 cell from glutamate-induced oxidative injury by activation of Akt signaling
pathway.
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INTRODUCTION

Artemisinin, first discovered in 1970s, has pioneered a new era for the treatment of malaria
and saved millions malarial patients worldwide (Guo, 2016). Although the precise mechanism
underlying its anti-malaria effect is still not clear, artemisinin and its derivatives are considered
prodrugs that generate carbon-centered free radicals or reactive oxygen species (ROS), which
further alkylate key parasite proteins and results in the death of parasite (Cui and Su, 2009; Ismail
et al., 2016). Furthermore, artemisinin has been indicated to interact with FADH and/or other
parasite flavoenzymes, hence impair parasite redox homeostasis and generation of ROS (Haynes
et al., 2010). Paradoxically, antioxidant activity of artemisinin has also been demonstrated (Kim
et al., 2015). Artemisinin has been found to protect retinal neuronal cells against oxidative stress
(Yan et al., 2017).

Oxidative stress refers to the imbalance between ROS production and antioxidant defense
which has been found to be involved in aging and aging-related neurodegenerative disorders (Lin
et al., 2016; Sozen and Ozer, 2017; Vida et al., 2017). Correspondently, antioxidant has been an
attractive approach for the treatment of neurodegenerative diseases (Xie et al., 2013; Lin et al.,
2016). Artemisinin could cross the blood-brain barrier (BBB) without obvious toxicity in the
central nervous system, implying favorable advantages in the treatment of neurological disorders
(Zuo et al., 2016). However, the effect of artemisinin on oxidative stress in brain cells has not been
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fully investigated. In the present study, we determined the
neuroprotective effect of artemisinin on glutamate-induced
oxidative injury in HT-22 hippocampal cell line. Our results
indicated that artemisinin could prevent neuronal HT-22 cell
from glutamate-induced oxidative damage potentially via the
activation of Akt pathway.

EXPERIMENTAL PROCEDURES

Cell Culture
HT-22 cells, a hippocampal cell line, were maintained in
Dulbecco’s Modified Eagle’s Medium (DMEM; HyClone, USA)
supplemented with 10% fetal calf serum (FBS; HyClone, USA),
50 IU/ml penicillin and 50 µg/ml streptomycin (Sigma-Aldrich,
USA) in a humidified incubator with 5% CO2 at 37◦C. Cells at
passage 10–20 were adjusted to 3 × 104/ml and were plated in
12-well or 96-well cell culture plates (Cellstar, Greiner Bio-One
GmbH). At 24 h after seeding, adherent cells were used for all
of the experiments. L-Glutamic acid (CAS No. 138-15-8, Sigma-
Aldrich, USA) and artemisinin (CAS No. 63968-64-9, Sigma-
Aldrich, USA) were purchased from Sigma Aldrich. MK2206

(CAS No. 1032350-13-2) was purchased from Selleck (Houston,
TX, USA).

Cell Viability Assay
Cell viability was assessed using Calcein-AM assay (Anaspec,
Fremont, CA, USA) according a protocol modified from
our previous publication (Ryou et al., 2015). In brief, cells
were washed with phosphate-buffered saline (PBS, pH 7.0)
and incubated with 1 µg/ml Calcein-AM for 10 min at
37◦C. Fluorescence was determined using a Tecan Infinite
F200 plate reader (Maennedorf, Switzerland) with 485/530-
nm excitation/emission. The percentage of cell viability was
normalized to the control group.

For Calcein-AM/PI double staining, HT-22 cells were
incubated in PBS containing 1 µg/ml Calcein-AM and 5 µg/ml
propidium iodide (PI, BD Biosciences) at 37◦C for 15 min.
After washing with PBS, cells were observed by a fluorescence
microscope (Axio Observer Z1; Carl Zeiss AG, Germany).

For flow cytometry analysis, floating cells and adherent
cells were collected and stained with PI and Annexin V (BD
Biosciences) according to the manufacture’s instruction. And the
cells were analyzed by a BD flow cytometry (BD Biosciences).

FIGURE 1 | Pretreatment with artemisinin protected HT-22 cells against glutamate-induced cell death. (A) Artemisinin concentration between 6.25–50 µM did not
cause any cytotoxicity in HT-22 cells. (B) Pretreatment with artemisinin for 12 h significantly attenuated glutamate-induced HT-22 cell death in a dose-dependent
manner. (C) No protective effect against glutamate-induced toxicity was observed when 25 µM artemisinin was pretreated less than 12 h. (D) Calcein-AM/PI double
staining showed that pretreatment with 25 µM artemisinin for 12 h attenuated glutamate-induced HT-22 cell death. Scale bar = 100 µm. #p < 0.05 vs. CON group,
∗p < 0.05 vs. GLUT group.
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FIGURE 2 | Artemisinin inhibited the glutamate-induced apoptosis in HT-22 cells. (A,B) Flow cytometry analysis indicated the anti-apoptotic effect of artemisinin.
(C,D) TUNEL assay manifested that artemisinin attenuated glutamate-induced cell apoptosis significantly. Scale bar = 100 µm. #p < 0.05 vs. CON group,
∗p < 0.05 vs. GLUT group.

Reactive Oxygen Species Measurements
Intracellular and mitochondrial ROS production were assessed
by a fluorometric assay using 2′,7′-dichlorofluorescein
diacetate (H2DCFDA; Invitrogen, USA) and MitoTracker
Red CMXRos (Invitrogen, USA), respectively. After 12 h
treatment of artemisinin and followed by 12 h treatment of
glutamate, cells were incubated in 10 µmol/L H2DCFDA or
0.25 µmol/L MitoTracker Red CMXRos for 30 min at 37◦C. The
fluorescence was then observed via a fluorescence microscope.
The fluorescence was detected with 530/485-nm and 579/599-nm
excitation/emission wave lengths.

Mitochondrial Membrane Potential (∆Ψm)
Measurement
The mitochondrial membrane potential was detected using
Tetramethylrhodamine, Ethyl Ester (TMRE) mitochondrial
membrane potential assay kit (Abcam, USA). Cells were loaded
with 20 nM of TMRE working solution for 20 min at
37◦C. The fluorescent images were observed and obtained on
a Zeiss fluorescence microscope. Fluorescence intensity was
measured using a Tecan Infinite F200 plate reader (Maennedorf,
Switzerland) with 594/575-nm excitation/emission.

Immunocytochemistry and TUNEL Staining
Cells were fixed in BD Cytofix/Cytoperm solution (BD
Biosciences) and permeabilized using 0.1% Triton-X. The
cells were incubated overnight in primary antibody for
pAkt (Cell signaling technology, 1:50) followed by staining
with Alexa Fluor 488-conjugated goat anti-rabbit IgG
(Thermo Scientific, 1:500). Then the cells were further
incubated with 0.5 mg/mL DAPI for nuclei. Images were
obtained using a LSM 410 confocal microscope (Zeiss,
Thornwood, NY, USA).

The fragmentation of genomic DNA was detected by
in situ staining of DNA ends with TdT-mediated dUTP
nick end labeling (TUNEL; Progega, USA) following
the manufacturer’s instruction. Briefly, incubation buffer
containing Equlibration Buffer, Nucleotide Mix and rTdT
Enzyme was incubated for 2 h at 37◦C in the dark.
Hoechst 33342 staining was used to count the total
number of nuclei. Images were taken with a fluorescence
microscope.

Western Blot Analysis
Western blot analysis was carried out using a protocol modified
from our previous publication (Xie et al., 2013). In briefly, cell
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FIGURE 3 | Artemisinin decreased glutamate-induced oxidative stress in HT-22 cells. (A,B) Artemisinin reduced the increase of glutamate-induced total intracellular
reactive oxygen species (ROS). (C,D) Artemisinin decreased the elevation of glutamate-induced mitochondrial ROS. Scale bar = 20 µm. #p < 0.05 vs. CON group,
∗p < 0.05 vs. GLUT group.

lysate were prepared by homogenization in RIPA buffer (20 mM
Tris-HCl, pH 7.5, 150mMNaCl, 1 mMNa2EDTA, 1mMEGTA,
1% NP-40 and 1% sodium deoxycholate) including phosphatase
and protease inhibitor for 20 min on ice. Proteins were
loaded onto 8%–12% SDS-PAGE gel and electrophoresis was
performed. Protein samples were transferred to nitrocellulose
membranes and incubated with primary antibody overnight
at 4◦C for Phospho-Akt (Ser473; D9E) XPr Rabbit mAb
(Cell signaling technology, 1:2000), Akt (pan; C67E7) Rabbit
mAb (Cell signaling technology, 1:1000), Bcl-2 (Cell signaling
technology, 1:1000), Bax (Cell signaling technology, 1:1000),
Caspase-3 (Cell signaling technology, 1:1000), PARP (Cell
signaling technology, 1:1000) and β-Actin (C4; Santa Cruz
Biotech, 1:2000) antibody. After being washed three times

with PBST, membranes were incubated with horseradish
peroxidase-conjugated secondary antibodies for 1 h at room
temperature. Membranes were developed with Super SignalWest
Pico Chemiluminescent Substrate (Thermo Scientific, USA).
The optical density of the target protein bands were measured
using a Biospectrum 500 imaging system (Ultraviolet Products,
Upland, CA, USA).

Statistical Analysis
Graph Pad Prism 5 was used for statistical analysis. The
experiments were carried out at least in triplicate, and all
data were presented as mean ± standard error of mean
(SEM). T-test was used to identify any significant difference
between two groups. For comparison of multiple groups,
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FIGURE 4 | Artemisinin attenuated the glutamate-induced collapse of mitochondrial membrane potential. (A) Tetramethylrhodamine, Ethyl Ester (TMRE) staining
showed that artemisinin could reduce glutamate-induced ∆ψm loss. (B) Quantitative data of (A). Scale bar = 20 µm. #p < 0.05 vs. CON group, ∗p < 0.05 vs. GLUT
group.

FIGURE 5 | Treatment with artemisinin activated Akt pathway in HT-22 cells. (A) Immunocytochemical staining of phosphor-Akt showed that treatment with
artemisinin increased Akt phosphorylation. (B–D) Western blots demonstrated that artemisinin increased pAkt/Akt and Bcl-2/Bax ratio in a time-dependent manner.
#p < 0.05 vs. CON group.

one-way analysis of variance was used and post hoc Bonferroni
analysis was done to identify the significant differences.

For all tests, p-value of less than 0.05 was considered
significant.
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FIGURE 6 | Akt pathway inhibitor MK2206 abolished the protective effect of
artemisinin against glutamate insult in HT-22 cells. (A) Calcein-AM cell viability
assay demonstrated that MK2206 attenuated the protective effects of
artemisinin against glutamate-induced cell death. (B,C) Annexin V/PI flow
cytometry analysis showed that MK2206 abolished the protective effect of
artemisinin against glutamate-induced apoptosis. (D,E) Western blots analysis
indicated that MK2206 attenuated artemisinin-induced increased of pAkt/Akt
and Bcl-2/Bax ratio. (F,G) Western blots demonstrated that MK2206
abolished artemisinin-induced decrease of cleaved caspase-3 and cleaved
PRAP expression in HT-22 cells. The antibodies in Figures 6E,F were
incubated in the same gel. Therefore, they had the same reference.
#p < 0.05 vs. CLUT group, ∗p < 0.05 vs. GLUT+ART group.

RESULTS

Artemisinin Pretreatment Reduced
Glutamate-Induced Cytotoxicity in HT-22
Cells
HT-22 cells were treated with various concentrations of
artemisinin for 24 h and cell viability was analyzed by
Calcein-AM assay. No cytotoxic effect was observed upon

artemisinin treatment in HT-22 cells until reaching 100 µM
concentration (Figure 1A). The effects of artemisinin on
glutamate-induced oxidative stress were evaluated in different
treatment paradigms. A dose-dependent neuroprotective effect
was indicated when HT-22 cells were pretreated with artemisinin
for 12 h before 12-h glutamate insult (Figures 1B,D). No
protective effect against glutamate toxicity was observed when
artemisinin was administered less than 12 h before glutamate
insult (Figure 1C). Pretreatment with 25µMartemisinin for 12 h
had an optimum protective effect.

The neuroprotective effect of artemisinin on glutamate insult
was further verified by flow cytometry and TUNEL staining. As
predicted, glutamate induced a significant increase of apoptosis,
which was attenuated by pretreatment of artemisinin (Figure 2).

Protective Effects of Artemisinin on
Glutamate-Induced Oxidative Stress and
Loss of Mitochondria Membrane Potential
We determined the effect of artemisinin on glutamate-induced
intracellular ROS and mitochondrial ROS production using
H2DFFDA and MitoTracker Red CMXRos, respectively.
Glutamate significantly increased intracellular ROS and
mitochondrial ROS production as compared with control
group, which was attenuated upon pretreatment of artemisinin
(Figure 3). We further determined the effect of artemisinin
pretreatment on mitochondria membrane potential collapse
induced by glutamate insult. As predicted, artemisinin reversed
glutamate-induced loss of mitochondrial membrane potential
evidenced by TMRE analysis (Figure 4).

Akt Signaling Was Involved in the
Neuroprotection of Artemisinin
To determine whether Akt anti-apoptotic pathway was regulated
by artemisinin in HT-22 cells, HT-22 cells were incubated
with 25 µM artemisinin for 24 h and then processed
for the immunocytochemistry of phosphorylated Akt. An
increase of phospho-Akt was observed after 24-h treatment of
25 µM artemisinin (Figure 5A). Consistently, a time-dependent
increase of pAkt/Akt and Bcl-2/Bax ratio upon artemisinin
treatment was observed by Western Blot (Figures 5B–D).

We further determined whether neuroprotective effect of
artemisinin was mediated through Akt signaling. Protective
effect of artemisinin on glutamate-induced cell death and
apoptosis was negated by co-treatment of Akt inhibitor, 5 µM
MK2206 (Figures 6A–C). Western blot analysis confirmed that
artemisinin-induced increase of pAkt/Akt and Bcl-2/Bax ratio
was indeed inhibited with 5 µM MK2206 (Figures 6D,E). In
addition, MK2206 abolished artemisinin-induced decrease of
cleaved caspase-3 and cleaved PARP (Figures 6F,G).

DISCUSSION

In the current study, we demonstrated that artemisinin prevented
neuronal cells from glutamate-induced injury via the activation
of Akt pathway. Our study identified a novel neuroprotective
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FIGURE 7 | Hypothetical model of artemisinin mediated neuroprotection against glutamate-induced oxidative stress injury.

effect of artemisinin suggesting artemisinin could be potential
therapeutic drug for prevention of neurodegenerative disorders.

Anti-malarial effect of artemisinin has been well established.
Recently, anti-tumor and anti-inflammation properties have
been demonstrated in artemisinin (Zuo et al., 2016). In addition,
Zheng et al. (2016) demonstrate that pretreatment with 25 µM
artemisinin for 1 h has anti-oxidize effect in nitroprusside-
induced oxidative insult in cortical neuron by activating ERK
pathway. The hippocampus is one of the most vulnerable parts
of brain susceptible to various pathological conditions (Wang
et al., 2016). In the current study, we explored the effect
of artemisinin on oxidative stress using a HT-22 glutamate
model. We found that pretreatment with 25 µM artemisinin for
12 h could provide HT-22 cells protection against glutamate-
induced injury. However, pretreatment less than 12 h failed
to protect HT-22 cells from glutamate toxicity. This seems to
be a long preprocessing time to pretreat the cell for 12 h.
There are several reasons for this phenomenon. First, it has
been demonstrated that artemisinin exhibits time-dependent
pharmacokinetics (Ashton et al., 1998; Gordi et al., 2002). Short
pretreatment period of artemisinin may be insufficient and does
not take effect (Zheng et al., 2016). Second, the dose which
was used in our study to activate Akt enzymatic activity is

much lower than preview study (Steely et al., 2017). Third,
dihydroartemisinin is the active metabolite of all artemisinin
compounds (Zhao et al., 2012). The metabolic processes of
artemisinin to dihydroartemisinin may also contribute long
preprocessing time to take effect.

Mitochondria is the main site for ROS production (Wang
et al., 2016). We found that pretreatment with artemisinin
decreased the subsequent glutamate-induced increase of
mitochondrial ROS and total intracellular ROS levels.
Accordingly, pretreatment with artemisinin attenuated the
glutamate induced mitochondrial membrane potential collapse
and rescued HT-22 cells form apoptotic cell death. It has been
shown that prior treatment with mild ROS generatros may
upregulate expression of hypoxia-inducible factor (HIF) and
erythropoietin (Epo), and therefore protect neurons against
subsequent ROS stress (Liu et al., 2005). Pretreatment with
artemisinin may react with intracellular heme and elicit low
levels production of ROS, which could protect cells from lethal
ROS insult induced by glutamate damage (Schmuck et al., 2002;
Kavishe et al., 2017).

Activation of Akt/Bcl-2 pathway has been demonstrated as an
essential anti-apoptotic signaling (Ryou et al., 2013; Cao et al.,
2017). The increased Bcl-2/Bax ratio blocks the cytochrome C
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released from mitochondria, which inhibits the mitochondrial
apoptotic pathways (Zhu et al., 2016; Chauhan et al., 2018).
The Akt signaling pathway has been indicated as an important
drug target of artemisinin (Huang et al., 2013; Ho et al., 2014).
The anti-cancer and anti-inflammatory effects of artemisinin
have been attributed to the inhibition of Akt signaling pathway
(Ho et al., 2014; Luo et al., 2015; Shao et al., 2017). On the
other hand, Lee et al. (2012) observed that artemisinin could
reduce inflammatory responses in microglial BV2 cells through
activation of Akt signaling. In addition, Wang et al. (2015)
reported that artemisinin could activate Akt signaling and trigger
mitochondrial biogenesis in mice. In the current study, we found
that Akt anti-apoptotic pathway was activated by artemisinin in
a time dependent manner. Consistently, up-regulation of Bcl-2
and reduction of Bax, cleaved caspase-3 and cleaved PARP,
downstream of Akt activation, were observed upon pretreatment
of artemisinin. Furthermore, the protective effect of artemisinin
was blocked by MK2206, a highly selective inhibitor of Akt,
supporting that activation of Akt pathway was involved in the
neuroprotective action of artemisinin.

In summary, our results demonstrated that artemisinin
protect neuronal HT-22 cell from glutamate-induced oxidative
injury by activation of Akt signaling pathway (Figure 7). Due
to its lipid-soluble characteristic, artemisinin can pass BBB and
maintain a higher concentration in the central neural system

(Zuo et al., 2016). As an FDA approval anti-malaria drug,
artemisinin has been used in clinic for long-term without
apparent adverse effects (Karbwang et al., 1992). Our finding
indicates that artemisinin might be a potential novel antioxidant
drug for the prevention and treatment of neurodegenerative
disorders.
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