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Abstract

Resting-state functional magnetic resonance imaging (rsfMRI) allows the study of functional 

brain connectivity based on spatially structured variations in neuronal activity. Proper evaluation 

of connectivity requires removal of non-neural contributions to the fMRI signal, in particular 

hemodynamic changes associated with autonomic variability. Regression analysis based on 

autonomic indicator signals has been used for this purpose, but may be inadequate if neuronal 

and autonomic activities covary. To investigate this potential co-variation, we performed rsfMRI 

experiments while concurrently acquiring electroencephalography (EEG) and autonomic indicator 

signals, including heart rate, respiratory depth, and peripheral vascular tone. We identified a 

recurrent and systematic spatiotemporal pattern of fMRI (named as fMRI cascade), which features 

brief signal reductions in salience and default-mode networks and the thalamus, followed by a 

biphasic global change with a sensory-motor dominance. This fMRI cascade, which was mostly 

observed during eyes-closed condition, was accompanied by large EEG and autonomic changes 

indicative of arousal modulations. Importantly, the removal of the fMRI cascade dynamics from 

rsfMRI diminished its correlations with various signals. These results suggest that the rsfMRI 
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correlations with various physiological and neural signals are not independent but arise, at 

least partly, from the fMRI cascades and associated neural and physiological changes at arousal 

modulations.
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1. Introduction

Resting-state functional magnetic resonance imaging (rsfMRI) is widely used to chart the 

brain’s functional connectivity in both health and disease (Biswal et al., 1995; Fox and 

Raichle, 2007; Zhang and Raichle, 2010) and relies on the cerebral blood flow (CBF) 

response to neuronal activity (Bandettini et al., 1992; Kwong et al., 1992; Ogawa et al., 

1992). While the contribution of neuronal activity to rsfMRI-derived connectivity patterns 

is increasingly well established (Britz et al., 2010; Brookes et al., 2011b, 2011a; He et al., 

2008; Mantini et al., 2007; Musso et al., 2010), non-neurogenic CBF changes remain a 

potential confounding factor (Birn et al., 2009; Power et al., 2012; Shmueli et al., 2007) in 

the derivation of connectivity estimates.

Identifying the source contributions to the rsfMRI signal typically involves assessing 

temporal correlations with indicator signals. For example, a neural contribution of rsfMRI 

signals has been inferred by correlation with concurrently acquired electrophysiological 

signals (Scholvinck et al., 2010), including the alpha-band (8–12 Hz) power of 

electroencephalography (EEG) (Berger, 1929)(Feige et al., 2005; Goldman et al., 2002; 

Moosmann et al., 2003). However, the rsfMRI signals also correlate with a wide variety 

of physiological measures, including respiration volume per unit time (Birn et al., 2009), 

peripheral vascular tone (Özbay et al., 2018), heart rate (Chang et al., 2013), arterial and 

venous signals (Tong et al., 2019b), cerebrospinal fluid movement (Fultz et al., 2019a), and 

even head motion (Power et al., 2012). These correlations were often interpreted as evidence 

of independent, non-neurogenic contributions to rsfMRI (Das et al., 2021; Drew et al., 2020; 

Duyn et al., 2020; Gu et al., 2019; Keilholz et al., 2017; Power et al., 2015; Tong et al., 

2019a).

Emerging evidence suggests that neurogenic and non-neurogenic contributions to the fMRI 

signal may not be independent, but may instead share components generated by some 

unitary brain process related to alertness or arousal state. For example, during light sleep, 

autonomic arousal was found to accompany EEG K-complex activity and fMRI signal 

changes (Özbay et al., 2019). Microsleep episodes detected during the resting-state fMRI 

scans were also associated with both EEG and physiological modulations (Soon et al., 

2021). These joint neuronal and autonomic changes at arousal transitions may contribute 

to the rsfMRI correlations with EEG and autonomic signals, which indeed displayed a 

similar pattern of sensory/motor dominance (Chang and Glover, 2009; Goldman et al., 

2002; Shmueli et al., 2007) and also appear highly dependent on brain arousal state 

(Falahpour et al., 2018; Özbay et al., 2019; Yuan et al., 2013). Thus, the event type 
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of brain activities and associated changes in autonomic functions may account for such 

cross-modality correlations. The rsfMRI correlations with other modalities further suggest 

spatiotemporal dynamics of such neural and autonomic related processes, which would 

be more complex than modeled by point processes (Tagliazucchi et al., 2012) or brain 

co-activations (Liu et al., 2018; Nalci et al., 2017). The EEG-rsfMRI correlations peak 

at time lags that vary across brain regions in a manner which cannot be explained by 

region-specific hemodynamic delays (Feige et al., 2005; Yuan et al., 2013). This suggests 

that the underlying rsfMRI changes may take the form of sequential activations, as recently 

observed in human rsfMRI (Gu et al., 2021; Majeed et al., 2011; Mitra et al., 2015), monkey 

electrocorticography (ECoG) (Gu et al., 2021; Majeed et al., 2011; Mitra et al., 2015), and 

single-neuron recordings in mice (Liu et al., 2021). The associated neuronal and autonomic 

changes may therefore be coupled to these rsfMRI changes with systematic and distinct time 

delays (Fultz et al., 2019b; Özbay et al., 2018; Tong et al., 2019b). Understanding these 

resting-state neural and autonomic dynamics could be critical to understanding their possible 

role in brain waste clearance (Han et al., 2021b, 2021a; van Veluw et al., 2020), to a better 

interpretation of the widely observed rsfMRI correlations with various modalities, and to an 

improved quantification of functional connectivity using rsfMRI. To approach these goals, 

we compared the relationship between fMRI, EEG, and autonomic indicator signals that 

were acquired during the resting state.

2. Methods

2.1. Experimental paradigms

Thirty-four healthy subjects were recruited in this study. Four subjects failed to complete the 

entire protocol and one subject was excluded because of technical issues. Two subjects were 

excluded because their head movement exceeded 0.5 mm mean framewise displacement 

(Yoo et al., 2005) over a scanning session. Thus, twenty-seven subjects (age: 22.1±3.1 years; 

14 females) were included in analysis. All subjects provided informed written consent and 

all the procedures were approved by the Institutional Review Board at the Pennsylvania 

State University. Subjects were instructed to keep still and relax throughout the scans. 

The EEG, cardiac, respiratory, and blood oxygen level-dependent (BOLD) fMRI were 

simultaneously recorded during scans. Scanning sessions included a 2-min eyes-closed-eyes-

open testing scan, a 5-min anatomical scan, a 10-min resting-state scan before a visual-

motor task, a 15-min visual-motor adaptation task scan, and a 10-min resting-state scan after 

the visual-motor task.

During the eyes-closed-eyes-open scan, the subjects were directed to open and close their 

eyes alternatively every ~15 s, repeated for five cycles. The subjects were instructed to 

count approximately 15 s, then press a button at the start of opening or closing their eyes. 

The eyes-closed-eyes-open scan was used to evaluate the quality of EEG data, through the 

presence of alpha power modulations across the two conditions. During the resting-state 

scans, the subjects were allowed to either open or close their eyes anytime at will. They 

were instructed to focus on a white fixation point (cross) at the center of a black screen 

whenever they opened their eyes. The percentage of time during resting-state scan with eyes 

open or closed is ~25% or ~75%, respectively, summarized for all the subjects based on 
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the eye-lid state monitored by an eye tracking system (Applied Science Laboratories, Inc.). 

Note that the eye-lid data of one subject was unavailable. During the visual-motor adaptation 

task (Albouy et al., 2013), subjects manually operated a joystick to move a cursor from the 

center of the screen to one of eight targets located in eight radial directions. Subjects were 

instructed to move the cursor to arrive at the target as fast as possible. In this study, two 

resting-state sessions from each subject were used to investigate signals acquired during the 

resting state. Thus, a total of 54 resting-state sessions were used.

2.2. MR data acquisition and preprocessing

MR imaging data were acquired in a 3T Prisma Siemens Fit scanner with a Siemens 

20-channel receive-array coil. Foam pads were placed around the subjects’ heads to reduce 

motion and increase comfort. Earplugs were provided to reduce the acoustic noise during 

scanning. Anatomical data were acquired using a MPRAGE (magnetization-prepared rapid 

acquisition gradient echo) sequence with TR 2300 milliseconds, TE 2.28 milliseconds, flip 

angle 8°, FOV 256 mm , 1 mm isotropic spatial resolution, matrix size 256 × 256 × 192, 

acceleration factor 2. BOLD fMRI data were acquired using an echo planar imaging (EPI) 

sequence with TR 2100 milliseconds, TE 25 milliseconds, flip angle 90°, slice thickness 4 

mm , slices 35, FOV 240 mm , and an in-plane resolution of 3 mm × 3 mm. Cardiac pulse 

data were recorded by placing a pulse oximeter (Siemens) on the left index finger with a 

sampling rate of 200 Hz. Respiratory effort data were recorded by placing a respiratory 

effort belt (Siemens) around the rib cage and abdomen with a sampling rate of 50 Hz.

We preprocessed the rsfMRI BOLD data using scripts from the 1000 Functional 

Connectomes Project (Biswal et al., 2010) with small modifications, and the scripts 

used FSL (Jenkinson et al., 2012) and AFNI (Cox, 1996). The skull was removed on 

the anatomical image and the white-matter, gray-matter, and cerebral spinal fluid were 

segmented from the anatomical image. Next, the rsfMRI BOLD data were smoothed 

spatially (FWHM = 4 mm). Then, the anatomical image and rsfMRI BOLD data were 

registered to the MNI space and the nuisance parameters were regressed out, including linear 

and quadratic trends, motion parameters, white-matter, and CSF signals. Finally, the rsfMRI 

BOLD data were smoothed temporally (0.01 – 0.1 Hz).

2.3. EEG data acquisition and preprocessing

EEG data were acquired using a 32-channel MR-compatible EEG system (BrainAmp, Brain 

Products, Germany). The AFz and FCz locations were the ground and reference electrodes, 

respectively. The electrodes on the cap were placed according to the 10–20 International 

System. An electrooculography (EOG) electrode was placed under the left eye to monitor 

eye movement and an electrocardiography (ECG) electrode was placed on the back to record 

the cardiac signal. The impedances of all the electrodes were kept below 20 kΩ and the 

impedances of the ground and reference electrodes were kept below 10 kΩ. The raw EEG 

data were recorded at a sampling rate of 5000 Hz with a band-pass filter of 0 – 250 Hz.

The EEG data were preprocessed to remove the gradient artifact and ballistocardiogram 

artifact based on a published algorithm (Liu et al., 2012a). Briefly, the components classified 

as gradient artifacts from a singular value decomposition (SVD) (Golub and Reinsch, 1970) 
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were removed for each channel. Next, the EEG data were low-pass filtered (<125 Hz) 

and down-sampled at 250 Hz. The pulse artifact was then removed using independent 

component analysis (ICA). The components from ICA were identified and removed as an 

artifactual component if they had a high similarity with the signal recorded from the ECG 

channel. The EEG channels with large residual artifacts were excluded from further analysis.

We adapted another published method (Falahpour et al., 2018) to remove data distorted by 

head motion. Specifically, the EEG time series from each channel were first band-filtered 

between 1 Hz and 15 Hz. An amplitude for each time point was derived by calculating the 

rms across all channels for each scanning session. Such amplitude was then down-sampled 

to have the same temporal resolution of rsfMRI signals. Time points with large head motion 

were detected if their amplitude surpassed the threshold, which was defined by summing 

the median number and the interquartile range multiplied by six (Devore and Farnum, 

2005). A binary time series was produced by setting those detected time points to 1 and 

other time points to 0. The binary time series was then convolved with the hemodynamic 

response function from SPM (https://www.fil.ion.ucl.ac.uk/spm/) to generate a new time 

series, which was then binarized by using the threshold of 0. The time points detected by 

either one of these two binary time series were regarded as data contaminated by head 

motion. On average, around 3% of the time points were identified with large head motion. 

The subsequent analysis was conducted using the data with the time points with large head 

motion excluded.

2.4. EEG spectrogram, alpha and delta power

To calculate the frequency-specific EEG power, we first calculated the spectrogram for each 

EEG channel using a multi-taper time-frequency transformation (window of 2 s, step of 

1 s and tapers of 5) from Chronux (Mitra and Bokil, 2009). The mean spectrogram was 

calculated by averaging the spectrogram over all channels. The mean power spectrogram 

was then converted into decibel unit and normalized at each frequency bin by subtracting the 

mean and dividing by the standard deviation.

The EEG alpha modulation shown in the mean spectrogram under an eyes-closed-eyes-open 

session was used to confirm the data quality of EEG recorded inside the MR environment 

(Fig. S1). The mean spectrogram here was calculated by averaging only the three occipital 

channels because the alpha rhythm predominantly appeared at the occipital visual cortex 

(Berger, 1929).

To calculate alpha power, we first calculated the spectrogram for each channel and 

normalized by subtracting the mean and dividing by the standard deviation. Next, the 

normalized spectrogram was averaged within the alpha frequency band (8–12 Hz) and then 

was averaged across three occipital electrodes with predominantly alpha rhythm (Berger, 

1929). This band-limited power signal was normalized by subtracting the mean and dividing 

the standard deviation, and then was down-sampled to the same temporal resolution as the 

rsfMRI signals, denoted as the alpha-band power. The alpha-band power was then smoothed 

temporally using a band-pass filter (0.01–0.1 Hz). Delta power was calculated using a 

similar method as alpha, but within the frequency band of 0.5–4 Hz across all channels.

Gu et al. Page 5

Neuroimage. Author manuscript; available in PMC 2022 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.fil.ion.ucl.ac.uk/spm/


2.5. EEG-based sleep stage scoring

After removing gradient and ballistocardiogram artifacts, EEG data were re-referenced to 

the contralateral mastoid (or alternatively to the ipsilateral or averaged mastoids, in cases of 

artifact) and were bandpass filtered at 0.3–35 Hz for the identification of sleep stages. Sleep-

staging of the EEG data was performed by a Registered Polysomnographic Technologist 

blind to other study data. Each non-overlapped 30-sec epoch was evaluated using data from 

AASM-recommended EEG exploratory derivations (F3, F4, C3, C4, O1, O2) (Iber et al., 

2007) and was assigned a sleep or wake stage (W, NREM1, NREM2, NREM3, or REM).

2.6. Heart rate, respiratory volume and PPG amplitude

The pulse signal was first band-pass filtered (0.5–2 Hz) to increase accuracy of detecting 

peaks. The heart rate was calculated by averaging time differences of continuous peaks of 

the pulse oximetry in a sliding window of 6.3 s centered at each rsfMRI time point and 

converting to units of beats-per-minute (Chang et al., 2009). The respiratory volume was 

calculated as the standard deviation of the respiratory trace within a sliding window of 6.3 s 

centered at each rsfMRI time point (Chang et al., 2009). The respiratory volume was used in 

this study because it showed greater robustness to noise than the respiration volume per unit 

time (Chang et al., 2009). The photoplethysmography (PPG) signal was derived from the 

pulse oximetry. We calculated PPG amplitude by computing the root-mean-square envelop 

of the pulse oximetry signal and then averaging within each rsfMRI time point, similar to a 

previous study (×zbay et al., 2018). The heart rate, respiratory volume, and PPG amplitude 

were then linearly de-trended and normalized for each session by subtracting the mean and 

dividing by the standard deviation. The pulse oximetry signal and respiration signal were 

only available in 25 subjects.

2.7. Lag-specific rsfMRI correlations with EEG alpha power and physiological signals

Voxel-wise rsfMRI correlation maps with the alpha-band power, heart rate, or respiratory 

volume at different time lags were calculated and averaged across all sessions. The averaged 

correlation maps were then converted to z-score maps with reference to control maps, which 

were calculated in a similar way but with temporally reversed alpha-band power, heart rate, 

or respiratory volume.

The z-scored maps were calculated by dividing the mean correlation maps by the standard 

error of the mean of the control maps. The function 3dFDR from AFNI (Cox, 1996) 

was used to correct for multiple comparisons. The cerebrospinal fluid and white-matter 

regions were masked out from the z-score volume map. The masks of cerebrospinal fluid or 

white-matter were defined based on the Harvard-Oxford subcortical structural atlas (Desikan 

et al., 2006) using a threshold of 20% or 70% probability respectively. The volume maps 

were then converted to surface maps using Workbench (Marcus et al., 2013).

The thalamus mask was generated by taking the overlap between the thalamus region 

(defined from the Harvard-Oxford subcortical structural atlas) (Desikan et al., 2006) and 

the brain regions showing significant activation (Z > 2.5, corresponding to p-value < 0.01) 

at time lag zero in the alpha-rsfMRI correlation maps. The dorsal anterior cingulate cortex 

(dACC) mask was generated by taking the overlap between the anterior cingulate gyrus 
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(defined from the Harvard-Oxford cortical structural atlas) (Desikan et al., 2006) and the 

brain regions showing significant activation (Z > 2.5) at time lag of zero in the alpha-rsfMRI 

correlation maps. The masks for sensory/motor regions include the auditory, visual or motor/

somatosensory cortices, which were defined based on the Juelich histological atlas (Eickhoff 

et al., 2007).

2.8. Extraction of CSF, ICA, and SSS

The CSF inflow signal, internal carotid artery (ICA) BOLD signal, and superior sagittal 

sinus (SSS) BOLD signal were extracted from preprocessed rsfMRI signals, including skull 

stripping, motion correction, and temporal filtering (0.01 - 0.1 Hz). The spatial filtering, 

registration to the MNI space, and regression of the nuisance parameters were skipped to 

focus on signals of interest and be consistent with previous studies (Fultz et al., 2019b; 

Tong et al., 2019b). The CSF inflow signals were extracted from the CSF regions at the 

bottom slice of fMRI signals, which can be easily detected with much brighter signal 

on the T2*-weighted image, similar to a previous study (Fultz et al., 2019b). The ICA 

and SSS regions were first roughly identified on the T1-weighted structural image using 

an automatic algorithm (Yao et al., 2019) and further visually inspected for the accuracy. 

The identified vessel masks were then registered to T2*-weighted fMRI using the FMRIB 

Software Library (FSL) (Jenkinson et al., 2012) to generate masks of rsfMRI data. The 

ICA and SSS signals were extracted from and averaged within these masks respectively. 

The extracted signals were further linearly de-trended and normalized for each session by 

subtracting the mean and dividing by the standard deviation.

2.9. Detection of the fMRI cascade

The lag-dependent rsfMRI correlations with EEG alpha power, heart rate, and respiratory 

volume all showed similar patterns in the salience network, default mode network, and 

sensory/motor regions with consistent delays, suggesting that underlying fMRI activity may 

involve sequential changes in these regions. To examine this hypothesis, we based the 

co-activations of the sensory/motor regions (i.e., the somatosensory/motor, auditory, and 

visual cortices), which showed the strongest correlations with other modalities, to locate 

and align the potential spatiotemporal structures. The sensory/motor co-activation pattern 

was defined based on the point process analysis from (Tagliazucchi et al., 2012). Next, 

the spatiotemporal pattern around the sensory/motor co-activation pattern was used as a 

template to derive the fMRI cascade.

The spatiotemporal pattern around the sensory/motor co-activation pattern was calculated as 

follows. For each session, we averaged rsfMRI signals within the auditory, visual, or motor/

somatosensory regions respectively, and normalized each averaged time course by dividing 

its own standard deviation (SD). The masks for auditory, visual, and motor/somatosensory 

cortices were defined based on the Juelich histological atlas (Eickhoff et al., 2007). The time 

points with a sensory/motor co-activation were defined as local peaks (i.e., local maximums) 

of the mean rsfMRI signal within the three masks that also showed the overthreshold (>1 

SD) value in the mean signals within each of the three masks (Tagliazucchi et al., 2012). 

A time window of 25.2 s (12TR × 2.1 s/TR) centered at each of the identified time points 

with a sensory/motor co-activation pattern (set as time zero) was defined. The 25.2-sec time 
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window was chosen to cover the time period with significant fMRI changes, including the 

thalamus, salience network, default mode network, and sensory/motor regions. About ~21% 

of the identified cascades had small overlaps at the edge of the 25.2 second time windows, 

and the average pattern of fMRI cascade was also derived excluding these overlapped cases 

(Fig. S10). The rsfMRI signals within these time windows were averaged across all the 

data/sessions to derive the spatiotemporal pattern around the sensory/motor co-activation 

pattern. The spatiotemporal pattern was converted to z-score maps with comparison to a null 

distribution, which was built by averaging rsfMRI signals within an equal number of time 

windows centered at randomly selected time points. Around 25.6% of the total data was 

used to define the spatiotemporal pattern around the sensory/motor co-activation pattern.

To derive the fMRI cascade, we first calculated the sliding correlations between the mean 

spatiotemporal pattern around the sensory/motor co-activations and rsfMRI signals of all 

sessions. The fMRI cascade was detected as those local peaks (i.e., local maximums) in the 

sliding correlation time course with a value exceeding a pre-defined threshold. The threshold 

was defined as the 99.9th percentile of a null distribution of sliding correlations, which 

were calculated between rsfMRI signals of all sessions and 100 randomly selected rsfMRI 

templates of equal length as the spatiotemporal pattern. The 100 templates were randomly 

chosen from all the 54 rsfMRI sessions. The sliding correlations between each randomly 

chosen template and rsfMRI signals of all sessions were computed and pooled together 

to generate the null distribution that represents rsfMRI correlation level to non-structured 

patterns. A time window of 25.2 s (12TR × 2.1 s/TR) centered at each of detected peaks was 

defined. The rsfMRI signals within these time windows were averaged across the sessions 

to derive the fMRI cascade map, with setting the detected peaks as time zero. The fMRI 

cascade maps were converted to z-score map in a similar way as the spatiotemporal pattern 

around the sensory/motor co-activations. The fMRI cascade maps were also computed using 

resting-state sessions before or after the visual-motor adaptation task, respectively (Fig. S2). 

Here, the fMRI cascade referred to the rsfMRI spatiotemporal patterns within the cascade 

window. Around 26.3% of the total data was used to define the fMRI cascade.

The temporal dynamics of various neural/physiological signals at the fMRI cascade were 

calculated as below. We first resampled these signals to a temporal resolution of 0.525 s 

using spline interpolation to estimate accurate peak time. The various signals within the 

time windows centered at time points with the fMRI cascade were averaged to derive 

their temporal dynamics at the fMRI cascade. The global BOLD (gBOLD) signals were 

calculated by averaging the rsfMRI signals within the cortical gray-matter region using 

rsfMRI signals without regressing out the CSF, global signal, or white-matter signal. The 

masks of cortical gray-matter or white-matter were defined based on the Harvard-Oxford 

subcortical structural atlas (Desikan et al., 2006) using a threshold of 70% probability.

The dependency of the fMRI cascade on brain states was examined by categorizing and 

averaging signals within various brain states, which were defined based on EEG signals 

mentioned above. Specifically, each time window around the time point with the fMRI 

cascade was categorized as one of the sleep stages or awake states if the brain state within 

the time window was assigned to that single brain state.
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2.10. Removing the dynamics of fMRI cascade

The temporal dynamics of the fMRI cascade was regressed out from the rsfMRI signals 

using a published algorithm (Abbas et al., 2019). The algorithm was designed to remove/

reduce the cascade dynamics, and then examine how this would affect the rsfMRI 

correlations with the other signals. The algorithm is not expected to reduce the rsfMRI 

correlations with other modalities of data if this cascade dynamics does not contribute to 

these correlations.

The pseudocode to regress the fMRI cascade from rsfMRI signals is shown in Fig. S8. 

Briefly, in each session, an fMRI cascade time course was calculated for each voxel by 

convolving the fMRI cascade dynamics (i.e., the sliding correlations between the fMRI 

cascade and rsfMRI signals) with this voxel’s temporal dynamics during the fMRI cascade. 

We then used a linear regression model to remove the temporal dynamics of the fMRI 

cascades by regressing out the voxel-specific fMRI cascade predictor. The effect of fMRI 

cascade was also regressed out from other signals in a similar way, including the alpha 

power, HR, RV, PPG amplitude, CSF, ICA, and SSS. The correlations between different 

signals were then calculated using the signals with the fMRI cascade dynamics removed. It 

should be noted that the rsfMRI signals used to calculate their correlations with the PPG 

amplitude did not regress out the white-matter signal in order to keep the signal of interest 

because the rsfMRI signals in the white-matter showed systematic correlation with the PPG 

amplitude (Özbay et al., 2018).

3. Results

3.1. Similar rsfMRI correlations with EEG alpha power and physiological signals

We analyzed concurrently acquired fMRI, EEG, and autonomic signals from 27 subjects 

(14 females) at rest with mixed eyes-open and eyes-closed conditions in the scanner. First, 

we studied the fMRI correlations with EEG alpha activity, a correlate of alertness/arousal 

(Makeig and Inlow, 1993; Putilov and Donskaya, 2014). Similar to previous studies, positive 

correlation was seen in the dorsal anterior cingulate cortex (dACC) and thalamus (de Munck 

et al., 2007; Feige et al., 2005; Liu et al., 2012b), as well as in the insula, that appeared 

to peak at lags much shorter than the canonical hemodynamic response delay (Fig. 1A). 

These brain regions are often considered major components of the salience network (SN; 

91% overlapped with Neurosynth-defined SN) (Seeley et al., 2007) (Fig. S3, A–B). The 

dACC reached its peak positive correlation with EEG alpha-power at a slightly shorter 

time lag (~0 s) as compared with the thalamus (~2.1 s) (Fig. 1B). Shorter-lag positive 

correlations were also seen at the medial frontal gyrus (MFG) and posterior cingulate cortex 

(PCC), which are areas significantly overlapping with the default-mode network (DMN; 

88% overlapped with Neurosynth-defined DMN) (Raichle, 2015; Raichle et al., 2001). At 

lags slightly longer than the canonical hemodynamic response delay (at ~7-sec as compared 

with the canonical hemodynamic response delay of 5–6 s (Buxton et al., 2004)), widespread 

negative correlations were observed, most strongly in sensory/motor regions, including 

visual, motor, auditory, and somatosensory cortices (Fig. 1A). The different lag dependence 

of the correlations is clearly visible across brain regions as shown in Fig. 1B Similar lag-

dependent rsfMRI correlation maps with the alpha-band power under eyes-closed condition 
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(75% of acquisition time, defined as time periods more than 50 continuous time points) 

were also observed (Fig. S7). In summary, resting-state EEG alpha-power changes were 

significantly associated with rsfMRI changes at brain-region-dependent time lags, with the 

earliest effects (shortest lag correlations) seen at the SN and DMN.

Next, we examined rsfMRI correlations with autonomic indicators, specifically the 

instantaneous heart rate (HR) and respiratory volume (RV). Previously, these autonomic 

indicators were found to correlate with fMRI, and were attributed to autoregulatory control 

of cerebral blood flow (Birn et al., 2009; Shmueli et al., 2007). Both HR-rsfMRI and 

RV-rsfMRI correlations showed lag-dependent patterns highly similar to the EEG-rsfMRI 

correlations, with spatial correlation values peaking at 0.80 and 0.71, respectively. With both 

HR and RV, significant positive correlations were observed in the SN and DMN at a time lag 

of 0 s, whereas negative correlations in the sensory/motor regions peaked at ~7 s (Fig. 1, C–

D and Fig. S3, C–D). These lag-specific rsfMRI correlations with the EEG alpha-power and 

the RV are somewhat consistent with what has been shown previously, i.e., more positive 

correlation at negative lags and the thalamus whereas more negative correlations at positive 

lags and the sensory/motor regions (Birn et al., 2006; Yuan et al., 2013). Overall, these 

correlation patterns were quite similar to those seen with the EEG alpha-power correlation 

(Fig. 1A), suggesting they were not independent but linked to the same underlying process, 

apparently related to arousal transitions indicated by EEG alpha-power modulations. The 

lag-specific rsfMRI correlations with more time lags compared to Fig. 1 were shown in Fig. 

S9 The lag-specific rsfMRI correlations under different eyes conditions (Fig. S13), without 

thresholding (left, Fig. S14), and thresholded at the same level of FDR-corrected q value of 

0.05 (right, Fig. S14), were also provided.

3.2. A cascade of fMRI dynamics contributes to rsfMRI correlations with EEG and 
autonomic physiology

The lag-dependent rsfMRI correlations with EEG and cardio-respiratory physiology suggest 

that underlying fMRI activity may involve sequential modulations of the SN/DMN and 

sensory/motor regions. However, it is also possible that the two sets of brain regions were 

linked to EEG and HR and RV changes through independent brain processes, and thus 

changed independently from each other. To investigate this, we aligned and averaged rsfMRI 

time segments with respect to time points showing a strong sensory/motor co-activation 

pattern (see the Methods for detail) that resembled the EEG-rsfMRI correlations at the 

6.3-sec time lag (Fig. 1A). The SN and DMN were found to de-activate ~7.9 and ~7.4 s, 

respectively, prior to the sensory/motor co-activations (Fig. S4), forming a cascade of fMRI 

dynamics with sequential modulations in the SN/DMN and sensory/motor regions. We used 

this spatiotemporal pattern as an initial template to detect and refine the fMRI cascades 

(Fig. 2A and Fig. S3, E) (see the Methods for detail), resulting in the final cascade pattern 

that was highly similar (r = 0.98) to the original template (Fig. S4). A similar cascade 

pattern was observed after excluding cascade instances with overlaps, which were about 

21% of all identified instances (Fig. S10). The fMRI cascade under different eyes conditions 

(Fig. S12) and without thresholding (Fig. S15) was also provided. Over the course of 

the fMRI cascade, the EEG alpha power, HR, and RV all showed strong co-modulations 

(Fig. 2B), consistent with the strong temporal correlations observed between fMRI and all 
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other signals (Fig. 2, C–E). More importantly, regressing out the temporal dynamics of the 

fMRI cascade reduced these correlations to a large extent (by 93.9% for EEG alpha-rsfMRI 

peak covariance, 99.5% for HR-rsfMRI peak covariance, and 99.6% for RV-rsfMRI peak 

covariance) (Fig. 2, C–E), suggesting that the fMRI cascade led by the SN/DMN changes 

was their main contributor.

3.3. EEG changes around the fMRI cascade

We previously described a prototypical time-frequency pattern of intracranial EEG changes 

around peaks of the fMRI global signal, in the form of sequential spectral transitions (SSTs) 

(Liu et al., 2018, 2015) interpreted as arousal modulations. To investigate the relationship of 

SSTs with the fMRI cascade described here, we averaged EEG spectrogram segments time-

aligned to the cascade. Similar to SSTs, the EEG activity associated with fMRI cascades 

showed an initial large alpha-beta (7–25 Hz) power reduction that was followed by a bout 

of delta-band (0.5–4 Hz) power increase (Fig. 3A). This pattern was then followed by a 

rebound of alpha-beta power (Fig. 3A), suggesting a rebound of arousal after the initial drop.

3.4. Global fMRI and CSF fluctuations around the fMRI cascade

The global BOLD (gBOLD) and the EEG delta-band power, which both co-occur with the 

SST (Liu et al., 2018, 2015), were recently found coupled to the cerebrospinal fluid (CSF) 

flow (Fultz et al., 2019b). This gBOLD-CSF coupling was further linked to Alzheimer’s 

disease pathology and cognitive decline in Parkinson’s patients, presumably due to its role in 

glymphatic clearance (Han et al., 2021b, 2021a). We therefore investigated the potential link 

of the fMRI cascade to the global signal and CSF pulsations. The CSF flow was measured 

from the bottom slice of fMRI acquisition volume, analogous to previous work (Fultz et 

al., 2019b). The results show the gBOLD signal averaged within the gray-matter region 

peaking at around 1 s, and a bipolar CSF signal centered on this signal (Fig. 3C). In addition, 

the CSF flow signal closely followed the negative derivative of the gBOLD signal (Fig. 

3C), an indicator of CBV change, as expected from the assumption of constant total brain 

fluid volume (Fultz et al., 2019b). Consistent with this, a strong correlation was observed 

between these two signals, which was dramatically reduced (82.9% reduction in the peak 

co-variance) after regressing out the cascade dynamics (Fig. 3D). This suggests a substantial 

contribution of the cascade phenomenon to the coupling between the fMRI global signal and 

CSF pulsations. Besides, regressing out the cascade dynamics reduced the variance of the 

gBOLD by 75%, the CSF by 72%, and the rsfMRI signals by 16%.

3.5. Vessel signals around the fMRI cascade

RsfMRI signals are also linked to other peripheral physiology measures, including the 

photoplethysmography (PPG) amplitude of cardiac signals (Özbay et al., 2018) and near-

infrared spectroscopy (NIRS) measure of hemoglobin concentration at fingertips (Tong et 

al., 2012). The associated rsfMRI changes demonstrate systematic time delays across large 

arteries and veins (Tong et al., 2019b), as well as between the gray and white matters (Özbay 

et al., 2018). We thus examined the temporal dynamics of the PPG amplitude and fMRI 

vessel signals over the course of the fMRI cascade. The PPG amplitude had a big drop at 

the late phase of the fMRI cascade (4.7 s) that was much more delayed than the largest 

HR modulations (the negative peak at −6.8 s) (Fig. 4A). The gray-matter and white-matter 
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rsfMRI signals showed very similar temporal dynamic but with a significant delay of ~1.5 

s (Fig. 4A). Their cross-correlation functions with the PPG amplitude also showed patterns 

(Fig. 4B–4C, Fig. S5) similar to the previous report (Özbay et al., 2018). These correlations, 

however, decreased significantly (by 83.5% and 93.0% for the gray-matter and white-matter 

fMRI correlations respectively) after regressing out the fMRI cascade dynamics (Fig. 4B–

4C, Fig. S5).

The rsfMRI signals of large blood vessels, including internal carotid artery (ICA) and the 

superior sagittal sinus (SSS) (Fig. 4D and 4G), showed strong but distinct modulations 

across the fMRI cascade. The ICA signal showed a big drop at −2.6 s whereas the SSS 

signal displayed a large positive peak at 4.7 s (Fig. 4E and 4H). The ICA and SSS 

signals were significantly correlated with the gBOLD signal, with a distinct peak offset 

consistent with these relative delays and also with previous reports (Tong et al., 2019b). 

Such gBOLD-vessel correlations reduced significantly (by 59.5% and 93.6% for the ICA 

and SSS respectively) after accounting for the temporal dynamics of the fMRI cascade (Fig. 

4F and 4I), suggesting that they were largely caused by their co-modulation during the fMRI 

cascade.

3.6. Dependency of the fMRI cascade on brain state

To investigate the dependency of fMRI cascade results on sleep/wake brain states, we split 

and examined the data according to sleep stages scored from the EEG signals. Among all the 

identified fMRI cascade events, 43% occurred during wakefulness whereas 20% and 17% 

were found during sleep stages 1 and 2, respectively. The remaining events happened during 

the time periods with mixed wake and sleep (including any combination of wake, sleep stage 

1, and sleep stage 2). The fMRI cascades showed similar overall patterns across wake and 

the different sleep stages, except for the SN/DMN de-activations (Fig. 5). The SN/DMN 

de-activation at the early phase of the fMRI cascade showed a clear dependency on the brain 

state, with a gradual reduction from awake to sleep stage 1 and then to sleep stage 2 (Fig. 

5A). In contrast, the de-activation of the thalamus, which occurred at the similar phase as the 

SN/DMN de-activations, remained similar across different states. The EEG signals showed 

large changes in the delta-band activity in sleep stage 2 as compared with the other two 

states (Fig. 5B). The gray-matter gBOLD signal, white-matter BOLD signal, ICA signal, 

and PPG-Amp showed similar amplitude of changes across wakefulness and different sleep 

stages, whereas the HR, RV, CSF flow signal, and SSS appeared to display larger changes 

during sleep as compared to wake (Fig. 5C). Although the overall patterns of changes 

remain similar across different brain states, there were some quantitative differences, e.g., 

the smaller CSF and HR changes during wake compared with the sleep stages.

3.7. Temporal order of the multimodal modulations at the fMRI cascade

The availability of multimodal data allowed us to summarize the temporal order of 

neural and physiological modulations at the fMRI cascade (Fig. 6). Assuming a canonical 

hemodynamic response delay of 5~6 s (Buxton et al., 2004) as a rough estimation, putative 

neuronal changes in SN and DMN showed the earliest modulations at −13.9 ~ −12.9 s and 

−13.4 ~ −12.4 s, respectively with respect to the fMRI cascade center (same hereinafter), 

which were followed by reductions in the respiratory volume (−7.4 s), the heart rate (−6.8 
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s), and the EEG alpha-power (−6.8 s) around −7 s. The putative neuronal activity underlying 

the gBOLD peak (1.1 s) would occur around −4.9 ~ −3.9 s, which is slightly delayed with 

respect to the EEG alpha-power reduction but is earlier than the EEG delta-power increase 

at −2.1 s. The fMRI changes followed a specific sequence, from the earliest changes in the 

ICA (−2.6 s) followed by gray matter (1.1 s), white matter (2.6 s), and eventually to SSS (4.7 

s), though the ICA signal showed opposite changes to others. Finally, the PPG amplitude 

reduction (4.7 s) and the CSF signal changes (5.3 s) occurred at the relative late phase of the 

fMRI cascade. It should be noted that the multimodal dynamics at the fMRI cascade may 

have small variation across different brain states, such as the different HR and SSS dynamics 

at the sleep stages 1 and 2 (Fig. 5C).

4. Discussion

In experiments performed on resting human subjects, we observed joint fluctuations in 

fMRI, electro-cortical, and autonomic activity. A prototypical spatio-temporal pattern of 

fMRI changes was observed to coincide with a biphasic modulation of EEG band-limited 

power in the alpha/beta range as well as with biphasic changes in autonomic indicator 

signals.

The nature of the signal changes indicated that they originate from an initial drop in cortical 

arousal, closely followed by a rebound. Early fMRI changes in regions often associated with 

arousal modulation, followed by reduction in mid-frequency EEG band-limited power, and 

reduced heart rate and respiratory depth, all suggest a drop in arousal level. These early 

neurogenic changes are consistent with the role of the salience network in maintaining tonic 

attention (Sadaghiani and D’Esposito, 2015). In fact, these de-activated regions are largely 

overlapped with the brain areas showing significantly reduced glucose metabolism and CBF 

at the dexmedetomidine-induced unconsciousness (Akeju et al., 2014). Interestingly, the 

SN/DMN deactivations were much weaker in the fMRI cascades obtained during sleep, 

which might be due to the already low activity level in these cortical regions during sleep. 

The subsequent widespread increase in fMRI signal, mid-frequency EEG power reduction, 

and autonomic activity decrease are suggestive of an arousal drop. The late, widespread 

decrease in fMRI signal (Fig. S6) is consistent with previously reported effects of increased 

autonomic activity that are associated with the arousal rebound, including increases in 

respiratory depth (Birn et al., 2008a) and sympathetic vasoconstriction (Özbay et al., 2018).

A possible mechanistic explanation for the joint occurrence of changes in EEG, fMRI, 

and autonomic indicators is the well-established close interaction between the ascending 

reticular activation system and the autonomic regulatory centers in the brain stem (de 

Zambotti et al., 2016; Duyn et al., 2020; Silvani et al., 2015). This close interaction is not 

surprising, given that cortical and autonomic arousal are mediated from overlapping neural 

substrates. For example, it has been shown recently that respirationmodulates neural activity 

of different frequency bands at different neural networks (Kluger and Gross, 2021). Joint 

activation may arise from internal or external stimuli through mid-brain relays, or initiated 

by a cognitive process (Dampney, 2015). This mechanism may explain previous observation 

of a strong dependency of EEG-rsfMRI and physiology-rsfMRI correlations on brain state 

Gu et al. Page 13

Neuroimage. Author manuscript; available in PMC 2022 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Falahpour et al., 2018; Yuan et al., 2013), as well as the joint EEG/fMRI/autonomic 

changes that have also been observed during light sleep (Özbay et al., 2019).

These findings significantly impact the interpretation of previous fMRI experiments. They 

suggest that signal correlations may relate to a unitary brain process that affects both 

electro-cortical and autonomic activity, making it difficult to assign the relative contribution 

of neuronal and autonomic sources to the fMRI signal. In addition, both contributions appear 

to be widespread, complicating the interpretation of interregional signal correlations in terms 

of their functional connectivity, which can be affected by signal co-varying at the fMRI 

cascades similar to that at the global signal peaks (Liu et al., 2018; Murphy and Fox, 2017). 

It is worth noting that the fMRI cascades and rsfMRI correlations with various modalities 

(Fig. S13) appeared weaker under the eyes-open condition than the eyes-closed condition, 

presumably due to fewer arousal transitions in a state of higher alertness. Thus, rsfMRI 

data collected under the eye-open condition is expected to be less susceptible to the effects 

of the fMRI cascades. Future work needs to be performed to clarify the effects of the 

fMRI cascades on functional connectivity. Lastly, the observed joint changes in autonomic 

and neuronal activity are likely not specific to rsfMRI, and might be expected to occur in 

task-based fMRI as well. In fact, previous research indicated the prevalence of task-induced 

autonomic changes in a variety of cognitive and motor tasks (Glasser et al., 2018).

The cascade of fMRI signal changes observed here and attributed to an arousal transition 

may similarly have contributed to previous findings. For example, the fMRI cascade clearly 

overlaps with the gray-matter BOLD peaks given its similar sensory-dominant pattern 

(Fukunaga et al., 2006; He and Liu, 2012; Kiviniemi et al., 2005; Licata et al., 2013; Wong 

et al., 2016, 2013) and the associated EEG changes of an SST pattern (Fig. 3A), which has 

been observed in monkey electrophysiology at the large gBOLD peaks previously (Liu et 

al., 2018). The gray-matter BOLD peaks could just represent the specific phase of the fMRI 

cascade at 0 s. In fact, the SST has previously been linked to transient (~10 s) modulations 

of brain arousal state (Liu et al., 2018, 2015). Previous rsfMRI studies of spontaneous eye 

closure also found multiphasic signal behavior, with changes in the thalamus appearing to 

differ (Chang et al., 2016) and precede (Soon et al., 2021) most of cortical gray matter. 

Arousal transitions and their associated fMRI signal cascade may also have contributed to 

previous reports of spatiotemporal rsfMRI structures, such as one of quasi-periodic patterns 

(QPP) components (Majeed et al., 2011), cross-hierarchy propagations (Gu et al., 2021), 

traveling waves (Raut et al., 2022), and physiologically-driven BOLD dynamics (Chen et al., 

2020), all of which showed sequential fMRI co-(de)activations at different brain regions. As 

expected, the fMRI cascade showed a strong correlation with both the global signal and the 

QPP (Majeed et al., 2009; Yousefi and Keilholz, 2021) as shown in Fig. S11.

The fMRI cascade, at least in part, appears to result from cortical neuronal activity. First, 

it shows a specific sequence of network involvements, i.e., the sensory/motor co-activations 

preceded by the SN/DMN deactivations. It seems unlikely that the physiology-induced 

changes would lead to such a highly organized pattern of networks. Second, the cascade is 

associated with strong EEG changes featured by sequential modulation of the alpha-beta and 

delta powers. In fact, this time-frequency pattern is similar to the SST event observed with 

the gBOLD peaks (Liu et al., 2018). These EEG changes are more related to fMRI changes 
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at the late cascade phases based on the time delay. There is a lack of prominent changes 

in the mean EEG spectrogram corresponding to the early-phase SN/DMN deactivations. 

At the single-neuron level, this fMRI cascade could be linked to a temporal cascade of 

spontaneous spiking activity of large neuronal populations recently found in mice (Liu et 

al., 2021). This spiking cascade occurring during the resting state is of a similar time scale 

(5–20 s), leading to big peaks in the global mean spiking rate, and accompanied by strong 

delta-power modulations and sympathetic responses measured as pupil dilation. In fact, 

the spiking cascade takes the form of sequential activations between two distinct neuronal 

groups that showed opposite modulation across the running and resting states. It is possible 

that the fMRI cascade at the network level might result from an uneven distribution of the 

two types of neurons at the SN/DMN and sensory/motor networks.

In addition to neuro-vascular source, it appears that autonomic mechanisms also contribute 

to the observed fMRI signal changes. For example, the timing of the late, widespread 

reductions in fMRI signal at the end of the cascade (Fig. S6) relative to that of the autonomic 

arousal (evidenced from the joint drop in PPG-amplitude and increase in HR and RV) are 

consistent with the sympathetic mechanism described previously (Birn et al., 2009; Özbay 

et al., 2019). A similar autonomic-fMRI relationship was observed in a recent study of 

microsleeps defined by periodic eye closure, which is related to brain arousal state changes 

(Soon et al., 2021). Judging from the PPV-amplitude changes, as well as the relatively short 

(~10 s) delay between RV and fMRI changes that was consistent with the peak delay of 

respiratory response function (RRF) during resting state but shorter than the ~16 s delay 

of the RRF induced by cued deep breathing (Birn et al., 2008b; Chang et al., 2009), 

sympathetic vasoconstriction may be the main contributor to the late, widespread signal 

reductions in the fMRI cascade.

Less clear is the origin of the gBOLD peak (at 1.1 s in the cascade). This peak may not be 

directly induced by the EEG alpha-power reduction, given the fact their time delay (~7.9 

s) is slightly longer than the canonical hemodynamic response delay. One possibility is 

that it is linked to increases in gamma-power (>40 Hz) spectral frequencies that are poorly 

visible in scalp EEG here, but evident in ECoG-measured SSTs (Liu et al., 2018). Like the 

SST gamma-power increase, the gBOLD peak in the cascade shows a sensory-dominant 

co-activation pattern (Liu et al., 2018, 2015), and its ~5.8 s delay after a putative gamma 

power increase (which was estimated as 2.1 s after the alpha-beta power reduction in the 

SST (Liu et al., 2015)) would be more consistent with the canonical hemodynamic delay.

The relatively strong (and rapid) autonomic rebound accompanying the apparent rebound 

in cortical arousal may also have a homeostatic role. Previous work has suggested a 

relationship between respiratory and cardiac cycles and CSF pulsations that support brain 

waste clearance (Iliff et al., 2013a; Klose et al., 2000; Stoodley et al., 1997; Yamada 

et al., 2013). Physiological changes, particularly CSF movement, could be critical for a 

glymphatic system that relies upon CSF flow through the perivascular and interstitial spaces 

to clear brain waste, such as amyloid-beta (Iliff et al., 2012; Tarasoff-Conway et al., 2015). 

Though arterial pulsations have traditionally been regarded as the major driving force for 

the glymphatic CSF flow (Iliff et al., 2013b; Schley et al., 2006), these pulsations are 

mediated by changes in cerebral vascular tone secondary to changes in arterio-venous 
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blood pressure differences and are often weak during sleep (Baust and Bohnert, 1969; 

Boudreau et al., 2013; Douglas et al., 1982; Snyder et al., 1964), which is in discordance 

with sleep-enhanced glymphatic clearance (Xie et al., 2013). Recent reports suggest that 

an important contribution to CSF pulsations may originate from slow (<0.1 Hz) changes in 

cerebral vascular tone (Fultz et al., 2019a), with possible contribution from neurovascular 

(van Veluw et al., 2020) or autonomic mechanisms (Özbay et al., 2018; Picchioni et al., 

2021). In addition, the coupling between such CSF pulsations and gBOLD, which was 

shown to be strongly related to the fMRI cascade in this study, has been found associated 

with Alzheimer’s disease (AD) pathology (Han et al., 2021b) and Parkinson’s disease 

(PD) cognitive decline (Han et al., 2021a). The neuronal modulation at the fMRI cascades 

might coordinate with the associated autonomic changes and further facilitate glymphatic 

clearance.

Regressing out the cascade-related signal resulted in strong reduction in the HR-fMRI and 

RV-fMRI correlations (Fig. 2). This suggests that previously observed HR-fMRI (Shmueli 

et al., 2007) and RV-fMRI (Birn et al., 2006) correlations may, in part, have resulted from 

intermittent changes in arousal state. Therefore, care has to be taken with removing the 

effects of HR and RV from the fMRI signal based on regression analysis (Birn et al., 

2008b; Chang et al., 2009; Iacovella and Hasson, 2011), because this may also result in 

accidental removal of the neurogenic contributions to the fMRI signal related to cortical 

arousal changes. Careful accounting for spatio-temporal differences between neurovascular 

and autonomic contributions to the fMRI signal with arousal changes may help distinguish 

them, but the specific procedure for achieving this goal remains a challenge for future 

studies. Nevertheless, this appears critical in interpreting resting state fMRI experiments.
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Fig. 1. 
Lag-dependent rsfMRI correlations with the EEG alpha power and physiological signals 

showed similar patterns. (A) The correlations between rsfMRI and EEG alpha-power (8–

12 Hz) show distinct spatial patterns at various time lags. Average correlations across 

54 sessions were converted to z-scores and thresholded at an FDR-corrected q value of 

0.05. The rsfMRI was used as the reference, and thus a peak at a positive lag should be 

interpreted as the EEG alpha-power leading the rsfMRI signals. (B) The lag-dependent 

rsfMRI correlations with the EEG alpha power were averaged within three regions of 

interest (ROIs) across 54 sessions. The shaded regions represent the area within 1 S.E.M. 

(C) The rsfMRI correlations with the heart rate (HR), which were thresholded at an FDR-

corrected q value of 0.005. (D) The rsfMRI correlations with the respiratory volume (RV), 

which were thresholded at an FDR-corrected q value of 5 × 10−7.
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Fig. 2. 
Reduction of rsfMRI correlations with EEG and physiology signals after regressing out 

the fMRI cascade dynamics. (A) The fMRI cascade computed by averaging fMRI time 

segments (N = 338) with a significant (p < 0.001, permutation test) correlation with the 

spatiotemporal pattern with a sensory/motor co-activation pattern in Fig. S4. The fMRI 

cascade was converted to z-scored map and thresholded at an FDR-corrected q value of 

5 × 10−4. (B) Top: rsfMRI changes in three representative regions at the fMRI cascade. 

Bottom: the EEG alpha-power, HR, and RV changes at the fMRI cascade. (C) The averaged 

alpha-rsfMRI correlation maps (left), as well as the cross-correlation functions in the three 

representative regions (right), before (top) and after (bottom) regressing out the fMRI 

cascade. (D-E): The HR/RV-rsfMRI correlation maps and cross-correlation functions before 

(top) and after (bottom) regressing out the fMRI cascade. IPL, inferior parietal lobe.
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Fig. 3. 
Changes in frequency-specific EEG power and CSF at the fMRI cascade. (A) The averaged 

EEG time-frequency modulations at the fMRI cascade. It was obtained by aligning and 

averaging EEG spectrogram at fMRI cascade segments. (B) The CSF region was identified 

as the bright voxels on the bottom slice of functional image, which corresponded to the CSF 

region in the T1-weighted image. (C) The global gray-matter BOLD (gBOLD), the negative 

derivative of gBOLD signal, EEG delta power, and CSF inflow signal changes at the fMRI 

cascade. (D) The averaged cross-correlation of the negative derivative of gBOLD signal with 

the CSF inflow signal across 54 sessions before and after regressing out the fMRI cascade 

dynamics. The negative derivative of gBOLD signal was used as the reference signal. The 

shaded regions represent area within 1 S.E.M.
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Fig. 4. 
The dynamics of peripheral PPG and vessel signals at the fMRI cascade. (A) The 

modulations of heart rate, PPG amplitude, rsfMRI signals within gray-matter and white-

matter at the fMRI cascade. (B-C) The averaged cross-correlation of PPG amplitude with 

the rsfMRI signals within gray-matter and white-matter across 54 sessions before and after 

regressing out the fMRI cascade dynamics. The gray-matter or white-matter rsfMRI signals 

were used as the reference signal. (D, G) The ICA and SSS regions were directly identified 

on the T1-weighted image and then registered to the functional image to extract vessel 

signals. (E, H) The modulations of ICA and SSS signals at the fMRI cascade. (F, I) The 

averaged cross-correlation of the global gray-matter BOLD (gBOLD) signals with ICA or 

SSS signals across 54 sessions before and after regressing out fMRI cascade dynamics. The 

gBOLD signal was used as the reference signal. The shaded regions represent area within 1 

S.E.M.
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Fig. 5. 
The various signals at the fMRI cascade were categorized by wake and different sleep 

stages. (A) The fMRI cascade was grouped and averaged within various brain states: the 

wake (43% of the total), sleep stage 1 (20%) and sleep stage 2 (17%). (B-C) The EEG 

time-frequency modulations and temporal dynamic of other physiological signals at the 

fMRI cascade were also grouped and averaged within various brain states.
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Fig. 6. 
The temporal order of the multimodal modulations at the fMRI cascade, which was 

estimated according to the averaged dynamics of various signals at the fMRI cascade.
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