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Microbial ecosystems harbor an astonishing diversity that can persist for long times. To understand how such diversity is structured

and maintained, ecological and evolutionary processes need to be integrated at similar timescales. Here, we study a model of

resource competition that allows for evolution via de novomutation, and focus on rapidly adapting asexual populations with large

mutational inputs, as typical of many bacteria species. We characterize the adaptation and diversification of an initially maladapted

population and showhow the eco-evolutionary dynamics are shaped by the interaction between simultaneously emerging lineages

– clonal interference. We find that in large populations, more intense clonal interference can foster diversification under sympatry,

increasing the probability that phenotypically and genetically distinct clusters coexist. In smaller populations, the accumulation of

deleterious and compensatory mutations can push further the diversification process and kick-start speciation. Our findings have

implications beyond microbial populations, providing novel insights about the interplay between ecology and evolution in clonal

populations.

KEY WORDS: Clonal interference, competitive exclusion, diversification, eco-evolutionary dynamics, resource competition, spe-

ciation.

Understanding the mechanisms behind the evolution of biodiver-

sity and the formation of communities remains a difficult chal-

lenge. One must integrate ecology and evolution over similar

timescales, as taken together they can give rise to phenomena

that could not be explained by either alone (Schoener 2011). The

competitive exclusion principle (first stated by Hardin 1960) the-

oretically binds the number of species by the number of limiting

resources. This principle generated an apparent contradiction be-

tween theoretical expectations and observations, often referred

to as the “paradox of the plankton” (Hutchinson 1961). In fact,

ecosystems can be replete with diversity even in limiting envi-

ronments, both in nature (Hutchinson 1961; Tilman 1982; Hus-
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ton 1994) and in more controlled laboratory conditions (Mahar-

jan et al. 2006; Gresham et al. 2008; Kinnersley, Holben, and

Rosenzweig 2009; Herron and Doebeli 2013; Good et al. 2017).

Different theoretical approaches have been adopted to resolve

such controversy. One approach is to assume an existing diver-

sity and identify mechanisms that can maintain it. Following this,

several ecological properties were proposed to maintain diver-

sity, including heterogeneity in space (Abrams 1988) and time

(Litchman and Klausmeier 2001), trade-offs on the species’ traits

(Posfai, Taillefumier, and Wingreen 2017), or gene regulation

(Pacciani-Mori et al. 2020). Here we explore a classical model

of competition for resources, where extensive diversity can be

maintained by a metabolic trade-off (Posfai, Taillefumier, and

Wingreen 2017), and ask a different question: in an initially

monomorphic population, what diversity can be generated and

maintained if the species’ traits continuously evolve?
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In eco-evolutionary frameworks, mutations generate new ge-

netic variants whose fate depends on the state of the ecosystem

and, in turn, their increase in frequency can alter the populations.

A common outcome of such eco-evolutionary feedbacks is that

evolution limits diversity by reducing the effectiveness of co-

existence mechanisms (Edwards et al. 2018). The diversity that

would be possible by ecological principles alone, is reduced by

selection of the fittest and competitive exclusion. Several stud-

ies have produced a novel understanding of the evolution of di-

versity (Dieckmann and Doebeli 1999; Shoresh, Hegreness and

Kishony 2008; Doebeli 2011; Kremer and Klausmeier 2017), but

the majority rely on the strong-selection-weak-mutation assump-

tion, that is, on a timescale separation between ecological and

evolutionary processes (but see Farahpour et al. 2018). The emer-

gence of mutations is assumed to be much slower than the ecolog-

ical dynamics, thus, before a new lineage arises, the population

has already reached ecological equilibrium. While allowing for

analytical tractability the weak mutation assumption comes at a

cost: it neglects the overlap between multiple evolving lineages

– clonal interference. Clonal interference has been extensively

observed in microbial communities in vitro and in vivo (Desai,

Fisher and Murray 2007; Barroso-Batista et al. 2014) and can oc-

cur under different regimes of intensity: a weak regime where a

few lineages compete for fixation (Philip J. Gerrish & Richard

E. Lenski 1998; Billiard and Smadi 2020) or one where many

different haplotypes segregate (Good et al. 2012). Population ge-

netics models incorporating clonal interference have generated

predictions for the adaptation rate, fixation probabilities, and ge-

netic diversity in a population (Gerrish and Lenski 1998; Park

and Krug 2007; Good et al. 2012; de Sousa et al. 2016), yet they

typically ignore ecological interactions (but see Good, Martis and

Hallatschek 2018).

When the population size (N) and/or the rate to new ben-

eficial mutations (Ub) are not small (NUb >>1), multiple lin-

eages can increase in frequency simultaneously, ecologically in-

teract with each other, and evolve in non-trivial ways. Although

these processes are inevitably intertwined in real ecosystems

(Lawrence et al. 2012; Barroso-Batista et al. 2014 2020; Garud

et al. 2019), theoretical work is still needed to investigate how

they act in chorus.

Good and colleagues (Good, Martis and Hallatschek 2018)

have recently developed a theoretical work that incorporates

ecological and evolutionary mechanisms via a combination

of frequency-dependent and directional selection. Their eco-

evolutionary model is able to reproduce empirical patterns of

co-existence and fixation of new mutations in experimentally

evolved clonal populations (Good et al. 2017). It also shows how

diversification depends on the ratio between the rates of strat-

egy mutations and unconditionally beneficial mutations. How-

ever, in order to derive analytical expressions for the eco-

evolutionary dynamics, the authors have focused on the weak

mutation limit NUb <<1 and only briefly investigated clonal

interference.

Here, we study a similar model (to that of Posfai, Taillefu-

mier and Wingreen 2017; Good, Martis and Hallatschek 2018)

but assume a trade-off that only affects well-adapted genotypes

(fitness-dependent trade-off) and conduct a more systematic

simulation study of the different mutation regimes, including

extensive clonal interference, in large and small populations.

We follow an initially isogenic population throughout time and

characterize the patterns of adaptation at both phenotypic and

genetic levels, by common statistics used to analyze molecular

evolution data. We focused on mutations that affect the ability

of consuming the available resources and we do not impose

restrictive assumptions on mutation rates nor on timescales, as

common in other models (Geritz et al. 1998; Shoresh, Hegreness

and Kishony 2008; Good, Martis and Hallatschek 2018). Albeit

at the cost of analytical tractability, our approach is to describe

the phenomena that emerge from the stochastic simulations

where many more lineages compete, compared to previous

studies (Billiard and Smadi 2020).

We find that: high levels of intra-specific variation can be

generated and maintained via a balance between selection and

mutation; functionally distinct clusters of genotypes – ecotypes

- can emerge and stably coexist; and the interaction between

large mutational inputs and the energetic trade-off can lead to

incipient speciation. Taken together, our results describe how

clonal populations can give rise to extensive diversity and es-

tablish a first form of community, even in simple and constant

environments.

Model and Methods
ECO-EVOLUTIONARY MODEL

We model the dynamics of a single clonal lineage evolving to

consume a set of different substitutable resources, constantly re-

plenished in a well-mixed environment (Fig. 1A). Individuals

mutate at a rate U (per-genome, per-generation rate of non-lethal

mutations) and the fate of the emerging mutations depends on

their phenotypic effects, on the resource concentration, on the

other individuals present in the environment and on drift.

The underlying dynamics are based on the MacArthur’s con-

sumer resource model (Mac Arthur 1969), recently formalized to

explain high levels of diversity in the presence of a metabolic

trade-off (Posfai, Taillefumier and Wingreen 2017) and further

extended to study adaptation (Good, Martis and Hallatschek

2018). Briefly, let M be the number of types present at time t

with densities (#cells/V) ni, (i = 1…M) and R the number of

substitutable resources with input concentrations rj, (j = 1…R).

The expected density dynamics of each type are:
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Figure 1. Ecological dynamics and individual-based evolutionary processes. (A) Illustration of the eco-evolutionary dynamics. Bacterial

genotypes, represented by circles of different colors, grow according to the constant input of resources (squares and semicircles) and their

phenotypic traits, represented by the enzyme-like structures on the circles. Mutation events (red arrow) can generate new types whose

fate will depend on drift and selection. (B) Constrained phenotypic space and mutation process. An initially maladapted monomorphic

population (green circle) can acquire de-novo mutations according to the given assumptions (as explained in the inset) and move inside

the phenotypic space with an upper bound on the total energy. (C) Examples of different mutation regimes: from low/absent (NU << 1)

to extensive (NU >>1) clonal interference. Each color represents a different genotype.

dni

dt
= ni(t )

⎛
⎝ R∑

j=1

α
(i)
j r j∑M(t )

k=1 nk (t ) · α
(k)
j

− δ

⎞
⎠ (1)

where α
(i)
j represents the consumption rate of resource j by type

i and δ is the death rate. The resource amounts are constant in

this model since, as Posfai et al., we assume that metabolic re-

actions occur much faster than cell division (Posfai, Taillefumier

and Wingreen 2017).

We assume a finite amount of energy available for each cell

and limit their ability of consuming resources by an energetic

constraint (E):

0 ≤
R∑

j=1

α
(i)
j ≤ E , ∀i = 1, . . . , M (2)

Under this assumption, E acts as an upper bound and not as a

fixed energy budget, as previously investigated (Posfai, Taillefu-

mier and Wingreen 2017; de Oliveira, Amado and Campos 2018;

Amado and Campos 2019). Assuming equally supplied resources

(r j = r ∀ j) and unitary energy, volume and death rate (E, V, δ =
1), the population size is N = Rr.

We model an initial isogenic population (M(t0) = 1) with

given traits �α(1) and allow for mutations that change the herita-

ble traits and give rise to new genotypes. Every generation, each

genotype i (i = 1…M(t)) will generate a Poisson-distributed num-

ber of mutants with expected value ni(t ) · U . Assuming an infi-

nite site model, a mutation on genotype i will result into a new in-

dividual with unique genotype (i’) whose phenotypes differ from

the parental traits by a small amount: �α(i′) = �α(i) + ��, �� ∈ R
R.

The mutation effects are drawn from a normal distribution

as follows:

�� :

{
� j ∼ N (0, σ) , trait j sampled from {1, . . . , R}
�z ∼ N (0, ρ · σ) , for all traits z �= j

If ρ = 1, a mutation changes all the traits with equal proba-

bility. If 0< ρ <1, mutations target one trait (randomly sampled
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with probability 1/R), but partially alter the other ones. If ρ =
0, a mutation only changes a single trait. The parameter ρ modu-

lates different degrees of trait interdependence or equivalently the

pleiotropic effect of mutations, while the parameter σ modulates

the magnitude of the mutation effects (see Fig. 1B).

In order to respect the boundary condition (2), we assumed

that: i) mutations leading to negative values of αj are loss of func-

tion and thus assigned αj = 0; ii) mutations that do not respect

the energy constraint cannot exist, therefore when the Δjs do not

respect the upper limit of (2), these are drawn again so that the

mutation rate is not reduced.

In the limit of discrete time steps, we define the selection

acting on genotype i at time t, si(t), as the expected increase

in abundance in the absence of drift, such that E [ni(t + 1)] =
ni(t )(1 + si(t )), and from (1):

si(t ) =
R∑

j=1

α
(i)
j r j∑M(t )

k=1 nk (t ) · α
(k)
j

− δ. (3)

The fate of each genotype depends on its ability to consume

each of the resources and on the ecosystem’s ecology.

To simulate drift, we draw the final abundances via multi-

nomial sampling with probabilities E [ni (t+1)]
ntot

∀i = 1…M(t). Every

generation, the number of genotypes M(t+1) is updated together

with the relative abundances, traits and phylogeny.

NUMERICAL SIMULATIONS

In each simulation, an initially maladapted (
R∑

j = 1
α

(1)
j = 0.1) and

monomorphic population undergoes the eco-evolutionary pro-

cess described above for 104 generations, enough to reach phe-

notypic equilibrium. We focus on the role of different mutation

types and regimes (Fig. 1B-C), thus, the main results are ob-

tained via exploring different ranges of the parameters N, U, σ,

and ρ, whose values are specified along the text. The main re-

sults (Fig. 2–5) are obtained with populations of relatively large

size (N = 107) as typical of many evolution experimental set-

tings (Perfeito et al. 2007; Good et al. 2017) and mutation rates

(U = 10−8, . . . , 10−5) which could reflect different sizes of the

genome that codes for consuming resources. Each combination

of parameters was simulated in 100 independent replicates to ob-

tain the statistics of diversity.

In order to further explore the results, we performed addi-

tional simulations under three different variations of the model

described above: 1) adaptation without any boundary conditions

(or equivalently E = +∞ for (2)) to test for effects of remov-

ing the energetic constraint assumption; 2) adaptation with mu-

tations of fixed size (� = ±0.05) to study a simpler model for

mutation effects; 3) adaptation with a small perturbation (10%

change in the resources proportion over 100 generations) to

check for stability and resilience of populations evolving un-

der the specific parameters assumed. The algorithm was writ-

ten in R (version 3.6.1) and the results were analyzed in RStudio

(Core R Team 2019). We validated the code by comparing sim-

ulations outcomes against well-known theoretical expectations

from population genetics (see Fig. S1). The code for the sim-

ulations is available at https://github.com/AmiconeM/EcoEvo_

Competition_Adaptation.

NEUTRAL MUTATION MODEL

Neutral theories provide null expectations for the genetic di-

versity within a population, assuming that this population has

reached equilibrium. As the time to reach such equilibrium is

proportional to the population size (N), neutral predictions are

not adequate for “short-term” adaptation of large populations

(T 
 N ), e.g. experimental evolution with bacterial populations.

Thus, we run simulations with only neutral mutations, for the

same time as the selection case (T = 104), to compare the out-

come of neutral processes with that observed during adaptation

under selection.

Under the neutral mutation model, genotypes acquire muta-

tions with the same trait effects and probability as described be-

fore, but their growth probabilities are equal and do not depend on

the phenotypes. Modeling the explicit αj under neutrality, instead

of assuming that the mutations have no effect (Δj = 0), allows

for both genetic and phenotypic comparisons with the model of

selection.

PHENOTYPIC AND GENOTYPIC DIVERSITY

Within a population, each type i is characterized by a vector of its

consumption traits (α(i)
1 , . . . , α

(i)
R ) and a vector of the mutations

that gave rise to it, each with a unique identifier (e.g., the vec-

tor [1,2,7,10] represents genotype 10 whose ancestors are, in or-

der, genotypes 7,2 and 1, and 1 is the ancestor common to every

type). From this implementation, we can reconstruct the entire

phylogeny of a population at any time point and map it on the

phenotypic space.

We measure the genetic diversity of a population by the av-

erage pairwise genetic distance πG in a sample of m individuals:

πG(m) =
∑

(i, j) dG(i, j)⎛
⎜⎝m

2

⎞
⎟⎠

, where m = 100 and dG(i,j) is the number

of mutations that separate genotype i from j. From πG and the

number of segregating sites in the sample, we further compute

another population genetics statistic: Tajima’s D (Tajima 1989).

The expected value of D at equilibrium is zero, without selection;

positive, under divergent selection; and negative, under purifying

selection. However, as the time of our focus (104 generations) is

much shorter than that required to achieve equilibrium (∼N =
107), only relative comparisons are meaningful.
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Figure 2. Diminishing return epistasis and the adaptation rate. (A) Analytical predictions of the diminishing return epistasis in monomor-

phic populations. The inset shows the effect of the energy constraint. (B) Dots represent the mean of the observed positive selec-

tion during the first 300 generations of adaptation. The dotted line represents the prediction using the average population trait sum

(α̂(t ) :=
∑M(t )

i ni (t )(α
(i)
1 +α

(i)
2 )

N ). Each color represents an independent simulated population, which adapted with σ = 0.05, ρ = 0.5, N = 107,

and U = 10−5. (C) The population average trait sum α̂(t ) is shown as proxy of adaptation under different σ and ρ conditions. Other param-

eters: R = 2,N = 107,U = 10−8. Lines are the averages over 100 simulations and the shaded areas represent the confidence interval. (D)

Same dynamics as in C, but on a different scale, as defined in panel. (E) Phenotypic adaptation across different mutational inputs (left) and

expected strength and proportion of beneficial mutations at the end of the adaptation process. Lines represent the average across 100

populations and the shaded area their confidence interval. Other parameters for panel E: N = 107,U = 10−8, . . . , 10−5, σ = 0.05, ρ = 0.5.
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Figure 3. Genotypes’ dynamics and balance under competition for two resources. (A) Number of genotypes present in the envi-

ronment over time, under neutrality (diamonds) or under selection (lines). Lines represent the average across 100 populations and

the shaded area their confidence interval. On the right, zoom over the last 1000 generation. Other parameters: σ = 0.05, ρ = 0 and

N = 107 ,U = 10−8, . . . , 10−5. (B) Log-log scaled rank abundance distribution of genotypes at generation 10000. Dots and dashed lines

represent the mean across 100 populations under selection or neutrality, respectively. Parameters as in A. (C) Long-lasting number of

genotypes, computed as the average over the last 1000 generations (e.g., dotted line in the right panel of A). The lines represent the lin-

ear regressions:M∗ = aNU + 1 where NU : {0.1, 0.5, 1, 5, 10, 50, 100, 500} and a = {15.70 ± 0.07, 5.48 ± 0.02} for the neutral or selection

cases, respectively. Both axes are represented in log scale with ticks every {1, . . . ,9} · 10x . Other parameters as in A.

At the functional level, we compute the average pair-

wise phenotypic distance πP, defined as: πP(m) =
∑

(i, j) dE (i, j)

(
m

2
)

·

1
σ
, where dE is the classical Euclidean distance and it is nor-

malized σ, for a direct comparison with πG. For each of the

evolved populations, we identified functional clusters from their

phenotypic distribution, via the mean shift clustering algorithm

(Cheng 1995), implemented through the R package meanShiftR

version 0.53 (Lisic 2018) (see Appendix S2 in Supporting

Information).

Results
COMPETITION-DRIVEN DIMINISHING RETURN AND

THE RATE OF ADAPTATION

The initially monomorphic population, which is poorly adapted,

is expected to acquire mutations that improve the ability to con-

sume the available resources and to advance in the phenotypic

space toward better-adapted states. Our first aim is to identify

what influences the speed of this adaptive process.

Under the competition for resources set by (1), how does

selection change over time and with the genetic composition
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Figure 4. Ecological diversification under competition for two resources. (A) Two example populations evolving under the same

conditions (N = 107,U = 10−5 , ρ = 0.5, σ = 0.05, R = 2). The phenotypes and the preference distributions show one population that

has evolved into a single optimal cluster (squares) and another population that gave rise to a stable diverse community composed

by two clusters (circles). Lines connecting the shapes represent mutations. (B) Counts of populations that evolved into 1,2 or more

phenotypic clusters. Here, N = 107,U = 10−8, . . . , 5 · 10−5, σ = 0.05, R = 2, ρ = 0. C) Populations diversify with a probability that in-

creases with ln(NU ) and σ but decreases with ρ. The lines represent the fit of the data to the logistic function: P = 1
1+ea(ln(NU )−b) ,

NU : {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1, 5, 10, 50, 100, 500}. The inferred parameters a and b are reported in Tables S1-2 and the full set of

data is shown in Fig. S7. In the left plot:ρ = 0, while in the right one: σ = 0.05. The probabilities were computed as proportions out of

100 independent populations and their 95% confidence interval by normal approximation: P ± z
√

P(1−P)
100 , z = 1.96.
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Figure 5. Phenotypic and genetic characterization of the evolved populations. (A) Average pairwise genotypic (πG) and phenotypic (πP)

diversity were measured within each population, as defined in the Methods. 100 independent populations were simulated for each of

the conditions specified on the x-axis and by the colors. Other parameters: σ = 0.05, 2 resources and N = 107,U = 10−8, . . . ,5 · 10−5.

(B)πP , πG, Tajima’s D and fixations distributions of the populations that evolved into a single cluster (blue, n = 506) or into multiple ones

(red, n = 294). Populations with different NU and ρ = 0 were pulled together for a total of 800 populations. The dotted lines represent

the means of the corresponding distribution.

of the population? Selection acting on an emerging genotype i

is given by (3) and depends on the population investment on

each resource j : e(M(t ))
j :=

M(t )∑
i = 1

ni(t ) · α
(i)
j . Let us first simplify

the problem by considering a monomorphic (M = 1) popula-

tion whose phenotypes (�α) mirror the resource input proportions:
α j∑R
k αk

= r j∑R
k rk

,∀ j = 1, . . . , R which consists of the local optimal

strategy for a given energetic investment (
R∑
k

αk). In the absence

of mutations, such population at equilibrium satisfies:

e(1)
j = r j ·

R∑
k = 1

αk ∀ j = 1, . . . , R. (4)

Now consider a mutant that emerges from this population

with phenotypes �αmut = �α + ��. From (3) and (4) it follows that

the selection acting on such mutant is:

smut

(
�α, ��

)
=

∑R
j � j∑R
j α j

. (5)

While bigger steps result in stronger selection, equation (5)

also implies that the same mutations are subject to weaker se-

lection when emerging on a better-adapted background. Thus,

competition-driven selection in our system, as in (Good, Mar-

tis and Hallatschek 2018), exhibits diminishing return epis-

tasis - the benefit decline in populations with higher mean
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fitness – consistent with many empirical observations in micro-

bial populations (Chou et al. 2011; Kryazhimskiy et al. 2014; Sc-

houstra et al. 2016; Wünsche et al. 2017).

Because we assume that phenotypic changes follow a nor-

mal distribution, their additive effect will also follow a normal

distribution:
R∑
j

� j ∼ N (0, σ∗) where σ∗ = σ
√

(R − 1) · ρ2 + 1;

this implies that stronger pleiotropic effects lead to stronger

selection. From the continuous univariate distribution theory

(Johnson et al. 1994) we can retrieve the expected beneficial mu-

tation effect (E [
R∑
j

� j]) and, from (5), compute the correspond-

ing expected selection coefficients (E [s+]) for varying values of
R∑
j

α j (see Appendix S1 in Supporting Information). Figure 2A

shows how the strength of positive selection decreases for bet-

ter adapted genetic backgrounds across different σ and ρ condi-

tions. It is important to note that the diminishing return epistasis

in this model is not due to the energy constraint; nonetheless,

such boundary condition makes the deleterious mutations more

common (see Fig. S2 and Appendix S1) and further slows down

the rate of adaptation of these well-adapted populations (inset in

Fig. 2A).

Next, we tested how well the approximation obtained by as-

suming monomorphic populations at consecutive equilibria, pre-

dicts what happens in regimes where the adapting populations

are polymorphic and out of equilibrium. From the simulations

with NU = 100 and two resources, we computed the average

population trait sum α̂(t ) :=
∑M(t )

i (α(i)
1 +α

(i)
2 )·ni (t )

N and the expected

beneficial selection coefficient as E [s+|α̂] = E [�1+�2|α̂]
α̂

. We then

compare this expectation with the mean beneficial selection ob-

served in the simulations, during the first 300 generations. The

strength of selection acting on polymorphic populations follows

the predicted diminishing return pattern, but is often underesti-

mated (Fig. 2B). In fact, it decreases with the mean population

phenotype α̂, but it increases with the population phenotype vari-

ance (Fig. S3).

Numerical simulations further allow us to link the mutation

types with the speed of phenotypic adaptation: larger phenotypic

changes imply stronger selection, resulting in faster adaptation

(Fig. 2C). We find that, when time is scaled by I · σ∗ (where

I :=
1
∫
0.1

E [s+|α]dα is the integral of the curves in Fig. 2A), the

populations’ mean phenotype (α̂), computed from the simula-

tions, moves with similar velocity, demonstrating that both the

complex form of selection and the mutation type mediate the

speed of adaptation (Fig. 2D and Appendix S1).

Finally, the simulations show that, as expected, larger muta-

tional inputs accelerate phenotypic adaptation and more rapidly

lead the populations to a quasi-neutral regime where benefi-

cial mutations are rare and of small effects (P(s+) · E [s+] ∼ 1
N )

(Fig. 2E).

Taken together, these results describe the interactions be-

tween the distribution of mutation effects, the competition-

dependent selection, and the energetic constraint and will help

understand the emerging genetic and phenotypic diversity (see

below).

NUMBER OF COEXISTING GENOTYPES

During the adaptation of an initially monomorphic population,

de novo mutations generate polymorphism but at the same time

purifying selection tends to reduce such diversity. How many

genotypes are generated and maintained under competition for

resources? Under the parameters explored in the simulations, we

observe that: after an initial burst of diversity, the mean number of

genotypes first declines and later plateaus around a value below

that obtained under neutrality (Fig. 3A). The drop in the mean

number of genotypes is due to the energetic constraint, as popu-

lations evolving under neutrality or without such boundary do not

suffer any decline (Fig. S4). When the populations’ phenotypes

approach the energetic constraint, beneficial mutations become

rarer and selection reduces the number of coexisting genotypes

(Fig. S4). Despite the more abundant deleterious mutations, the

populations can maintain a dynamic balance between the muta-

tions that are purged by purifying selection and the newly emerg-

ing ones (inset of Fig. 3A).

When we summarize the populations’ composition (at gen-

eration 10,000), by calculating the average rank abundance dis-

tributions of the genotypes (instead of the species, Whittaker

1965), we observe that few genotypes dominate the population

(frequency above 1%) and the rest persists at low abundance

(Fig. 3B). As the mutational input increases, the effect of selec-

tion becomes more pronounced as seen by stronger deviations

from the rank abundance distribution observed under neutral-

ity. As expected, under purifying selection less genotypes can

be maintained at intermediate abundances (Haldane and Fisher

1931; Wright 1938). Under the conditions simulated here, pop-

ulations maintain a dynamically stable genotype richness which

increases linearly with the mutational input NU, and it’s about

1/3 of that expected under neutrality (with σ = 0.05) (Fig. 3C).

Thus, clonal populations with large NU and strong selection (N

σ >>1) can maintain high levels of intraspecific variation under

adaptation to few resources. However, we were unable to find an

approximation to predict the number of genotypes, M∗, across

different combinations of N, U, and σ, indeed M∗, deviates from

NU/σ - the expected mean number of deleterious mutations under

mutation-selection balance in a simple model of constant nega-

tive selection (Haigh 1978).

POPULATION DIVERSIFICATION INTO ECOTYPES

In this model, adapting populations consist of a cloud of many

genotypes and we now characterize the phenotypic structures
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of these clouds. If a population consisted of a single geno-

type, the optimal strategy (hereafter 	) would be to have

the trait values that mirror the resource supply proportions

(α j = r j

rtot
, ∀ j = 1, . . . , R), as represented by the star in Figs. 1–

4. Such state cannot be invaded by any mutant (s	
mut ≤ 0), thus

excluding diversity. However, if polymorphism already exists

and a metabolic trade-off is assumed, a large collection of types

can stably coexist if they are distributed around 	 (Posfai,

Taillefumier and Wingreen 2017). Thus, we now ask the simple

question: if there is no initial polymorphism and mutation is the

only source of variation, will an initially maladapted population

evolve a single strategy or multiple ones?

The simulations show alternative stable states: due to the

stochastic nature of mutation, populations can evolve to either

one or to multiple strategies, even if adapting under exactly the

same conditions (e.g., Fig. 4A). Remarkably, the same ances-

tral genotype can give rise to many functionally similar geno-

types (Fig. 4A, left panel), or can diversify into different eco-

types (Fig. 4A, right panel): clusters of genotypes with distinct

metabolic preferences, capable of long-term coexistence (Cohan

2002).

We now investigate the conditions favoring such ecotype di-

versification, across several mutational inputs and in the regime

of strong selection (Nσ � 1). Using the mean shift clustering

algorithm (Cheng 1995) to group each adapted population into

functional clusters (see details in Methods and Appendix S2),

we find that the proportion of populations that evolved into 1,

2, or more statistically distinct clusters, depends on the under-

lying mutation parameters. Under regimes of larger mutational

input (i.e. more intense clonal interference) ecotypes with dis-

tinct preferences more likely emerge and coexist (Fig. 4B). This

result is also obtained when using the k-means clustering algo-

rithm (MacQueen 1967) (data not shown). Importantly, when NU

is very large, we can observe examples of supersaturation: the

number of ecotypes, which formed over 10000 generations, can

exceed the number of limiting resources (Fig. 4B). If we apply

a perturbation of 10% on the resource supply for a short period

(100 generations), in the populations where 2 or more clusters

emerged, these clusters fluctuate in frequency but can still be

maintained (Fig. S5A-D). Though, in the cases of supersatura-

tion, even without perturbation, there are populations where the

number of clusters can decrease in the long term (as shown in the

inset of Fig. 4B).

The probability of diversification (P) – computed as the pro-

portion of populations that evolved more than one cluster – is

close to zero when NU < 1 but significantly increases when

NU ≥ 1. Note that the formation of ecotypes is not due to

neutral processes as the populations adapting under neutrality

did not diversify during the first 10000 generations simulated

(Fig. 4C).

We summarize the increase in the observed probability of di-

versification by a logistic function: P = 1
1+ea(ln(NU )−b) (see Fig. 4C

and Tables S1-2).

Not only the rate, but also the distribution and the type of

mutations can influence the diversification process (Fig. 4B-C,

S6). Under intense clonal interference, larger mutation effects (σ)

and/or smaller pleiotropic effects (ρ) promote the formation of

multiple ecotypes (Fig. 4C; Fig. S7 and S8).

In summary, during the process of adaptation studied in

our simulations, different qualitative outcomes can be observed

across different regimes: (i) when the input of new mutations is

low, the fittest genotype recurrently takes over as a cloud of geno-

types until the population reaches a distribution around the gen-

eralist strategy that mirrors the resource supply (e.g., Video S1);

(ii) but when NU is large enough, the initial availability of many

beneficial mutations causes adaptive radiation, opens the door for

several genotypes to coevolve and for distinct ecotypes to coexist

(e.g., Video S2).

THE GENETIC SIGNATURE OF DIVERSIFICATION

We characterized the adapting populations by calculating their

average pairwise genetic (πG) and phenotypic (πP) distances

within populations. Both πG and πP increase with NU and always

exceed the neutral simulations (Fig. 5A). However, genetic diver-

sity does not necessarily imply functional diversity as some pop-

ulations are observed to converge to similar phenotypes (see ex-

amples in Fig. S9) after an initial increase in diversity. Pleiotropy

in mutation effects (ρ) significantly reduces the phenotypic diver-

sity (Fig. 5A, overall effect of ρ: p-value <10–12 by two-way non-

parametric ANOVA of aligned rank transformed data (Wobbrock

et al. 2011); post hoc pairwise comparison: p-value <0.0001 for

ρ = 0 against ρ = 0.5 or 1) and can foster a higher fraction of

populations to exhibit phenotypic convergence. In the popula-

tions evolved with large NU, πP and πG correlate (πP ∼0.7πG,

Fig. S10A), but strong pleiotropy reduces the correlation (Fig.

S10B), explaining why fewer clusters are generated under this

condition (Fig. 4C).

Can we infer ecotype formation from the genetic composi-

tion of a population? The Tajima’s D statistic that compares the

pairwise genetic diversity with the number of segregating muta-

tions in a sample is meant to distinguish between different forms

of selection. D is expected to be negative under recurrent sweeps

or weak purifying selection, and positive under balancing selec-

tion (Tajima 1989). We thus expect that the populations where

stable ecotypes have formed show positive D values. Overall,

the populations that diversified into multiple phenotypic clusters

have on average larger πP, πG, Tajima’s D, and fewer fixations

(Fig. 5B, Mann-Whitney p-values <10–9 for each of them). How-

ever, the distributions of Tajima’s D greatly overlap and require

extra care in the study of out of equilibrium populations. In our
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simulations, under the accumulation of neutral mutations, larger

mutational inputs push D towards negative values by generating

larger numbers of segregating sites (Fig. S11). But, under se-

lection, this can be counteracted by the increase of πG, and D

presents a wider distribution and a non-monotonic relation with

NU (Fig. S11). This makes the interpretation of the Tajima’s D

more complex, and may help explain the overlap between the

distributions of D in the simulation results of Fig. 5B.

The genetic diversity alone is better at discriminating

the populations with multiple or single ecotypes (Fig. 5B),

but its predictive power becomes less accurate in the regimes

with larger pleiotropic effects (Fig. S12), due to the increased

phenotypic convergence discussed above. Nevertheless, while

with cross-sectional data it is difficult to establish that ecotypes

have formed, with time series data the signal can be clearer

(e.g. Fig. S9 where πG is large and D is positive along time).

Statistics on population genomic data, together with functional

measurements, should allow to identify populations that undergo

ecological diversification.

SMALL POPULATION SIZE AND ACCUMULATION OF

DELETERIOUS MUTATIONS CAN LEAD TO

SPECIATION

So far, we have investigated adaptation in large populations with

strong selection, where deleterious mutations hardly ever fix as

most stay at low frequencies. Now, we explore simulations with

different population sizes but under the same range of mutational

inputs as before (NU = 0.1-500). When N = 105, 107 or 109 the

probability of diversification increases consistently (Table S3),

confirming its relation with the parameter NU in regimes with

large populations (Fig. 6A). Differently, when N = 103 the

probability of diversification shows a sharper increase (Fig. 6A,

Table S3) as all the populations present multiple phenotypic clus-

ters when NU ≥ 100. This is due to a different diversification

process which requires the accumulation of deleterious mutations

as we will explain. When N = 103 and NU ≥ 100, we expect

that deleterious mutations of a given effect s can accumulate un-

der the action of Muller’s ratchet (Felsenstein 1974). In fact, in

such regime, assuming constant s = σ (here σ = 0.05), it follows

that sNe− U
s < 10, and the Muller’s ratchet should click in the

time scale of our simulations (Gordo and Charlesworth 2000).

Contrarily, when N = 105, 107 or 109, it follows that sNe− U
s �

10, and the deleterious mutations should fix only in infinites-

imally large time (Fig. S13). Furthermore, (Etheridge, Pfaffel-

huber and Wakolbinger 2012) showed that the ratchet can click

when the parameter γ := NU
Ns·ln(NU ) > 0.5, in a constant s model. If

we fix s = σ and N = 103, this threshold condition occurs when

ln(NU ) > 4.8 (dotted line in Fig. 6A), consistent with the abrupt

change in the observed probability of diversification and suggest-

ing that when the ratchet turns, deleterious mutations will allow

phenotypic clusters to form.

Studying large and small populations with different muta-

tion rates (U = 10–5 or U = 10–1, respectively) but equal mu-

tational input (NU = 100), we compare the two qualitatively

different regimes. Fig. 6B shows how the ratchet reduces the

average trait sum of the small populations relative to the large

populations (case where the ratchet does not turn). Because in this

parameter range beneficial mutations are still common (Fig. 6B,

right panel), their effect balances that of the deleterious mu-

tations and the mean fitness equilibrates at intermediate levels

(as in Goyal et al. 2012). While the mean fitness is constant,

the phenotypic distribution becomes bimodal. Contrarily to what

was previously observed in the large populations (diversifica-

tion in the early steps of adaptation and then long-term stabi-

lization), in these smaller populations (N = 103) with large mu-

tation rate (U = 10−1), diversification happens after the ener-

getic boundary is reached (Fig. 6C). The continuous accumula-

tion of deleterious and compensatory mutations drives the clus-

ters apart until they reach the specialist extremes and finally sta-

bilize (see an example in Fig. 6C and Fig. S14). Thus, in the

small populations with large mutational inputs, ecological diver-

sification can maximize the functional diversity within the popu-

lation, lead to a continuous increase of genetic diversity and push

the Tajima’s D values well above neutral expectations (Fig. 6D).

This process should in principle lead to incipient speciation in the

long run.

Discussion
Microbial communities are vital for humans and many other host

species (Nicholson et al. 2012; Sunagawa et al. 2015). Emerging

observations of evolution in such ecosystems (Barroso-Batista

et al. 2014; Garud et al. 2019; Zhao et al. 2019) motivate new the-

ories where the mechanisms that generate diversity involve com-

plex forms of selection and clonal interference (Gordo 2019). We

propose that a simple eco-evolutionary model of resource compe-

tition, describing the mechanisms behind ecological divergence,

can help understand diversity within ecosystems. This frame-

work can be generalized to incorporate other evolutionary mech-

anisms, such as other forms of selection (Good, Martis and Hal-

latschek 2018), transmission and horizontal gene transfer, and

can serve to bridge an existing gap between ecology and popu-

lation genetics.

Population genetics models of clonal interference have

greatly advanced our understanding of microbial adaptation (Ger-

rish and Lenski 1998; Park and Krug 2007; Good et al. 2012; de

Sousa et al. 2016). However, clonal interference is rarely consid-

ered in theoretical studies of ecosystems (Farahpour et al. 2018),

even though it greatly impacts the evolution of microbes within
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Figure 6. Speciation process in small populations with large mutational input. (A) Probability of diversification across different popula-

tion sizes. Continuous lines represent the fit of the data to the logistic function: P = 1
1+ea(ln(NU )−b) , NU : {0.1, , 0.5, 1, 5, 10, 50, 100, 500},

for N = 103 (blue) or N = 105, 107, 109 together (orange). The inferred parameters a and b are reported in Tables S3. The dotted line

represents the threshold (ln(NU ) = 4.78) when NU
Ns·ln(NU ) > 0.5, N = 103and s = σ. The probabilities were computed as for Fig. 4. (B) Av-

erage trait sum over time and distribution of mutation effects at generations 8000 or 10,000. (C) Example population adapted with

N = 103, U = 10−1, ρ = 0, σ = 0.05, R = 2 for 10,000 generations. The inset shows the preference distribution at generations 10, 100,

1000, and 10,000. D)πG/NU and Tajima’s D over time. Circles represent the median, while vertical bars range f//rom the 25th to the

75th quartiles. The dotted lines represent the expected value at neutral equilibrium. In particular πG = 2NU and Tajima’s D = 0. Other

parameters: σ = 0.05, ρ = 0.

real communities (Barroso-Batista et al. 2014) and may be rel-

evant in key ecosystems such as the human microbiota (Zhao

et al. 2019). Commensal species in the gut have large popula-

tion sizes ∼108 cells/g. If each bacterium mutates in the gut as

it does in the laboratory (Drake 1991), then each gram of ma-

terial will host around 105 new mutant cells every generation.

Even if only 0.1% brings up a benefit (Perfeito et al. 2007),

clonal interference still extensively affects the gut microbiota

dynamics.

The MacArthur consumer-resource model, and extensions of

it, can help explain patterns of extensive diversity in both chemo-

stat or batch environments (Posfai, Taillefumier and Wingreen
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2017; Erez et al. 2020) and can help recapitulate experimental re-

sults from studies of soil, plant (Goldford et al. 2018) or even

mammalian gut microbiotas (Leónidas Cardoso, Durão, Ami-

cone et al., 2020). Here, we extended the MacArthur model to

study adaptation in an ecological framework where clones do

not compete for fixation but for resources. Modeling competi-

tion explicitly allows to make testable predictions about different

measures of diversity as both the traits and genomes can now

easily be studied. We show that clonal interactions can drive an

initial monomorphic population to polymorphism with distinct

ecotypes, deviating from the simple expectation of adapting to a

single optimal phenotype (Fig. 4 and Fig. 6).

Good and colleagues have developed a similar model provid-

ing new analytical insights of how populations can adapt under

competition for resources (Good, Martis and Hallatschek 2018).

They focused on mutations that alter either the fitness or the re-

source uptake strategy, but only briefly investigated the effect of

clonal interference. Here, we assumed that mutations simultane-

ously alter the fitness and the ability to consume resources and fo-

cused on regimes with clonal interference. We describe phenom-

ena that emerge out of equilibrium and show that under clonal

interference, the outcome of phenotypic adaptation is probabilis-

tic. For example, small populations with large mutation rates can

diversify by the accumulation of deleterious mutations and gen-

erate specialist species-like lineages (Fig. 6).

The process leading to ecological diversification in our

model is strongly influenced by the underlying molecular param-

eters: the number of emerging phenotypic clusters increases with

mutation supply, mutation size and decreasing pleiotropy (Fig. 4).

In regimes of low mutational input (NU < 1), the evolution of a

single generalist population is more probable, but under larger

mutational inputs (NU ≥ 1) the formation of two or more dif-

ferentially specialized ecotypes becomes very likely (Fig. 4 and

Video S1-S2). Note that, NU ≥ 1 is not a necessary condition

for diversification in our model (e.g. see NU = 0.5 in Fig. 4B),

nor in general. In fact, such threshold can vary with the under-

lying assumptions on the distribution of mutational effects. For

example, Good, Martis and Hallatschek 2018 show that even if

NU < 1, multiple types can coexist if the mutations that fuel di-

rectional selection are limited. In our case, due to the different

assumptions and the lack of pure fitness mutations, smaller mu-

tation sizes (which decrease selection strength) have an opposite

effect on ecological diversification, reducing the probability of

ecotypes formation.

Our analysis demonstrates that weak pleiotropy fosters eco-

logical diversification (Fig. 4C). Different pleiotropic effects are

meant to represent different interactions between the traits un-

der selection. If the available resources are similar (e.g. chemi-

cal composition) and/or the metabolic processes involved in their

consumption share many genes, this could increase the chances

that a mutation affects the two traits simultaneously leading to

large pleiotropy. Contrarily, less related resources could involve

more independent effects leading to smaller pleiotropy, promot-

ing diversification (Fig. 4C). This interpretation could explain

why adaptive diversification occurred in some experimental evo-

lution setups (Friesen et al. 2004; Sandberg et al. 2017) but was

not observed in others (Satterwhite and Cooper 2015; Sandberg

et al. 2017). In agreement with this hypothesis, Sandberg and

colleagues showed that evolving on less metabolically related

resources promoted ecological diversification (Sandberg et al.

2017).

Trade-offs are commonly assumed and expected to affect

evolutionary trajectories (Farahpour et al. 2018; Amado and

Campos 2019), but this is not always observed. While many

empirical results have confirmed the role of trade-offs during

adaptation (Bell and Reboud 1997; Bull, Badgett and Wichman

2000; Turner and Elena 2000; Dykhuizen and Dean 2004; Greene

et al. 2005; Duffy, Turner and Burch 2006; Coffey et al. 2008;

Ward, Perron and MacLean 2009; Bailey and Kassen 2012; Li,

Petrov and Sherlock 2019), others did not find evidence for any

(Reboud and Bell 1997; Kassen and Bell 1998; Turner and Elena

2000; Trindade et al. 2009; Bedhomme, Lafforgue and Elena

2012). Here we assumed a linear trade-off in the form of an

energetic constraint, which only affects well-adapted genotypes.

Recent work has shown that trade-offs can dynamically arise

due to clonal interference – even without inherent trade-offs

in the mutational spectrum (Gomez, Bertram and Masel 2019).

Thus, models predict that the observation of a trade-off may

depend on the time at which it is measured. It would be in-

teresting to test for trade-offs at different times during adapta-

tion, as this could explain some of the contrasting findings out-

lined above. Compatible with this hypothesis, a trade-off in Es-

cherichia coli ability to grow in the presence of both glucose

and lactose was found, but it only emerged after a period of

constraint-free adaptation (Satterwhite and Cooper 2015). We

find that in large populations, the metabolic trade-off in the re-

source consumption is not required for the formation of distinct

ecotypes but it promotes their stable coexistence (Fig. 4, S9 and

Video S2).

In many ecosystems, the coexisting types seem to outnum-

ber the limiting resources, generating an apparent contradiction

between expectations and observations that has motivated nu-

merous studies. Previous eco-evolutionary analysis suggest that

adding evolutionary changes confirms (Edwards et al. 2018) or

even exacerbates (Shoresh, Hegreness and Kishony 2008) this

paradox. Perhaps surprisingly, our simulations show that large

mutational inputs maintain a dynamically stable number of types

that overcome the competitive exclusion (Fig. 3). And at the func-

tional level, diversity generally respects the exclusion principle

(number of types ≤ number of resources) but with exceptions:
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in a regime of strong clonal interference, the number of extant

ecotypes can be larger than the number of limiting resources

(Fig. 4B).

Sympatric diversification can be observed experimentally

and predicted by theoretical models (Friesen et al. 2004). The

framework of adaptive dynamics has been extensively used in

this context as it describes evolution on fitness landscapes that

change dynamically due to frequency-dependent interactions

(Geritz et al. 1998; Doebeli 2011). However, these models often

lack the explicit mechanism of competition for resources and are

based on equilibrium assumptions: the populations first evolve to

an equilibrium state before diversification occurs, as explained

by the concept of evolutionary branching points. Our individual-

based model, in contrast, is based on an explicit mechanism of

interaction and allows to follow adaptation of populations that

undergo strong non-equilibrium dynamics and can accumulate

deleterious mutations if they are small (Fig. 6). Previous studies

(Rosindell, Harmon and Etienne 2015; Ispolatov, Madhok and

Doebeli 2016; Vetsigian 2017; Kotil and Vetsigian 2018) high-

lighted how considering evolution out of equilibrium and at the

individual level is necessary to better understand the adaptation

process.

We find that the genetic diversity of a population can be used

to predict the underlying phenotypic structure, but with limita-

tions (Fig. 5). Other statistics based on genetic data (such as the

Tajima’s D) can help in understanding the diversity structure, es-

pecially if these are assayed along time (Fig. 6).

In our model, we made a number of simplifying assump-

tions. Importantly, we assumed mutation effects to be normally

distributed. How distributions with different shapes affect the

probability of diversification is an important question for future

research. As an example, when we assume that deleterious and

beneficial mutations have the same effect and rate, diversifica-

tion can become less probable (Fig. S6), highlighting the need

for more research on this important issue.

The model studied here serves as a first step at integrating

phenotypic and genetic data in a relatively simple environment. It

predicts that the typical high mutational input of bacterial species

and cancer cells, coupled with an energetic constraint, is a mecha-

nism capable of generating functionally diverse clonal communi-

ties. Future frameworks addressing microbial ecology and evolu-

tion will need to address how space, migration, and/or fluctuating

conditions affect the patterns of diversity. In addition, cooperation

between genotypes (such as cross-feeding or use of costly pub-

lic goods) and many more resources have the potential to shape

diversity levels and should also be investigated in future studies.
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