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Abstract. Hypertrophic cardiomyopathy (HCM) is a complex 
inherited cardiovascular disease. The present study investigated 
the long noncoding (lnc)RNA/microRNA (mi)RNA/mRNA 
expression pattern of patients with HCM and aimed to identify 
key molecules involved in the development of this condition. 
An integrated strategy was conducted to identify differen-
tially expressed miRNAs (DEmiRs), differentially expressed 
lncRNAs (DElncs) and differentially expressed genes (DEGs) 
based on the GSE36961 (mRNA), GSE36946 (miRNA), 
GSE68316 (lncRNA/mRNA) and GSE32453 (mRNA) expres-
sion profiles downloaded from the Gene Expression Omnibus 
datasets. Bioinformatics tools were employed to perform 
function and pathway enrichment analysis, protein‑protein 
interaction, lncRNA‑miRNA‑mRNA and hub gene networks. 
Subsequently, DEGs were used as targets to predict drugs. The 
results indicated that a total of 2,234 DElncs (1,120 upregu-
lated and 1,114 downregulated), 5 DEmiRs (2 upregulated 
and 3 downregulated) and 42 DEGs (35  upregulated and 
7 downregulated) were identified in 4 microarray profiles. 
Gene ontology analysis revealed that DEGs were mainly 
involved in actin filament and stress fiber formation and in 
calcium ion binding, whereas Kyoto Encyclopedia of Genes 
and Genomes pathway analysis identified the hypoxia induc-
ible factor‑1, transforming growth factor‑β and tumor necrosis 
factor signaling pathways as the main pathways involved in 
these processes. The hub genes were screened using cyto-
Hubba. A total of 1,086 lncRNA‑miRNA‑mRNA interactions 
including 67  lncRNAs, 5  miRNAs and 25  mRNAs were 

mined in the present study based on prediction websites. Drug 
prediction indicated that the targeted drugs mainly included 
angiotensin converting enzyme inhibitors or β‑blockers. 
A comprehensive bioinformatics analysis of the molecular 
regulatory lncRNA‑miRNA‑mRNA network was performed 
and potential therapeutic applications of drugs were predicted 
in HCM patients. The data may unravel the future molecular 
mechanism of HCM.

Introduction

Hypertrophic cardiomyopathy (HCM) is a heterogeneous 
monogenic myocardial disorder that is characterized by 
myocardial hypertrophy, asymmetric hypertrophy of the 
ventricular septum, decreased ventricular cavity and abnormal 
hypertrophy of cardiac muscle cells. The prevalence of HCM 
is >1 in 500 (0.2%) (1). Previous studies carried out in different 
regions and ethnic groups indicated that this disease exhibited 
a high degree of familial aggregation and heritability (2‑4). 
It has been proposed that gene therapy is an effective way to 
eradicate HCM.

With the development of high‑throughput gene expression 
profiling technology, microarray analysis has been widely 
used in the early diagnosis, treatment and prognosis of several 
diseases. MicroRNAs (miRNAs) are a novel class of small 
non‑coding RNAs, which can negatively regulate gene expres-
sion at the post‑transcriptional level by directly binding to 
mRNAs (5). Long non‑coding RNAs (lncRNAs) and circular 
RNAs contain miRNA response elements, acting as competi-
tors of endogenous RNAs (6). These molecules have emerged as 
essential regulatory molecules in various biological processes. 
In 2014, Song  et  al  (7) performed a miRNA microarray 
analysis on heart tissues from 7 HCM patients and 5 healthy 
subjects and found that miR‑451 was the main miRNA that 
was downregulated in the HCM subjects. The target gene of 
miR‑451 was the tuberous sclerosis complex 1 gene (TSC1) 
that was significantly upregulated in the myocardial tissue 
of HCM patients (7). TSC1 is a known positive regulator of 
autophagy (8), which contributes to the development of HCM. 
However, the molecular mechanism of HCM with regard to 
non‑coding RNAs is still unknown. Therefore, the present 
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study aimed to perform in‑depth data mining based on former 
microarray studies.

At present, big data mining and precision medicine have 
gained considerable attention. Digitization and informatics 
technologies facilitate the flow of information between 
various fields, laying the foundation for the conduct of 
interdisciplinary research. With the achievements of tran-
scriptomics and genomics, the correlation between disease 
phenotypes and potential genotypes has attracted great 
scientific interest. The present study combined bioinformatics, 
transcriptomics and epidemiology in order to examine 
differentially expressed lncRNAs  (DElncs), differentially 
expressed miRNAs (DEmiRs) and differentially expressed 
genes (DEGs). In addition to their expression, their associated 
regulatory network was investigated. The data can elucidate 
the underlying etiology of HCM and further provide reliable 
molecular targets for drug therapy.

Materials and methods

Raw data collection. LncRNA, miRNA and gene microarray 
expression profiles between HCM and healthy controls were 
investigated by the Gene Expression Omnibus database 
(GEO; https://www.ncbi.nlm.nih.gov/geo/) using the keywords 
‘hypertrophic cardiomyopathy’ and ‘lncRNA’ or ‘miRNA’ or 
‘mRNA’. Eligible datasets had to meet the following inclusion 
criteria: i) Microarray profiling studies on human patients 
with HCM; ii) HCM and non‑HCM control/ healthy samples 
for comparison; iii) reports of sample sizes; iv) a group label 
for each sample size; v) a corresponding annotation (gene 
symbol) or GeneBank ID in the platform file for each probe of 
the microarray and vi) availability of raw data. The exclusion 
criteria included: i) Animal samples or cell lines; ii) non‑HCM 
samples; iii) non‑microarray profiles; iv)  samples without 
controls and v) probes without gene symbol or GeneBank ID 
annotation. Finally, 4 profiles of GSE36961, GSE36946 and 
GSE68316 were downloaded. The flow chart of the screening 
datasets is presented in Fig. 1. The characteristics of these 
microarray expression profiles are shown in Table I.

Raw data pretreatment and screening for DElncs, DEmiRs 
and DEGs. The GEO dataset is one of the mainstream public 
functional genomics data repositories (9). Nonetheless, the 
uploaded data are usually rough, incomplete or containing 
noise. Therefore, prior to data mining, data pretreatment must 
be carried out including data washing, data filtering and data 
normalization. With regard to the Illumina expression array, 
the MicroArray Quality Control method is conventional for 
background correction and quantile normalization (10). This 
method can eliminate non‑experimental differences caused by 
technical discrepancies and ensure appropriate data compari-
sons among different samples.

The raw signal intensity data of GSE36961, GSE36946 
and GSE32453 were converted by the Illumina package using 
the R software (version 3.5.1; https://www.r‑project.org/). The 
Limma package was employed to identify DElncs, DEmiRs 
and DEGs, respectively using a linear model and the empirical 
Bayes model (11). GSE68316 was analyzed by the R‑based GEO 
online tool GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/), 
which is useful for comparing 2 or more groups of samples, 

and can characterize differentially expressed RNA molecules 
based on t‑test or analysis of variance (9). The gene symbol 
was annotated to the corresponding probes and for the genes 
mapped with more than one probe, the average expression 
values were calculated. Volcano plots of DElncs, DEmiRs and 
DEGs were provided using Gplot package in R.

A total of 3 mRNA datasets (GSE36961, GSE68316 and 
GSE32453) were selected to identify novel DEGs; however, 
the DEGs in each dataset were not combined due to the varia-
tion of distinct platforms, manufacturers and temperature (12). 
The data obtained from multiple sources could be compared 
or directly integrated. If not properly addressed, this integra-
tion would adversely affect all subsequent analysis. The ‘SVA’ 
package in the R software is an effective tool to reduce the data 
heterogeneity, remove batch effects and retain the variation due 
to sample types retained for further DEG analysis (12). The 
hierarchical clustering plot for the DEGs in the GSE36961, 
GSE68316 and GSE32453 datasets were provided using the 
‘pheatmap’ package of the R software (https://cran.r‑project.
org/web/packages/pheatmap/index.html) following batch 
normalization. Ultimately, the mixed model of variance 
analysis with a false discovery rate (Benjamini‑Hochberg test, 
FDR) (13) was used. An adjusted P<0.05 and a |log2FC| value >1 
were applied in screening significantly different expression 
levels of RNA molecules.

Predicting potential lncRNAs and genes. Initially, the identified 
DEmiRs were used to predict lncRNAs. The lncRNA‑miRNA 
interactions were based on the following 3 lncRNA target 
prediction websites including DIANA‑LncBase (version 2; 
www.microrna.gr/LncBase)  (14), LNCipedia (version  5.0; 
http://www.lncipedia.org)  (15) and starBase (version  3.0; 
http://starbase.sysu.edu.cn/) (16). At least 2 of these websites 
included eligible predicted lncRNAs binding sites with 
the DEmiRs. The predicted lncRNAs obtained from the 3 
websites were intersected with the identified DElncs  (17), 
whereas the overlapping lncRNAs were retained for further 
analysis. Similarly, the miRNA‑mRNA pairs were acquired 
from TargetScan version 7.1 (http://www.targetscan.org/), 
miRTarBase 7.0 (http://mirtarbase.mbc.nctu.edu.tw/php/index.
php)  (18) and miRBase 21 (http://www.mirbase.org)  (19). 
The putative DElncs and DEGs that shared miRNA binding 
loci by target prediction were considered as one potential 
lncRNA‑miRNA‑mRNA interaction (17,20,21).

Functional enrichment and pathway analysis. To explore 
the main functions and pathways of DEGs, the Database 
for Annotation, Visualization and Integrated Discovery 
(DAVID; https://david.ncifcrf.gov/) was used for the Gene 
Ontology  (GO)  (22,23) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway (24,25) enrichment analyses. 
DAVID is an integrated biological database which contains 
gene functional classification, pathway‑mining and clustering 
tools. These functions aim to systematically extract biological 
information from the uploaded gene lists (26).

The human disease database Malacards (http://www.
malacards.org/) was selected for the HCM‑related GO and 
KEGG pathway items in order to ensure the accuracy of the 
results. Malacards is an integrated compendium of human 
maladies and their annotations are mined from several 
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well‑known data sources. Malacards contain 14 annotation 
topics, including Summaries, Symptoms, Related diseases, 
Drugs and therapeutics, Gene and Expression, GO terms and 
Pathways (27). A P‑value was adjusted using the Benjamini 
method or the FDR in multiple testing calibrations. A P<0.05 
was selected as the threshold. The enrichment score was 
defined as the transformed‑log10 (P‑value).

Protein‑protein interaction (PPI) network of DEGs, screening 
for hub genes and lncRNA‑miRNA‑mRNA network. Search Tool 
for the Retrieval of Interacting Genes (STRING; version 10.5; 
https://string‑db.org/) is an online functional protein association 
network. The associations in STRING include direct (physical) 
and indirect (functional) interactions, as long as they are specific 
and biologically meaningful (28). The identified DEGs were 
input into STRING to unravel a potential PPI network. Hub 
genes are key genes playing a crucial role in biological processes. 
The regulation of other genes in the relevant pathway is often 
affected by hub genes. Therefore, hub genes are often considered 
an important target or a research hot spot (29). Hub genes can be 
screened according to the network topology. CytoHubba is an 

effective app of the Cytoscape version 3.6.1 (http://www.cyto-
scape.org/) plug‑in used to identify hub genes more accurately 
by 12 topological analysis methods (30). Cytoscape is an open 
source software platform for visualizing molecular interaction 
networks and biological pathways. These networks are inte-
grated with annotations of gene expression profiles and other 
data. Maximal Clique Centrality (MCC) was used to identify 
the top 20 hub genes. The paired lncRNA‑miRNA‑mRNA data 
were also input into Cytoscape software in order to generate a 
regulatory network image.

Drug prediction of hub genes. DrugBank (http://www.
drugbank.ca) contains more than 7,000 drug entries and 
4,000 non‑redundant proteins  (31). It is a comprehensive 
cheminformatic database including abundant biochemical 
and pharmacological details regarding drugs. DrugBank aids 
the identification of novel drug targets and the comparison 
of drug structures with potential mechanisms of action (32). 
The DEGs identified in the 3 mRNA datasets were input into 
DrugBank to examine their association with potential targeted 
drugs. The purpose of the present study was to explain the 
rationale of present drug therapy used for HCM and to explore 
additional potential target genes for future drug development.

Results

Detection of DElncs, DEmiRs and DEGs. The raw data of 
each dataset were normalized following data pretreatment. 
Fig. 2 demonstrates the boxplot of each sample prior to and 
following data normalization. A total of 2,234 DElncs (1,120 
upregulated and 1,114 downregulated) were identified in 
GSE68316, whereas 5 DEmiRs were identified in GSE36946, 
of which 2 were upregulated (miR‑373 and miR‑514) and 3 were 
downregulated (miR‑10a, miR‑144 and miR‑30c‑5p). A total 
of 154 DEGs were identified in GSE36961, of which 47 were 
upregulated and 109 downregulated. A total of 1,402 DEGs 
(365 upregulated and 1,037 downregulated) were identified in 
GSE68316. Finally, 16 DEGs (8 upregulated and 8 downregu-
lated) were identified in GSE32453. The volcano plots (Fig. 3) 
displayed the aberrantly expressed RNA molecules. A total of 
42 DEGs (35 upregulated and 7 downregulated) were finally 
screened in the 3 mRNA microarray datasets (GSE36961, 
GSE68316 and GSE32453) following data merging and 

Figure 1. Flow diagram of the dataset selection process. A total of 219 records 
out of the 324 records identified from the GEO databases, including 4 data-
sets, met the selection criteria. GEO, gene expression omnibus; lnc, long 
noncoding; miRNA, microRNA; HCM, hypertrophic cardiomyopathy.

Table I. Characteristics for GEO microarray in HCM patients.

No. of GEO
profile	 Type	 Source	 Case	 Control 	 Platform	 Annotation of platform

GSE36961	 mRNA	 cardiac tissue	 106	 39	 GPL15389	I llumina HumanHT‑12 V3.0 expression
						      beadchip
GSE36946	 miRNA	 cardiac tissue	 107	 20	 GPL8179	I llumina human v2 microRNA expression
						      beadchip
GSE68316	 lncRNA	 cardiac tissue	   7	   5	 GPL20113	C apitalBio Human LncRNA Microarray v2.0
GSE68316	 mRNA	 cardiac tissue	   7	   5	 GPL20113	C apitalBio Human LncRNA Microarray v2.0
GSE32453	 mRNA	 cardiac tissue	   8	   5	 GPL6104	I llumina humanRef‑8 v2.0 expression bead  chip

GEO, Gene Expression Omnibus; HCM, hypertrophic cardiomyopathy; lnc, long noncoding; miRNA, microRNA.
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removing the batch effect (Fig. 4). Following prediction and 
intersection process, 112 non‑redundant lncRNA‑miRNA 
pairs and 49 miRNA‑mRNA pairs containing 67 lncRNAs, 
5 miRNAs and 25 mRNAs were mined in the present study. 
Ultimately, 1,086 pairs of lncRNA‑miRNA‑mRNA interac-
tions were identified. The details of the predicted lncRNAs 
and mRNAs that were based on several prediction websites are 
listed in Tables SI and SII.

GO and KEGG analysis. GO and KEGG analyses were 
performed on the detected 42 DEGs to examine their biolog-
ical functions in detail. GO analysis described the results from 
3 categories: ‘Biological processes’ (BP), ‘cellular compo-
nents’ (CC) and ‘molecular functions’ (MF) (33). GO/KEGG 
analysis is considered to be a powerful tool in revealing 
biological mechanisms or functional pathways underlying 
observed patterns in genomics or transcriptomics. A total of 
36 GO terms (19 BP, 13 CC and 4 MF) and 30 KEGG terms 
were enriched. The significantly enriched HCM‑related GO 
terms mainly included the following: Actin filament binding, 
stress fiber formation, calcium ion binding and transforming 
growth factor‑β receptor binding (Fig. 5A). The top 10 KEGG 
pathways correlated highly with HCM. For example, the 
deficiency of tumor necrosis factor (TNF) receptor‑associated 

factor 5 could substantially aggravate cardiac hypertrophy, 
cardiac dysfunction and fibrosis (34). TNF‑α is an extremely 
important molecule used in cell proliferation, differentia-
tion, growth and metabolism, which is closely related to the 
occurrence of cardiac hypertrophy (35). Hypoxia‑inducible 
factor (HIF) can be induced during hemodynamical‑mediated 
hypertrophic growth and its induction is accompanied by path-
ological stress (36,37). These molecules play important roles 
in the identified pathways. The bubble plot offered a visual 
representation of the aforementioned pathways (Fig. 5B).

Construction of PPI, hub gene and lncRNA‑miRNA‑mRNA 
networks. The PPI network analysis aimed to study the 
molecular mechanism of diseases and identify novel drug 
targets from a systematic perspective. The STRING data-
base is designed to depict functional interactions between 
the expressed proteins by integrating known and predicted 
protein‑protein association data among various species (28). 
The PPI network was conducted by STRING to explore the 
interactions between proteins encoded by 42 DEGs. A median 
confidence 0.4 was selected as a cut‑off criterion. A total of 

Figure 3. Volcano plots of DElncs, DEmiRs and DEGs. Differentially expressed 
molecules were screened under the cut‑off criteria |log2FC| >1 and the adjusted 
P‑value (P<0.01). Green spots represented under‑expressed RNA molecules, 
while red spots represented overexpressed RNA molecules. Gray spots represent 
non‑differentially expressed molecules. (A) GSE68316, lncRNA; (B) GSE36946, 
miRNA; (C) GSE36961, mRNA; (D) GSE68316, mRNA; (E) GSE32453, 
mRNA; (F) DEGs identified in 3 mRNA datasets (GSE36961, GSE68316 and 
GSE32453). DElnc, differentially expressed long noncoding RNA; GEO, gene 
expression omnibus; HCM, hypertrophic cardiomyopathy; DEmiR, differen-
tially expressed microRNAs; DEGs, differentially expressed genes.

Figure 2. Box plot of each sample in the four GEO datasets prior to and 
following data normalization. The blue color represents the original signal 
values for each sample, while the red represents the normalized values. 
[(A) GSE32453; (B) GSE36946; (C) GSE36961; (D) GSE68316). GEO, gene 
expression omnibus.
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39 nodes (proteins encoded by genes) and 80 edges (connec-
tions between nodes) were screened following removal of the 
disconnected nodes in the network (Fig. 6A).

Furthermore, 1,086 pairs of lncRNA‑miRNA‑mRNA 
biomolecular interactions were integrated in a single network 
constructed by Cytoscape. The lncRNAs exhibited high 
tendency of aggregation with the miRNAs. miR‑30c‑5p and 
miR‑541 exhibited the highest number of lncRNA binding 
sites, suggesting that these 2 miRNAs could bind to lncRNAs 
when competing with other miRNAs. It is worth mentioning 
that lncRNA ENSG00000269821 and ENSG00000224078 
have binding sites for all the five miRNAs, which are thought 
to be of substantial significance and may provide clues to 
future researchers (Fig. 6B).

In the PPI network, some hub genes/proteins are highly 
connected with other proteins, suggesting a central regulatory 

role. CytoHubba provides a user‑friendly interface to examine 
the interactions among hub nodes in the biological network 
by topological analysis (30), which can aid the identification 
of the essential networks involved. The top 20 hub genes were 
mined by the MCC method (Fig. 6C).

Drug Prediction of DEGs. HCM can be divided into hypertro-
phic obstructive cardiomyopathy (HOCM) and hypertrophic 
nonobstructive cardiomyopathy according to the presence of 
obstruction in the left ventricular outflow tract. Medical treat-
ment should be the first choice for the majority of patients. 
Therefore, it is vital to select the most suitable drug candi-
date. At present, the main therapeutic drugs for HOCM are 
β‑blockers, calcium channel blockers and amiodarone (38).

The DrugBank database is a unique, comprehensive drug 
repository covering detailed drug function, formulation, basic 

Figure 4. Heatmap of integrated DEGs from 3 mRNA datasets (GSE36961, GSE68316 and GSE32453). Red represents upregulated DEGs, while green 
represents downregulated DEGs. DEGs, differentially expressed genes; GEO, gene expression omnibus.
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structure and drug target information (31). The DEGs were 
inserted into DrugBank and the targeted drugs of these genes 
were predicted. The approved drugs that were associated with 
HCM were selected from 536 results (Table II). The majority 
of these drugs were calcium channel blockers, angiotensin 

Figure 6. Molecular regulatory interaction network. (A)  Protein‑protein 
interaction network. The nodes represent proteins encoded by genes and the 
edges represent connections between the nodes. (B) The long noncoding 
RNA‑miRNA‑mRNA biomolecular network. The size of the node stands for the 
number of interactions between different molecules. (C) The top 20 hub genes 
were depicted in a network using the cytoHubba plugin. The plot displayed the 
ranking of the 20 molecules by the shade of each color: The darkest red marked 
the first, the lightest yellow marked the last. miRNA, microRNA.

Figure 5. Bubble plot of the GO/KEGG analysis of DEGs. (A) The top 5 items 
of ‘biological process’, ‘cellular component’ and ‘molecular function’ analysis 
were displayed with the parameters gene count, gene ratio and ‑log10 P‑value. 
(B) Top 10 items of the KEGG pathway. DEGs, differentially expressed genes; 
GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Table II. The predicted drugs of DEGs.

	A ccession
Name	 number	 Groups	D escriptiona

Captopril	 DB01197	A pproved	C aptopril is a potent, competitive inhibitor of ACE and may be
	 		  used in the treatment of hypertension.
Ramipril	D B00178	A pproved	R amipril is a prodrug belonging to the ACEI class of medications, 
			   may be used in the treatment of hypertension, myocardial
			   infarction, stroke.
Labetalol	D B00598	A pproved	 Blocker of both α‑ and β‑adrenergic receptors that is used as an
			   antihypertensive.
Verapamil	D B00661	A pproved	A  calcium channel blocker that is a class IV anti‑arrhythmia agent.
Mexiletine	D B00379	A pproved, Investigational	A ntiarrhythmic agent pharmacologically similar to lidocaine. It may
			   have some anticonvulsant properties.
Nicardipine	D B00622	A pproved, Investigational	A  potent calcium channel blockader with marked vasodilator action. 
Propranolol	D B00571	A pproved, Investigational	A  widely used non‑cardioselective β‑adrenergic antagonist. Used in
			   acute myocardial infarction, arrhythmias, hypertension.
Diltiazem	D B00343	A pproved, Investigational	A  benzothiazepine derivative with vasodilating action due to its
			   antagonism of the actions of the calcium ion in membrane functions.
Amyl Nitrite	D B01612	A pproved	A n antihypertensive medicine. Amyl nitrite is bioactive in mammals, 
			   being a vasodilator which is the basis of its use as a prescription
			   medicine.
Propafenone	D B01182	A pproved	A n antiarrhythmia agent that is particularly effective in ventricular 
			   arrhythmias. It also has weak β‑blocking activity.
Nifedipine	D B01115	A pproved	 Both a long and short‑acting 1,4‑dihydropyridine calcium channel
			   blocker, preventing calcium‑dependent myocyte contraction and
			   vasoconstriction.
Labetalol	D B00598	A pproved	 Blocker of both α‑ and β‑adrenergic receptors that is used as an
			   antihypertensive.
Ramipril	D B00178	A pproved	R amipril is a prodrug belonging to the ACEI class of medications, .
			   may be used in the treatment of hypertension, myocardial infarction,
			   stroke
Nimodipine	D B00393	A pproved, Investigational	A  calcium channel blocker. It acts primarily on vascular smooth
			   muscle cells by stabilizing voltage‑gated L‑type calcium channels in
			   their inactive conformation.
Benazepri	D B00542	A pproved, Investigational	C an be converted into benazeprilat, a non‑sulfhydryl ACEI. A medi
			   cation used to treat hypertension, congestive heart failure and
			   chronic renal failure.
Valsartan	D B00177	A pproved, Investigational	 Valsartan is an ARB that may be used to treat hypertension, isolated
			   systolic hypertension, left ventricular hypertrophy.
Ephedrine	D B01364	A pproved, Investigational	A ffect the rate or intensity of cardiac contraction, blood vessel
			   diameter, or blood volume.
Verapamil	D B00661	A pproved	A  calcium channel blocker that is a class IV anti‑arrhythmia agent.
Digoxin	 DB00390	 Approved	 Control ventricular rate in atrial fibrillation and in the management
			   of congestive heart failure with atrial fibrillation.
Diltiazem	D B00343	A pproved, Investigational	A  benzothiazepine derivative with vasodilating action due to its
			   antagonism of the actions of the calcium ion in membrane functions.
Timolol	D B00373	A pproved	A  β‑adrenergic antagonist similar in action to propranolol. Timolol
			   has been proposed as an antihypertensive, antiarrhythmic and anti
			   angina agent.
Lisinopril	D B00722	A pproved, Investigational	L isinopril is a potent, competitive inhibitor of ACE.
Benazepril	D B00542	A pproved, Investigational	C an be converted into benazeprilat, a non‑sulfhydryl ACEI. A medi
			   cation used to treat hypertension, congestive heart failure and
			   chronic renal failure.
Penbutolol	D B01359	A pproved, Investigational	 Penbutolol is a drug in the β‑blocker class used to treat hypertension.

aThe description of drug was extracted from DrugBank. ACE, angiotensin‑converting enzyme; ACEI, angiotensin‑converting enzyme inhibitor; 
ARB, angiotensin‑receptor blocker; DEG, differentially expressed genes.
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converting enzyme inhibitors  (ACEIs) and/or β‑blockers. 
The drug effects included the following: Controlling heart 
rate or arrhythmia, increasing ventricular filling and terminal 
diastolic volume, reducing the contractility of ventricle and 
improving the compliance of myocardium (39). These effects 
were consistent with the guidelines of HCM diagnosis and 
treatment. However, ACEIs, angiotensin‑receptor blockers 
(ARBs) or diuretics can enhance myocardial contractility or 
reduce cardiac afterload, thereby increasing left ventricular 
outflow tract obstruction. Therefore, HOCM patients should 
be treated with caution.

Discussion

HCM is a primary cardiovascular disease, which has been 
regarded as the most common risk factor of sudden death 
among young people; it is now well accepted that multiple 
mutations in gene encoding regions are responsible for the 
development of this disease (40). Therefore, investigating the 
etiology of HCM and identifying effective therapeutic indica-
tors is of utmost urgency.

In recent years, several studies (41,42) have investigated 
the functions and clinical implications of non‑coding RNAs 
in HCM. However, the impact of RNA crosstalk on HCM has 
not been previously addressed. The present study integrated 
the lncRNA, miRNA and mRNA expression profiles and 
produced an integrated lncRNA‑miRNA‑mRNA regulatory 
network, which provided insight at the post‑transcriptional 
level of gene regulation. Moreover, key molecules involved in 
multiple physiopathological processes of HCM were explored 
by the application of bioinformatics technology and big data 
mining. Targeted drugs were predicted by DrugBank using 
identified hub genes, indicating that they may be optimal 
candidate drugs for future therapy.

The identified DEmiRs and DEGs exhibited consistency 
with other microarray analysis on cardiovascular disease‑asso-
ciated targets. For example, the underexpressed miR‑373 and 
overexpressed miR‑10 were consistently expressed in the 
plasma using microarrays and further validated by quantitative 
PCR analysis in 55  HCM patients with a moderate diag-
nostic value (43). The high throughput sequencing identified 
miR‑30c‑5p and specific mRNA targets that could affect heart 
cells by causing nuclear factor of activated T‑cells hypertrophy 
and activating cardiac hypertrophy signaling (44). The plasma 
levels of miR‑144‑3p were elevated in patients with ventricular 
arrhythmia (45). ALOX5AP is a crucial regulatory factor used 
in the biosynthesis of inflammatory leukotrienes. Previous 
studies have reported that genetic variations in ALOX5AP 
exhibit significant associations with ischemic stroke and 
myocardial infarction  (46,47). NFKBIA polymorphisms 
modulated the risk of coronary artery disease in the Chinese 
Uygur population by regulating various cytokines including 
interleukin‑6, which is a key mediator of the inflammatory 
process and atherosclerotic plaque formation  (48). These 
studies were consistent with the present findings.

With regard to the analysis of lncRNAs, the results of the 
present study were not fully investigated in previous studies. 
The Myosin Heavy Chain Associated RNA Transcripts (Mhrt) 
lncRNA was reported as cardiac‑specific and abundant in 
adult hearts (49). Mhrt protected the heart from hypertrophy 

and failure by interacting with chromatin (49). Yang et al (50) 
performed lncRNA and mRNA microarray analysis on 
myocardial tissues from 7 HCM patients and 5 controls, and 
identified 965 upregulated and 461 downregulated lncRNAs. 
Bioinformatics analysis indicated that lncRNA‑co‑expressed 
mRNAs were mainly enriched in ribosome and oxidative phos-
phorylation modules. Overexpression of genes in complex I 
of the oxidative phosphorylation pathway may contribute to 
physiological hypertrophy of the heart.

At present, β‑blockers (propranolol and penbutolol) and 
calcium antagonists (nifedipine, verapamil and diltiazem) are 
mainly prescribed for pharmacological treatment of HCM in 
routine clinical practice (51,52). Propranolol was reported to 
reduce the A‑wave ratio in the apex cardiogram and could be 
indispensable in relieving emergency symptoms in patients 
with HCM. Calcium antagonists can control myocardial 
contractility, reduce the pressure gradient of left ventricular 
outflow tract and improve myocardial compliance and 
ventricular diastolic function. The majority of the drugs that 
were predicted in the present study are already in clinical use, 
suggesting that the screened genes were associated with the 
pathogenic mechanism of HCM. The remaining predicted 
drugs that are not currently used for clinical treatment can be 
the starting point for subsequent future investigations.

Data mining can extract the relevant biological informa-
tion from high‑dimension data. The integration of multiple 
histological techniques will become a new trend of disease 
diagnosis in the era of precision medicine. These molecules 
have the potential to be used as disease biomarkers in person-
alized medicine for patients and can improve the diagnosis, 
treatment and prevention of several diseases.

The present study contains certain limitations: i)  The 
lncRNA‑miRNA‑mRNA large‑scale crosstalk network did not 
indicate whether these RNAs were co‑expressed in the same 
tissues. ii) The present study is a preliminary analysis, which 
requires validation in a large population by PCR or western 
blot analyses. In addition, the biological mechanism of specific 
non‑coding RNAs requires verification by animal or cellular 
studies. iii) The specificity of the identified DElncs, DEmiRs 
and DEGs for HCM requires investigation in future studies.

In conclusion, the present study generated a holistic view 
of a candidate lncRNA‑miRNA‑mRNA network for HCM and 
proposed potential predicted drugs that could be used for this 
disease by integrating several microarray data. The authors 
hope that the present study will be beneficial for discovering 
new biomarkers or therapeutic drugs for the reduction of the 
risk of this life‑threatening disease.
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