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Immunotherapy explores several strategies to enhance the host immune system’s ability
to detect and eliminate cancer cells. The use of antibodies that block immunological
checkpoints, such as anti–programed death 1/programed death 1 ligand and cytotoxic
T-lymphocyte–associated protein 4, is widely recognized to generate a long-lasting
antitumor immune response in several types of cancer. Evidence indicates that the
elimination of tumors by T cells is the key for tumor control. It is well known that
costimulatory and coinhibitory pathways are critical regulators in the activation of T
cells. Besides blocking checkpoints inhibitors, the agonistic signaling on costimulatory
molecules also plays an important role in T-cell activation and antitumor response.
Therefore, molecules driven to costimulatory pathways constitute promising targets
in cancer therapy. The costimulation of tumor necrosis factor superfamily receptors
on lymphocytes surface may transduce signals that control the survival, proliferation,
differentiation, and effector functions of these immune cells. Among the members of the
tumor necrosis factor receptor superfamily, there are 4-1BB and OX40. Several clinical
studies have been carried out targeting these molecules, with agonist monoclonal
antibodies, and preclinical studies exploring their ligands and other experimental
approaches. In this review, we discuss functional aspects of 4-1BB and OX40
costimulation, as well as the progress of its application in immunotherapies.

Keywords: immunotherapy, T cell costimulation, TNFR, 4-1BB, OX40, cancer therapy, aptamers, agonistic
antibody

INTRODUCTION

Immunotherapy explores the host immune system to enhance antitumor response. The inhibition
of immunological checkpoints, on T cells, such as anti–programed death 1 (PD-1)/programed
death 1 ligand (PD-L1) and cytotoxic T-lymphocyte–associated protein 4 (CTLA-4), has been
shown to generate long-lasting antitumor immune responses in cancer therapy. However, this
approach is effective in only 30% of patients because of mechanisms of tumor resistance (Chen
and Mellman, 2013; Swart et al., 2016). There are several signaling mechanisms that may drive
T-cell phenotype switching the balance between immunotolerance and surveillance.
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The tumor necrosis factor receptor superfamily (TNFRSF)
encodes T-cell costimulatory receptors that may regulate survival,
proliferation, differentiation, and effector functions of immune
cells, being a potential target for immunotherapy (Calderhead
et al., 1993; Godfrey et al., 1994; Wilcox et al., 2002; Zhang et al.,
2010; Melero et al., 2013).

Early experiments with activated T cells have described the
cell surface 4-1BB receptor (Kwon and Weissman, 1989; Schwarz
et al., 1993). The 4-1BB receptor, also known as TNFRSF9 or
CD137, is a 24-kDa protein located on chromosome 1 p36
(Pollok et al., 1993; Hurtado et al., 1997), which encodes 255
amino acids harboring 64% homology to the murine sequence
(Alderson et al., 1994; Zhou et al., 1995; Chin et al., 2018).
The 4-1BB receptor is expressed on activated T and B cells,
monocytes, macrophages, dendritic cells (DCs), regulatory T
cells (Tregs), and natural killer (NK) cells (Pollok et al.,
1993; Langstein et al., 1998; Melero et al., 1998; Laderach
et al., 2002; Kim et al., 2008; Schoenbrunn et al., 2012). The
4-1BB receptor harbors two cytoplasmic domains that can
bind to the TNFR-associated factor (TRAF) in T cells. The
mammal TRAF may exhibit conserved C-terminal domains
(Bouwmeester et al., 2004; Xu et al., 2004), and CD137 can
interact with TRAF1, TRAF2, and TRAF3 (Jang et al., 1998).
The interaction between CD137, TRAF1, and TRAF2 activates
different signaling cascades such as nuclear factor κB (NF-
κB), MAPK (protein kinase activated by mitogen) (Shuford
et al., 1997; Arch and Thompson, 1998; Kim et al., 1998),
ERK (kinase regulated by extracellular signal), and JNK (Jun
N-terminal kinase) (Rothe et al., 1995; Froelich et al., 1996;
Arch and Thompson, 1998; Jang et al., 1998; Saoulli et al.,
1998; Cannons et al., 2001; Song et al., 2004; Sabbagh et al.,
2008). The activation of the NF-κB pathway upregulates survival
genes such as Bcl-XL and Bfl-1, downregulates proapoptotic
molecules such as BIM, and transmits signals that stimulate
cell division (Hockenbery et al., 1990; Lee et al., 2002;
Bukczynski et al., 2003). Moreover, the 4-1BB/4-1BB ligand
(4-1BBL) signaling triggers biochemical signals that increase
TH1 cytokines, such as interleukin 6 (IL-6), IL-8, TNF, IL-12,
and interferon γ (IFN-γ); suppress TH2 cytokines; potentiate
activation, survival, proliferation, and cytotoxicity of T cells;
increase IL-2 production; and provoke the maturation of DCs
(Shuford et al., 1997; Kim et al., 1998; Laderach et al., 2002;
Lee et al., 2002; Wen et al., 2002; Lippert et al., 2008;
Fröhlich et al., 2020).

The expression of 4-1BB may be experimentally induced in
human and murine T cells, using different mitogenic agents such
as PMA (phorbol 12-myristate 13-acetate), phytohemagglutinin,
anti-CD3, lipopolysaccharide, and IL-1β (Pollok et al., 1995;
Zhou et al., 1995; Tan et al., 2000). The receptor interacts with
4-1BBL, on the surface of activated antigen-presenting cells
(APCs), B cells, macrophages, and other myeloid-derived cells
(Goodwin et al., 1993; Pollok et al., 1994; DeBenedette et al.,
1997). The expression of 4-1BBL also was observed in cancer
cells (Salih et al., 2000). The 4-1BB costimulation of T cells does
not require additional CD28 signaling when a strong engagement
of T-cell receptors (TCRs) occurs, producing high levels of IL-
2 and enhancing TH1 response and cytotoxic T-cell activity

(Shuford et al., 1997; Saoulli et al., 1998; Takahashi et al., 1999;
Cannons et al., 2000; Dawicki et al., 2004).

Another T-cell costimulatory receptor that belongs to the
TNFRSF family is the OX40 receptor, also known as CD134,
TNFRSF4, and ACT35. The OX40 receptor and its ligand
(OX40L, TNFSF4, CD252) were first described in mice and
harbor 63% homology to that of human (Paterson et al., 1987;
Mallett et al., 1990; Godfrey et al., 1994). The human OX40 gene
is located in on chromosome 1p36, encodes 277 amino acids, a
29-kDa protein (Latza et al., 1994).

The OX40 is expressed in activated CD4+ and CD8+ T
cells, Tregs, T follicular helper cells, NK cells, and neutrophils
(Mallett et al., 1990; Godfrey et al., 1994; Melero et al., 1998;
Bansal-Pakala et al., 2004; Baumann et al., 2004; Vu et al.,
2007; Zaini et al., 2007; Tahiliani et al., 2017). The antigenic
stimulation of the TCR by major histocompatibility complex
molecules upregulates OX40 expression on the surface of T
cells, which may be potentiated by a CD28–CD80 signaling
(Walker et al., 1999; Rogers et al., 2001). The OX40 peak
expression is seen from 24 to 72 h after the TCR activation
(Rogers et al., 2001; Song et al., 2008; Sadler et al., 2014). Once
expressed, OX40 can bind to OX40L, which is mainly expressed
on APCs (Linton et al., 2003; Jenkins et al., 2007; Karulf et al.,
2010). The OX40/OX40L interaction triggers a signaling cascade,
similar to 4-1BB/4-1BBL, inducing transcriptional changes to
modulate the immune response, such as T-cell proliferation
and survival. The immunomodulatory functions associated with
OX40, such as the PKB pathway, promote the inhibition of
cellular apoptosis, as well as increase the signaling by TCR
antigenic stimuli (Song et al., 2004). The OX40 stimulation
activates NF-κB pathway, which indirectly increases expression
of apoptosis-suppressing proteins prolonging cell survival, and
the activated T-cell nuclear factor (NFAT) pathway that leads
to an increase in the synthesis of cytokines such as IL-2,
IL-4, IL-5, and IFN-γ (So and Croft, 2007). Although, some
data suggest the importance of OX40/OX40L signaling for
primary and memory TH2 response (Salek-Ardakani et al.,
2003; Jenkins et al., 2007; Pattarini et al., 2017), there are also
evidences that OX40 costimulation plays an important role in
the TH1 response (Weinberg et al., 1999; De Smedt et al., 2002;
Gajdasik et al., 2020). Therefore, it was observed that OX40
costimulation may enhance both a TH1 and a TH2 response
without supporting the role for switching polarization of CD4+

T cells (De Smedt et al., 2002).
In this review, functional aspects of 4-1BB and OX4 will

be discussed, as well as the progress of its application in
immunotherapies.

COSTIMULATION OF 4-1BB AND OX40
RECEPTORS ENHANCES T-CELL
ACTIVITY AND POTENTIATES
ANTITUMOR RESPONSE

Both 4-1BB and OX40 costimulatory signaling on T cells are
reported to boost antitumor immune responses (Figure 1).
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FIGURE 1 | Costimulation by 4-1BB and OX40 TCRs and the overall effects on antitumor T-cell immunity. 4-1BB and OX40 bind to their ligands, triggering a
signaling cascade leading to T-cell activation and expansion of cytotoxic CD8+ T lymphocytes. Costimulation of OX40 may also inhibit the FOXP3 transcription factor
on CD4+ T cells, impairing the Treg function, diminishing tumor immunosuppression, and boosting the antitumor immune response. The 4-1BB/4-1BBL signaling
triggers biochemical signals that increase TH1 cytokines and suppress TH2 cytokines; potentiate activation, survival, proliferation, and cytotoxicity of T cells; and
provoke the maturation of dendritic cells. The OX40/OX40L interaction triggers a signaling cascade, similar to 4-1BB/4-1BBL, inducing transcriptional changes to
modulate the immune response. The OX40 costimulation may promote T-cell proliferation and survival. The agonistic signaling transduced by OX40 on Treg may
impair FOXP3 expression, enhancing antitumor response.

The costimulatory 4-1BB signaling induces clonal expansion,
proliferation, cytokine secretion, and long-term T-cell survival
(Wen et al., 2002). The 4-1BB costimulation improves the
mitochondrial function of T cells, leading to greater longevity
and memory capacity of these cells (Menk et al., 2018). Although
4-1BB costimulation transduces a robust costimulatory signal,
mainly acting on CD8+ T cells (Habib-Agahi et al., 2007), mice
that constitutively express 4-1BB on CD4+ T cells exhibited
heightened and sustained proliferative activity and enhancement
of T-cell priming, driving TH1 immune responses, increasing
the number of tumor-infiltrating lymphocytes (TILs) in tumor
masses, augmenting IFN-γ production by T-cell population,
mediating tumor suppression, and prolonging mice survival
(Kim et al., 2003). This persistence of T cells is crucial for the
success of chimeric antigenic receptor (CAR) T-cell therapy.

The CAR has an extracellular domain that recognizes a target
antigen, transducing a signaling to an intracellular domain
that boosts T-cell activation. This technology is being used
mainly in hematological cancers, with promising results (Kalos
et al., 2011; Porter et al., 2011). CAR T cells may employ a
cytoplasmic domain of 4-1BB molecule to enhance the antitumor
efficacy, the so-called third generation of CART cells. The 4-1BB
intracellular signaling domain provides a second costimulatory
signal that makes the CAR T-cells more effective and long lasting
(van der Stegen et al., 2015).

Similar to 4-1BB/4-1BBL, the OX40/OX40L pathway also
triggers strong costimulatory signaling on CD4+ and CD8+

T cells, although this effect is more prominent in CD4+ T
cells (Xiao et al., 2004). The OX40 costimulatory signaling
promotes the activation, expansion, proliferation, differentiation,
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proinflammatory cytokine production, supporting survival of
T lymphocytes, and tumor regression (Rogers et al., 2001;
Linch et al., 2016; Peng et al., 2019; Kuang et al., 2020).
It was demonstrated that high expression of OX40 in the
tumor-infiltrating immune cells in small cell lung cancer
induced increased levels of IFN-γ expression and favorable
prognosis in patients (Massarelli et al., 2019). The OX40
costimulatory signaling on exhausted CD8+ T cells could
rescue their proliferative potential and cytokine production
(Buchan et al., 2015).

In addition, agonistic OX40 signaling in Tregs may impair the
expression of FOXP3, which is a master key to regulate the Treg-
immunosuppressive phenotype (So and Croft, 2007; Vu et al.,
2007; Piconese et al., 2008). As Tregs may antagonize antitumor
response inhibiting T-cell proliferation (Liu et al., 2009; Xu et al.,
2010; Chang et al., 2012), the costimulation of OX40 may inhibit
the immunosuppressive activity of Tregs and also the conversion
of effector T (Teff) CD4+ T cells into a regulatory T-cell
phenotype (So and Croft, 2007; Piconese et al., 2008; Kitamura
et al., 2009). The role of agonistic 4-1BB signaling on Tregs
is controversial. Although most studies demonstrated 4-1BB
agonistic signaling enhanced the immunosurveillance activity,
there are other reports that describes immunosuppressive
activity, as expanding Tregs (Irie et al., 2007; Zhang et al., 2007;
Lubrano di Ricco et al., 2020).

ENHANCING ANTITUMOR IMMUNITY BY
AGONISTIC ANTIBODIES DRIVEN TO
4-1BB AND OX40 T-CELL
COSTIMULATION

The agonistic 4-1BB or OX40 costimulation by monoclonal
antibodies (mAbs) is widely explored in cancer immunotherapy
(Wilcox et al., 2002; Vinay and Kwon, 2014). There are
several clinical trials exploring the therapeutic benefit of mAbs
(Table 1). The TNFRSF-targeted costimulatory strategy may
be used in combination with chemotherapy and radiotherapy,

improving antitumor response (Shi and Siemann, 2006; Ju
et al., 2008). 4-1BB agonist antibodies promote increased
T-cell proliferation and survival. These antibodies may also
activate NK cells (Klatzmann et al., 1984; Lin et al., 2008;
Rajasekaran et al., 2015; Makkouk et al., 2016). The binding
of an agonistic mAb induces 4-1BB cell surface receptor
internalization, which may trigger signaling from endosomatic
compartments, as the polyubiquitination of K63 to recruit
TRAF2 and starting the T-cell activation cascade (Martinez-
Forero et al., 2013). The agonistic 4-1BB antibody may act
on depletion of Treg cells, and this stimulus seems to be
associated with its FCγR engagement and antibody isotype.
It was observed the immunoglobulin G1 (IgG1) mAb isotype
induced an enhanced CD8 T-cell costimulation in an established
solid tumor microenvironment. The IgG2a isotype has shown
intratumoral Treg depletion and optimal antitumor activity in
preclinical model (Buchan et al., 2018). The main 4-1BB agonist
antibodies used in the clinic are utomilumab (PF-05082566)
and urelumab (BMS-663513). Both mAbs are already being
used in cancer clinical trials. Whereas the IgG2 utomilumab
is safe with relatively low efficacy, the IgG4 urelumab has a
great antitumor efficacy, but causes liver damage (Segal et al.,
2014; Gopal et al., 2017; Tolcher et al., 2017). In addition,
urelumab can induce a cluster of 4-1BBL–dependent receptors,
unlike utomilumab (Chin et al., 2018). The preliminary results
of urelumab trials in 2008 demonstrated efficacy against cancers
in advanced stages. However, the treatment with mAb induced
liver damage, interrupting the clinical trials. Toxicity is suggested
as a consequence of FcγRIIB-mediated CD8+ T-cell activation
in the liver, once FcγRIIB is expressed on liver sinusoidal
endothelial cells and Kupffer cells (Qi et al., 2019). Urelumab
has been evaluated as monotherapy or in combination with
other drugs, such as rituximab, cetuximab, elotuzumab, and
nivolumab, at lower doses, with no damage to the liver. When
associated with rituximab, in the treatment of patients with
relapsing or refractory non-Hodgkin lymphomas, the urelumab
has demonstrated safety, tolerability, and improvement of the
host immune response. Utomilumab promoted a long-lasting

TABLE 1 | Clinical protocols in progress using costimulatory anti–4-1BB and anti-OX40 monoclonal antibodies.

mAbs Target Phase Tumor Combination Protocol

Utomilumab 41BB II HER2 + Breast cancer Avehnnab (anti-PD-Ll) NCT03414658

Utomilumab 41BB I HER2 + Breast cancer Trasluzumab (anti-HER2) NCT03364348

Urelumab 41BB I Glioblastoma Nivolumab (anti-PDl) NCT02658981

AGEN2373 41BB I Advanced Solid Tumor – NCT04121676

MEDI0562 OX40 I Head/Neck squamous cell carcinoma Melanoma – NCT03336606

MEDI6469 OX40 lb Head/Neck squamous cell carcinoma Surgical resection NCT02274155

MEDI6469 OX40 I/Ib Metastatic colorectal cancer Radiofrequency ablation NCT02559024

INBRX-106 OX40 I Locally Advanced/Metastatic tumor Pembrolizumab NCT04198766

PF04518600 OX40 I/II Acute myeloid leukemia Avelumab (anti-PD-Ll) Azacitidine NCT03390296

PF04518600 OX40 II Metastatic kidney cancer Axitinib (TK inhibitor) NCT03092856

PF04518600 OX40 II Triple negative breast cancer Avelumab (anti-PD-Ll) NCT03971409

PF-04518600 OX40 I/II Advanced malignancies Avelumab (antiPD-Ll) Radiation NCT03217747

INCAGN01949 OX40 I/II Pancreatic cancer VLP-encapsulated TLR9 NCT04387071

SL-279252 OX40 I Advanced solid tumor/Lymphoma Fc anti-PDl NCT03894618
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response and reduced toxicity in patients with lymphomas. This
mAb is being extensively tested in combination with other
immunotherapies for different tumors, such as non-small cell
lung cancer, kidney, head, and neck cancer (Tolcher et al., 2017;
Gopal et al., 2020).

Innovative strategies based on bispecific antibodies also may
be used to overcome systemic toxicity of agonistic 4-1BB,
targeting the costimulatory activity to tumor site. A bispecific
4-1BB/HER-2 antibody was engineered to bind HER-2–positive
tumor cells and to costimulate T cells. This bispecific antibody
was shown to inhibit tumor growth in humanized mice model
(Hinner et al., 2019).

In addition to the costimulatory 4-1BB mAbs, several studies
have also demonstrated the antitumor effect of OX40 agonist
antibodies. Mice treated with OX40 mAbs accumulated CD4+

T cells and augmented CD4+ T-cell survival and developing
memory T cells (Cannons et al., 2001; Tolcher et al., 2017).
The OX40 agonistic antibody may inhibit immune tolerance
(Gramaglia et al., 2000; Maxwell et al., 2000).

The use of OX40 agonistic antibody in preclinical models
has shown tumor regression in sarcomas, melanoma, colon
carcinoma, and glioma (Kjaergaard et al., 2000; Weinberg et al.,
2000; Andarini et al., 2004). In several preclinical and clinical
models, OX40 agonist antibodies induce tumor regression due
to their ability to prevent the suppression of antitumor immune
responses mediated by Tregs. The OX40 costimulation may
inhibit Treg activity in three different ways: (i) inhibiting the
activity of natural Treg or even the conversion of T cells
to Treg phenotype, due to impairing of FOXP3 expression
(So and Croft, 2007; Vu et al., 2007; Song et al., 2008); (ii)
reducing the suppressive activity by increasing the production
of IL-2 and other cytokines (Valzasina et al., 2005); and (iii)
depleting intratumoral Treg cells in an FcγR-dependent manner
(Bulliard et al., 2014).

A phase I clinical trial in patients, with incurable metastatic
carcinoma, lymphoma, or sarcoma (NCT01644968), using
9B12, a murine agonistic anti-human OX40 mAb, demonstrated
that OX40 mAb treatment induced proliferation of CD4+

and CD8+ T cells and NK cells, enhanced production of
IFN-γ by CD8+ T cells, boosted T- and B-cell antitumor
reactivity, and increased memory T cells (Curti et al.,
2013). The MOXR 0916, also known as pogalizumab, is a
humanized agonistic IgG antibody specific for OX40 that has
immunostimulatory and antineoplastic activities. Pogalizumab
binds and selectively activates OX40. The activation of OX40
promotes the proliferation of Teff lymphocytes and inhibits
the activity of Treg cells in the presence of tumor antigens
(Infante et al., 2016).

The combination of agonistic OX40 mAb to the PDL1
inhibitor atezolizumab is being tested in patients who have
advanced solid neoplasms (NCT02410512). Recently, Kuang
et al. (2020) reported the development of a new anti-OX40
antibody, the IBI101. This mAb promotes both FcγR-dependent
and independent agonistic activities. The combination of IBI101
and anti–PD-L1 has shown a better inhibition of tumor growth in
mice model, when compared to the combination of pogalizumab
and anti–PD-L1 (Kuang et al., 2020).

There are several clinical trials exploring the application of
costimulatory anti-OX40 mAbs as adjuvants in other therapies,
as anti-OX40 combined to chemotherapy and radiotherapy
(NCT01303705), anti-OX40 combined to other immunotherapy
and chemotherapy (NCT03390296), and anti-OX40 combined to
radiotherapy (NCT01862900, NCT02559024), among others.

AGONISTIC SIGNALING STRATEGIES
MEDIATED BY THE TNFSF LIGANDS
4-1BBL AND OX40L POTENTIATE T
CELL–MEDIATED ANTITUMOR
RESPONSE

As reported above, agonistic TNFRSF-driven antibodies may
exhibit toxicity associated with the systemic use, as the expression
of TNFRs is ubiquitous, and, consequently, the action of these
antibodies is not specific to tumor microenvironment (Ascierto
et al., 2010). Therefore, a challenge faced by researchers is
to induce a tumor-specific effect, which may reduce toxicity.
Back in 2009, the group of Shirwan has developed a murine
recombinant 4-1BBL molecule fused to streptavidin (SA–4-
1BBL) that exhibited less toxicity when compared to agonistic
antibody, lacking FcγR activation (Schabowsky et al., 2009). SA–
4-1BBL forms tetramers and oligomers in soluble form, inducing
a powerful T-cell costimulatory activity. Further studies have
shown this molecule to be safe and effective in murine model of
cervical cancer (Sharma et al., 2010). SA–4-1BBL could induce an
efficient CD4+ T-cell activation while blocking the development
of CD4+ Tregs, increasing the Teff-to-Treg ratio (Curti et al.,
2013). Prophylactic administration of SA–4-1BBL to tumor-
challenged mice was shown to prevent tumor growth, and this
was dependent on CD4+ T cell, NK, and IFN-γ production
(Barsoumian et al., 2016).

Murine studies with 4-1BBL have shown that NK cells are
activated and may respond to the antitumor activity due to 4-
1BBL administration (Houot et al., 2009). Dowell et al. have
demonstrated that stimulation of human PBMC, both from
healthy donors and ovarian carcinoma patients with soluble
4-1BBL and IL-2, promoted expansion of CD56+ NK cells
(Dowell et al., 2012). Cancer cells transduced with 4-1BBL
promote expansion of cytotoxic T cells (Sharma et al., 2010;
Barsoumian et al., 2016), as well as NK cells (Gong et al., 2010).
It was also observed that stimulation of human NK cells with
recombinant 4-1BBL (rh4-1BB) in combination to anti–HER-2
therapy (trastuzumab) enhanced antitumor cytotoxicity in gastric
cancer cells (Misumi et al., 2018).

The 4-1BBL has also been used in cell-based strategies
to stimulate TILs. Gene-pulsed DCs with 4-1BBL enhanced
IFN-γ production and T-cell activation (Youlin et al., 2013).
A lipid-based nanoparticle harboring 4-1BBL is being used
for T-cell costimulation, in clinical trials for cancer therapy
(NCT03323398, NCT03739931).

As seen for 4-1BBL, the OX40L-expressing cells also
stimulate antitumor response. Intratumoral administration
of OX40L-expressing DCs promoted the generation of
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tumor-specific CD4+ and NK T cells, contributing to impaired
tumor growth (Zaini et al., 2007). Modification of tumor cells
with an adenovirus encoding OX40L promoted an efficient
TH1 immune response associated with cytotoxic T lymphocytes
(Andarini et al., 2004).

As observed for combinations of costimulatory mAbs, the
OX40L and 4-1BBL dual costimulation has been shown to be
effective in reducing tumor growth and enhances mainly the
CD8+ T-cell response (Weinberg et al., 2000; Cuadros et al.,
2005; Lee et al., 2006; Gray et al., 2008; Redmond et al., 2009;
Manrique-Rincón et al., 2017). We and others have shown
that the synergy between OX40/OX40L and 4-1BB/4-1BBL also
contributes to enhance antitumor immune response (Lee et al.,
2004, 2006; Munks et al., 2004; Manrique-Rincón et al., 2017; Fu
et al., 2020). Indeed, our group has previously developed tumor-
derived vaccines using B16 melanoma cells line, transduced with
4-1BBL and/or OX40L. We have shown that combination of
these vaccines increased antitumor T cell–mediated cytotoxicity,
reduction of Tregs, and contributing to tumor rejection in vivo,
besides generating a protective effect on rechallenged animals
(Manrique-Rincón et al., 2017). Moreover, extracellular vesicles
(EVs) secreted by 4-1BBL and OX40L B16 vaccines were shown
to induce T-cell proliferation and inhibit the generation of
inducible Treg in vitro (Semionatto et al., 2020). These findings
highlight the exploration of tumor-derived EVs as a potential tool
for immunotherapy (Zaini et al., 2007).

OLIGONUCLEOTIDE-DERIVED
APTAMERS MAY BE ENGINEERED AS
COSTIMULATORY MOLECULES TO
ENHANCE ANTITUMOR IMMUNITY

Aptamers are small molecules of single-stranded RNA or DNA
oligonucleotides that may exhibit high affinity and selectivity for
targets (Ellington and Szostak, 1990; Tuerk and Gold, 1990).
These molecules exhibit similar properties to antibodies and may
have some advantages: (i) aptamers are chemically synthesized
and (ii) exhibit high tissue permeability and cell internalization
due to its reduced size; (iii) aptamers usually exhibit low toxicity
and immunogenicity, and (iv) aptamers may be inactivated by
an antidote (Ellington and Szostak, 1990; Bompiani et al., 2012;
Cheng et al., 2013; Bouvier-Müller and Ducongé, 2018).

Several aptamer-based therapeutic application has been
explored for cancer (Morita et al., 2018; Maimaitiyiming et al.,
2019).

Preclinical studies have demonstrated an equivalent or
even superior functionality of these oligonucleotides compared
to mAb molecules, as well as a decrease of the commonly
observed side effects of mAbs (Miller and Chapman,
2001; Dollins et al., 2008; McNamara et al., 2008; Pastor
et al., 2011; Pratico et al., 2013; Schrand et al., 2014, 2015;
Rajagopalan et al., 2017). Aptamers may be employed as
antagonist, agonist, and delivery tools (Pastor et al., 2018).
The first aptamer driven to tumor immunomodulation was
an antagonist CTLA-4 aptamer, and then, a number of new

aptamers with immunomodulatory activity have been proposed
(Santulli-Marotto et al., 2003).

As T-cell surface receptors such as TNFRSF are activated
because of cross-link, multivalent aptamer models have been
explored to lead T-cell activation and costimulation (Dollins
et al., 2008; McNamara et al., 2008; Pratico et al., 2013).
The possibility of using synthetic linkers of different size and
composition was shown. This multimerization strategy allowed
to generate functional aptamer molecules that could costimulate
4-1BB and OX40 receptors in T cells that would address
improvement of the antitumor immune response (Dollins et al.,
2008; McNamara et al., 2008). These studies have shown that
treatment with aptamers induces a costimulatory effect on
tumor environment comparable to the treatment with the
corresponding mAb (Dollins et al., 2008; McNamara et al., 2008;
Pratico et al., 2013).

Considering the side effects of systemic administration of
mAb 4-1BB (Niu et al., 2007) due to plasticity of engineering,
aptamers have been investigated to overcome toxicity, opening
a new field of research based on bispecific aptamers. The aim of
these approaches is to decrease the off-target effect by driving
the costimulatory effect specifically on target cells (Pastor et al.,
2011; Schrand et al., 2014, 2015). A first study involving a
proof of concept of these aptamers developed a bifunctional
4-1BB–prostate-specific membrane antigen (PSMA) conjugate.
The PSMA is a membrane antigen highly expressed in some
prostate cells. In this way, the 4-1BB portion had a T-cell
costimulatory activity, whereas the PSMA portion could drive
the molecule to PSMA-expressing tumor cells. The study showed
that systemic administrations of bispecific aptamer were able to
inhibit tumor growth with the administration of a 10-fold lower
dose without occurrence of side effects (Pastor et al., 2011).

Another technological approach that has been pursued is the
generation of chimeric aptamer to vehiculate siRNA to target
cells. Aptamers may bind to cell surface receptors to deliver
siRNA to the target cell. This approach is target specific and
may reduce possible off-target effects, improving the therapeutic
index of the use of siRNA as drug treatment (Berezhnoy et al.,
2012). A functional study has shown that 4-1BB aptamer was
conjugated to a siRNA that negatively regulate the mTOR
pathway, decreasing the generation of memory cells in treated
animals (Berezhnoy et al., 2014).

Despite the variety of preclinical studies involving aptamer
molecules for 4-1BB and OX40 and the positive results achieved,
these molecules have not been tested in clinical studies yet. The
use of aptamer molecules as a therapeutic strategy is considered
recent when compared to mAbs, and it has raised attention in
the scientific community, proving its safety profile with the first
drug approved for clinical use (Ng et al., 2006) and with other
molecules being pursued for clinical study in the field of tumor
immunology (Zboralski et al., 2017; Steurer et al., 2019).

CONCLUSION

The 4-1BB and OX40 TNFRSF receptors are associated with
several signaling that contribute to potentiate T-cell antitumor
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activity. Agonistic antibodies are widely used in clinical trials
and represent the most explored TNFSF-based costimulatory
strategies. The development of agonistic oligonucleotide-derived
aptamers driven to TNFSFR elements is also an interesting
alternative to antibodies because of the simplicity of production
through chemical synthesis and engineering possibilities to
generate bispecific aptamers or even vehiculated targeted
cargos to enhance T-cell function. Signal transduction at
TNFSFR receptors can also be mediated by approaches
using 4-1BBL or OX40L ligands. These ligands may be
expressed in antitumor vaccines or even used in soluble
form, exhibiting therapeutic effect. The costimulatory potential
of TNFSF molecules is also explored for T-cell engineering,
such as chimeric receptors that encode 4-1BB intracellular
domains, which are known to play an important role in the
costimulation and maintenance of the activated lymphocyte
phenotype. Therapeutic strategies that employ 4-1BB and
OX40 costimulation work to switch the balance of the

immune system toward immunosurveillance. These strategies
can also be associated with immunological checkpoint inhibitors,
which target the inhibition of immunosuppression mechanisms
favoring the detection and elimination of tumor cells.
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