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Silk possesses many beneficial wound healing properties, and electrospun scaffolds are

especially applicable for skin applications, due to their smaller interstices and higher

surface areas. However, purified silk promotes microbial growth. Selenium nanoparticles

have shown excellent antibacterial properties and are a novel antimicrobial chemistry.

Here, electrospun silk scaffolds were doped with selenium nanoparticles to impart

antibacterial properties to the silk scaffolds. Results showed significantly improved

bacterial inhibition and mild improvement in human dermal fibroblast metabolic activity.

These results suggest that the addition of selenium nanoparticles to electrospun silk is

a promising approach to improve wound healing with reduced infection, without relying

on antibiotics.
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INTRODUCTION

Researchers in the tissue engineering field work toward repairing and/or regenerating damaged
tissues and organs through a combination of biomaterial scaffolds, cell signaling moieties, and
cell (Langer and Vacanti, 1993). The ideal tissue engineering scaffold closely mimics the physical
and chemical makeup of the organ to be replaced and should serve as an artificial extracellular
matrix to support cell growth and differentiation. Electrospun scaffolds closely mimic the physical
composition of native extracellular matrix (ECM) morphology.

Electrospinning works by applying a high voltage field to a solution of polymer dissolved
in a conductive solvent (Sill and von Recum, 2008). The voltage induces electrostatic
repulsion within the polymer solution and forms a cone like structure, the Taylor cone, held
together by the force balance of the electrostatic repulsion and surface tension. Eventually,
the electrostatic repulsion overcomes the surface tension forces holding the polymer solution
together. Once this critical limit has been reached, a polymer jet is formed out of the
edge of the Taylor cone toward a positively charged collector, and the solvent is evaporated
in the flight path from the cone to the collector, leaving a polymer matrix with fibers
relevant to physiological regime. The physical parameters of the scaffold may be adjusted
based on polymer composition, solvent mixture, voltage, and many other parameters used to
create the matrix. Researchers also have a high degree of control over the fiber orientation
of electrospun scaffolds by adjusting the type of collector. Because of these processing
advantages, electrospinning has been researched for a variety of tissue engineering applications
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such as cardio (Hajiali et al., 2011; Liu et al., 2011; Du et al.,
2012), bone (Shin et al., 2010; Cai et al., 2012; Frohbergh et al.,
2012; Liu et al., 2014), neural (Wang et al., 2011; Guan et al.,
2013; Kador et al., 2013; Prabhakaran et al., 2013; Baiguera
et al., 2014; Irani et al., 2014), skin (Dhandayuthapani et al.,
2010; Jin et al., 2011; Kuppan et al., 2011; Rnjak-Kovacina
et al., 2011), tendon/ligament (Howell et al., 2004; Sahoo et al.,
2010a,b; James et al., 2011; Cardwell et al., 2012), and stem cell
expansion/differentiation (Shin et al., 2010; Sahoo et al., 2010a;
James et al., 2011; Jin et al., 2011; Wang et al., 2011; Cardwell
et al., 2012; Irani et al., 2014).

Electrospun scaffolds promote many beneficial cellular
responses for tissue engineering and are generally better for
cell proliferation and differentiation than 2D substrates. In
particular, silk electrospun scaffolds demonstrate good responses
as tissue engineering scaffold for wound healing (Wharram et al.,
2010; Gil et al., 2013; Lee et al., 2014). Silk promotes collagen
synthesis, re-epithelialization, wound healing, atopic dermatitis
alleviation, and scar reduction (Ricci et al., 2004; Fini et al.,
2005; Roh et al., 2006; Okabayashi et al., 2009). However, pure
silk shows negligible or even negative antibacterial properties
(Kaur et al., 2014). Previously, groups have loaded electrospun
silk scaffold with silver nanoparticles to impart anti-bacterial
properties (Kang et al., 2007). However, silver is a commonly used
antibiotic that has become resistant in certain strains of bacteria
(Silver, 2003).

Selenium nanoparticles are a novel antibiotic chemistry to
which there is no known bacterial resistance (Tran and Webster,
2011, 2013; Wang and Webster, 2012, 2013; Shakibaie et al.,
2015). Selenium is a common trace element in the body and
is important to healthy nutrition, especially in the formation
of selenoproteins (Andrews et al., 2011; Santhosh Kumar
and Priyadarsini, 2014). Selenium has been suggested to have
anticancer effects as well (Clark et al., 1996). Here, we doped
selenium nanoparticles to electrospun silk scaffold to impart
antibacterial properties to silk (Rockwood et al., 2011). Human
dermal fibroblasts were used to determine the in vitro changes
in metabolic activity while Staphylococcus aureus were used to
determine the effects of the bacterial inhibition.

MATERIALS AND METHODS

Materials
Bombyx mori silk cocoons were obtained from Mulberry Farms
(Fallbrook, CA). Formic acid was purchased from Sigma-Aldrich
(Saint Louis, MO). Selenium nanoparticles were synthesized as
described below.

Extraction of Silk Fibroin from Bombyx Mori Silk

Cocoons
Silk fibroin was prepared from Bombyx mori cocoons according
to previously established protocols with minor modifications
(Rockwood et al., 2011). B. mori silk cocoons were cut into small
pieces and boiled in 0.02 M Na2CO3 (Sigma-Aldrich) for 30 min
to remove the glue-like sericin coating layer from the structural
fibroin protein which was then rinsed 3x with distilled water
(diH2O). The obtained silk fibroin fibers were dried overnight,

dissolved in a LiBr (Sigma-Aldrich) solution (9.3M) at 60◦C for
4 h, and dialyzed through a cellulose membrane (ThermoFisher,
Waltham, MA, 3500, MWCO) across distilled water for 4 days.
The obtained silk solutions were centrifuged thrice at 4200 g and
lyophilized for 4 days before resuspending in formic acid for a
final concentration of 8% silk/formic acid.

Electrospinning of Silk/Formic Acid Solution
Eight percentage of silk solution was then electrospun at 18,000
volts, room temperature, 0% relative humidity, and 60 cm to
collector. These conditions were optimized to produce fibers
with dimensions that resemble those from the native extracellular
matrix. Afterwards, 70% methanol (Sigma-Aldrich) was used to
treat the electrospun silk to prevent hydrolysis of the membrane.
Treated silk membranes were dried overnight in the fume hood.

Selenium Nanoparticle Synthesis
0.1M sodium selenite [Alfa Aesar, Ward Hill, MA,
Na2SeO3(H2O)5] and 0.1 M glutathione, GSH (Alfa Aesar),
(C10H17N3O6S) were added onto the treated membranes before
0.2 M sodium hydroxide (NaOH) was added to precipate
the sodium nanoparticles. Finally, double distilled deionized
water was added thrice to quench the reaction and wash the
membranes.

Specimen Characterization
Imaging of the specimens was conducted with a Hitachi S4800
Tokyo, Japan Scanning Electron Microscope (SEM, Hitachi
S4800 SEM, Tokyo, Japan). A 4.5 nm layer of platinum
was sputter coated (Cressington 208; Cressington Scientific
Instruments, Watford, UK) onto the membranes to provide a
conductive surface. SEM analysis was conducted with a 3 kV
accelerating voltage. Characterization was completed using both
secondary electrons and backscatter electrons, which impart a
stronger signal to heavier elements, such as selenium.

Cellular Assays
Mammalian Cell Activity Culture and Characterization
Passages 3–12 human dermal fibroblast (HDF, Lonza, Basel,
Switzerland) were cultured in Dulbecco’s Modified Eagle
Medium (DMEM, Sigma Aldrich) supplemented with
10% fetal bovine serum (Hyclone, Logan, UT) and 1%
penicillin/streptomycin (P/S, Sigma Aldrich) in a 37◦C,
humidified, 5% CO2/95% air environment.

MTS assay (Promega, Fitchburg, WI) was used to determine
the metabolic cell activity of the HDFs. Before cell seeding,
the electrospun silk scaffolds were washed with 70% ethanol
(Sigma-Aldrich) before rinsing with double distilled deionized
water. HDFs were cultured to ∼90% confluence, rinsed with
Dulbecco’s phosphate-buffered saline without calcium chloride
and magnesium chloride (dPBS, Sigma Aldrich), and detached
from the tissue culture plate by using 0.25% trypsin-EDTA
(Sigma-Aldrich). Detached cells were then centrifuged at 2000
r.p.m. and resuspended at a density of 50,000 cells/ml before
seeding onto the silk scaffolds in a 96 well-plate at 100 µl in
each well (5000 cells/well). The HDFs incubated for 1, 2, and 4
days. Afterwards, the medium was removed from the sample and
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100 µl solution of 1:5 MTS dye with DMEM medium (v/v) were
added to each well. Samples were placed back into the incubator
for 2.5 h. to allow theMTS to react with themetabolic products of
the adherent cells before reading in a SpectraMax M3 microplate
reader (Molecular Devices, Sunnyvale, CA) at an absorbance
wavelength of 490 nm. The absorbance values of wells containing
only DMEM medium without cells were subtracted from the
absorbance values of the wells containing cells. The metabolic
activity of each well was compared with the metabolic activity of
known numbers of cells by a standard curve constructed at the
beginning of each trial.

Bacterial Cell Activity Measurement
Staphylococcus aureus (ATCC-12600) were inoculated in 3%
tryptic soy broth (TSB, Sigma-Aldrich) overnight. After 24 h.,
the Staphylococcus aureuswere diluted with TSB until absorbance
value reached 0.52 at wavelength of 562 nm. This corresponded
with a cell density of 109 colony forming units (CFU)/ml.
Afterwards, the Staphylococcus aureus were diluted 1000x in
TSB before seeding onto the silk samples in a non-treated
96 well-plate in 100 µl of solution (105 CFU/well). After 24
h., the BacTiter Glo assay (Promega), a luciferase based ATP
assay was used to quantify the amount of ATP present on the
electrospun silk samples. BacTiter Glo reagent was added at
the same volume as the medium in each well, 100 µl, at room
temperature. The samples were inoculated at room temperature
for 5 min. while the BacTiter Glo reagents solubilized the
bacterial membrane, after which, the luminescence wasmeasured
using the SpectraMax M3. A standard curve was constructed to
equate the luminescence readings with known ATP amounts.

Statistics
All experiments were conducted in triplicate and repeated at least
three times each. Analysis of variance and student’s t-test were
used to determine whether the differences in cellular activity over
the different time periods were significant.

RESULTS AND DISCUSSION

To characterize the morphology of the electrospun silk scaffold,
scanning electron microscope was used to visualize the surface of
the nanocomposite. As shown in Figures 1A,B, the electrospun
silk scaffolds contained fiber diameters ∼100–200 nm and pore
sizes ∼2 µm. The silk scaffold contained unaligned fibers
with very little beading and uniform thickness, demonstrating
a morphology similar to those in the native extra-cellular
matrix (ECM). The selenium nanoparticles (SeNP) were then
reacted on the scaffold, causing a physisorption of the SeNP
onto the silk scaffold. Two reaction conditions were chosen to
deposit the SeNPs; SEM images showed that these produced two
homogenous and distinct selenium nanoparticle populations: 40
(Figures 1C,D) and 70 nm (Figures 1E,F) nanoparticles.

First, in vitro viability tests were conducted using HDF cells.
These cells were seeded onto the silk scaffold without selenium
nanoparticles, the silk scaffolds containing the 40 and 70 nm
selenium nanoparticles, and on regular polystyrene (PS) tissue
culture plate to determine the change in growth of the HDF
cells when grown on these substrates (Figure 2). Electrospun silk
without addition of selenium nanoparticles produced statistically
insignificant change (p > 0.05) in HDF activity as compared

FIGURE 1 | Scanning electron microscopy (SEM) images of the electrospun silk scaffolds at 10,000x (A,C,E) and 20,000x (B,D,F) with 5 and 2 µm scale

bars respectively. The silk scaffolds without selenium nanoparticles are shown in panels (A,B); with 40 nm selenium nanoparticle in panels (C,D); and with 70 nm

selenium nanoparticles in panels (E,F).
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FIGURE 2 | In vitro cellular activity are depicted. (Top) The mitochondrial activity of human dermal fibroblast (HDF) grown on silk, silk +40 nm selenium

nanoparticles, and silk +70 nm selenium nanoparticles are compared to activity of HDF grown on polystyrene tissue culture dish. All trials are conducted in triplicates,

N = 3.*p < 0.05, **p < 0.01 as compared to polystyrene control. (Bottom) The ATP activity of Staphylococcus aureus grown on the same sample groups as tested

for the HDF is depicted. All trials are conducted in triplicates, N = 3.*p < 0.05, **p < 0.01 as compared to no treatment sample.

activity when grown on normal tissue culture plate across
all 3 days tested. The silk/selenium nanocomposites produced
significantly higher metabolic activity for HDF as compared to
HDF grown on tissue culture plate. The addition of selenium
nanoparticles significantly improved the metabolic activity of
HDF, especially at the shorter term time points. At 1 and 2 days,
silk scaffold doped with 40 nm selenium nanoparticles produced
greater than two fold increase in metabolic signal, 264 and 245%
on day 1 and 2, respectively, as compared to the tissue culture
plate control while the 70 nm scaffold produced 160 and 267%
on day 1 and 2, respectively. The day 1 (p < 0.05) and day 2
signal (p < 0.01) from the silk+40 nm SeNP scaffolds and the
day 2 signal (p < 0.05) from the silk+70 nm SeNP scaffolds
were statistically significant from the signal produced at the

same time points on the tissue culture plates. Surprisingly, the
silk scaffolds without nanoparticle addition did not produce a
statistically significant improvement in HDF growth despite the
ECM like morphology. There was mild improvement on day 2
(132% compared to control), but overall, the presence of silk
alone did not significant improve HDF response. The short term
improvement in activity may have plateaued by day 4 compared
to the control, because the HDFmay have reached confluency on
the silk/selenium nanocomposites.

Finally, the bacteria results were accessed by ATP assay.
Here, the performance of the silk scaffolds were compared
to Staphylococcus aureus grown in solution in the polystyrene
plate. Bacterial growth across all silk samples showed statistically
significant reduction as compared to untreated samples grown in
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solution. Bacteria grown on silk without selenium nanoparticles
showed a 74% reduction as compared with the control (p< 0.05).
This was somewhat surprising, because this contradicted other
reports found in literature (Kaur et al., 2014).

Addition of selenium nanoparticles significantly improved the
bacterial load: the addition of the 40 nm selenium nanoparticles
reduced bacterial load by 95% and the 70 nm selenium
nanoparticles by 96% compared to the control (p < 0.01). The
doping of selenium had achieved an additional reduction of 80%
for the 40 nm selenium nanoparticle and 87% for the 70 nm
selenium nanoparticle as compared to the silk samples. The 70
nm selenium nanoparticle produced an almost one log reduction
in ATP content (0.88) as compared to the silk sample and an
overall 1.4 log reduction compared to the control.

CONCLUSION

This study showed for the first time the efficacy of doping
selenium nanoparticles with silk to improve bacterial efficacy.
Reaction conditions successfully synthesized two different sized
populations of selenium nanoparticles onto electrospun silk
scaffolds. These nanocomposites were then compared to silk
scaffolds and normal tissue culture plates and were found
to significantly improve both the mammalian cell response
while reducing bacterial cell activity. Addition of the selenium
nanoparticles significantly improved the short term human
dermal fibroblast metabolic activity while reducing the ATP
content of Staphylococcus aureus. Together, these results
suggest that selenium nanoparticle may selectively enhance

mammalian cells functions while killing or reducing the
bacterial load. In summary, this study provides evidence
of the potential value of the use of selenium nanoparticles
in skin applications due to their selective activity. Future
works will focus on determining the mechanism by which
selenium nanoparticles achieve this selectivity and the scope
of the selenium nanoparticles for inhibiting bacteria in skin
applications.
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