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Optimization of chamfer masks 
using Farey sequences and kernel 
dimensionality
Baraka Jacob Maiseli

Farey sequences have captured the attention of several researchers because of their wide applications 
in polygonal approximation, generation of Ford circles, and shape analysis. In this work, we extend 
the applications of these sequences to optimize chamfer masks for computation of distance maps 
in images. Compared with previous methods, the proposed method can more effectively generate 
optimal weights from larger chamfer masks without considering multiple and rather complex 
defining variables of the masks. Furthermore, our work demonstrates the relationship between size 
of the chamfer kernel, Farey sequence, and optimal weights of the chamfer mask. This interesting 
relationship, which may be useful in various image processing and computer vision tasks, has never 
been revealed by any other previous study. Results from the current research may advance our 
understanding on the applications of Farey sequences in computational geometry and vision-related 
tasks. To allow reproducibility of the results, implementation codes and datasets can be accessed in 
the public repository at https:// www. mathw orks. com/ matla bcent ral/ filee xchan ge/ 71652- optim izati 
on- of- chamf er- masks.

Abbreviations
DT  Distance transform
RLog  Relative logarithm

Distance function (or metric) refers to the shortest path between pairs of points in a set. The concept forms 
an integral part in various engineering and science disciplines: in computer vision and image processing, for 
instance, distances can be used to compute the similarity of objects, extract skeletons from objects, predict path 
of a robot, and locate electronic components on the printed circuit  board1,2; in weather forecasting, prediction 
models can be compared and evaluated using distance  metrics3; and, in radar communications and imaging, 
one can locate the position of unknown object behind the building’s  wall4–6. These applications, among several 
others in the literature, make studying and understanding metrics important.

One fascinating application of metrics involves the generation of distance maps from binary images. This 
(non-reversible) process can be achieved through a distance transform (DT)7–9, which maps contents of a binary 
image into positive grayscale values that show the degree of separation between objects and non-object features of 
an image. For a set of points, P, and for real-valued points a and b, the distance transform reduces to evaluating

where dist(·) denotes the distance function:  Euclidean10, Quasi-Euclidean, Chessboard, and Manhattan, among 
others. The dist(·) operator can be executed globally or locally over an image. Computation of DTs through local 
distance operations are preferred in most digital image processing tasks because such (neighborhood-driven) 
operations possess regularity properties, and hence can easily be implemented in processors. This research 
focuses on these neighborhood-driven operations, specifically those based on chamfer masks because they have 
attracted a wide interest of  scholars11–14.

Chamfer masks can be designed using cost functions, which provide conditions to achieve optimum coeffi-
cient values of the masks. Errors associated with chamfer masks are usually computed with respect to a reference 
disc generated by the Euclidean metric. In Ref.14, the authors proposed a robust cost function, called RLog, which 
can be used to optimize chamfer masks. RLog gives an intuitive interpretation of the error between estimated and 
actual distances. But Maiseli et al. give rather daunting formulations to compute optimum chamfer values using 

(1)DT(P)[a] = min
b∈P

dist(a, b),
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RLog. In this work, we have discovered that similar results can be obtained through either Farey  sequences15,16 
or dimensionality (size) of the chamfer masks.

Based on the RLog cost function, this research gives closed-form simple equations that can be used to opti-
mize chamfer masks using knowledge gained from patterns of the Farey sequences and from structure of the 
chamfer masks. Unlike the method by Maiseli et al., our approach allows easier computation of even high-order 
chamfer masks without involving multiple variables that define such masks. For instance, the proposed approach 
can generate optimal chamfer coefficients of 501× 501 mask or even of higher orders without undertaking 
complicated derivations.

Methods
The RLog cost function. The RLog formula can comprehensively be understood by considering Fig. 114, 
which shows portion of an eight-sided regular polygon created by a 3× 3 chamfer mask. From the Figure, and 
according to the authors in Ref.14, RLog refers to logarithm of the relative accuracy between actual and estimated 
discs. The metric is defined by

where r =
√

x2 + y2 denotes the actual disc radius, measured from the center, O(0, 0), to the point (x, y) on the 
disc’s circumference; 0 ≤ θ ≤ 45◦ denotes the angle between the horizontal and a vector �p from O to the chamfer 
edge AB ; and, w(θ) defines the length of �p.

Application of sine rule to 
�

OAP in Fig. 1 yields

Plugging (3) into (2) yields

which defines the variation of RLog with an angle θ.
Considering arbitrary shapes of chamfer masks, and focusing on the edge of the chamfer polygon correspond-

ing on the maximum RLog,  (4) can be generalized to

with ψ and t dependent on shape of the chamfer  mask14 (Table 1). Analyzing the trend of ψ in Table 1, we found 
that t = ⌊ψ⌋.

The graph of Z(θ) , with coefficients of cos θ and sin θ unoptimized, depicts major and minor error lobe(s) 
generated by a chamfer mask (Fig. 3). Our central goal is to minimize the maximum Z(θ) located on a major 
error lobe. This goal can be achieved by  considering14,17

The right side of (6) evaluates to a maximum RLog of

(2)Z(θ) = log

(

1

r
w(θ)

)

,

(3)w(θ) = r

a cos θ + (b− a) sin θ
.

(4)Z(θ) = − log(a cos θ + (b− a) sin θ),

(5)Z(θ) = − log(a cos θ + (ψ − t)a sin θ),

(6)Z(0◦) = max
θ

{|Z(θ)|}.

(7)Zm = log
(

aopt
√

(ψ − ⌊ψ⌋)2 + 1
)

,

�p
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1

r
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Figure 1.  Octant portion of an eight-sided polygon generated by 3× 3 chamfer mask: l1, (b− a)y + ax = r , 
A( ra , 0) , B(

r
b ,

r
b ) , and w(θ) = |�p|.
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located at an angle θm = arctan(ψ − ⌊ψ⌋) , where aopt denotes an optimal chamfer weight that generates the 
lowest possible RLog. Combining (6) and (7) gives

The other optimized chamfer weight controlling the major error lobe is βopt = ψaopt . Plugging (8) into (7) 
gives

which depends only on ψ . This equation is relatively simpler, unlike those from classical approaches that demand 
knowledge on multiple chamfer weights to compute maximum errors generated by chamfer masks.

In the following section, we show that Farey sequences and sizes of chamfer masks can further simplify the 
process of optimizing chamfer masks. The derived equations and relationships have never been explored by 
previous studies, and may be employed to simplify optimizations of high-order chamfer masks.

Optimization of chamfer masks using Farey sequences. Given an integer, n ≥ 1 , then the Farey 
sequence, Fn , contains a set of irreducible fractions pq , where 0 ≤ p ≤ q ≤ n and (p, q) = 1 , arranged in ascending 
order. Following this rule, the first five Farey sequences become

Inspecting fractions of the Farey sequence from n ≥ 2 , one can observe an odd number of terms for each 
sequence, with the middle term being 12 . In addition, successive terms of the Farey sequence share a common 
property: if p1q1  , 

p2
q2

 , and p3q3  represent three successive Farey sequences, then (http:// mathw orld. wolfr am. com/ 
Farey Seque nce. html)

and

(8)aopt =
1

4
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.
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(10)q1p2 − q2p1 = 1,

(11)
p2

q2
= p1 + p3

q1 + q3
.

Table 1.  Maximum RLog under unoptimized and optimized conditions of the Chamfer masks.

Chamfer mask ψ t = ⌊ψ⌋ (aopt,βopt) Unoptimized RLog Optimized RLog ( %)

3× 3
√
2 1 (0.9612,1.3593) 3.4385 1.7192

5× 5
√
5 2 (0.9865,2.2060) 1.1776 0.5888

7× 7
√
10 3 (0.9935, 3.1418) 0.5644 0.2822

9× 9
√
17 4 (0.9962, 4.1076) 0.3266 0.1633

11× 11
√
26 5 (0.9976, 5.0866) 0.2119 0.1059

13× 13
√
37 6 (0.9983, 6.0724) 0.1482 0.0741

15× 15
√
50 7 (0.9987, 7.0622) 0.1094 0.0547

17× 17
√
65 8 (0.9990, 8.0545) 0.0840 0.0420

19× 19
√
82 9 (0.9992, 9.0485) 0.0665 0.0333

21× 21
√
101 10 (0.9994, 10.0436) 0.0539 0.0270

23× 23
√
122 11 (0.9995, 11.0397) 0.0446 0.0223

http://mathworld.wolfram.com/FareySequence.html
http://mathworld.wolfram.com/FareySequence.html
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The authors in Ref.18 stated that (10) and (11) are equivalent, and can be useful in determining a middle term 
sandwiched between neighboring terms in the Farey series. For example, computing p2q2 requires inserting p1+p3

q1+q3
 , 

called the mediant fraction, between p1q1 and p3q3
18,19.

Consider (8) and the Farey sequence, Fn = { p1q1 ,
p2
q2
,
p3
q3

. . .} . Through inspection and analysis, we found that 
ψ in (8) relates with q2 : ψ =

√

q22 + 1 and ⌊ψ⌋ = q2 . Using these findings, (8) becomes

implying that βopt = (
√

q22 + 1)aopt . Furthermore, investigating patterns of Fn , we discovered that q2 = n 
(denominator of the second term from the left side of the sequence) for all values of n > 0 . Therefore, (8) 
reduces to

and βopt = (
√
n2 + 1)aopt . Following a similar approach, the maximum RLog can be computed as

Farey sequences have traditionally been used to address some problems in Mathematics: generation of Ford cir-
cles, approximation of irrational numbers, establishment of Fibonacci numbers, and explanation of the Riemann 
hypothesis. In this work, we have demonstrated that Farey sequences may as well be used to optimize chamfer 
masks, and to compute maximum errors associated with polygons generated by such masks. This application has, 
despite its high demand in vision-related tasks, never been thoroughly explored by previous scholars.

Furthermore, we discovered an interesting relationship between Farey sequences and shapes of the chamfer 
masks: Let � be size of the chamfer mask, then n = ⌊�2 ⌋ ∀n . Plugging this relationship into (13) and (14) yields

where βopt =
(

√

⌊

�
2

⌋2 + 1

)

aopt , and

In this case, the value of Zm occurs at θm = arctan

(

√

⌊

�
2

⌋2 + 1−
⌊

�
2

⌋

)

 . Equations (15) and (16), where 

aopt and βopt solely depend on � , simplifies the task of optimizing chamfer masks. We can, therefore, compute 
optimal weights of high-order chamfer masks without considering multiple defining variables—an advantage 
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.

Table 2.  Comparisons of optimized chamfer masks. The superscript variables n and � reflect computations 
based on Farey sequences and size of chamfer masks, respectively.

Chamfer mask n (aopt,βopt) 14 (a
(n)
opt,β

(n)
opt) (a

(�)
opt ,β

(�)
opt ) RLog ( %) 14 RLog(n) ( %) RLog(�) ( %)

3× 3 1 (0.9612, 1.3593) (0.9612, 1.3593) (0.9612, 1.3593) 1.7192 1.7192 1.7192

5× 5 2 (0.9865, 2.2060) (0.9865, 2.2060) (0.9865, 2.2060) 0.5888 0.5888 0.5888

7× 7 3 (0.9935, 3.1418) (0.9935, 3.1418) (0.9935, 3.1418) 0.2822 0.2822 0.2822

9× 9 4 (0.9962, 4.1076) (0.9962, 4.1076) (0.9962, 4.1076) 0.1633 0.1633 0.1633

11× 11 5 (0.9976, 5.0866) (0.9976, 5.0866) (0.9976, 5.0866) 0.1059 0.1059 0.1059

13× 13 6 (0.9983, 6.0724) (0.9983, 6.0724) (0.9983, 6.0724) 0.0741 0.0741 0.0741

15× 15 7 (0.9987, 7.0622) (0.9987, 7.0622) (0.9987, 7.0622) 0.0547 0.0547 0.0547

17× 17 8 (0.9990, 8.0545) (0.9990, 8.0545) (0.9990, 8.0545) 0.0420 0.0420 0.0420

19× 19 9 (0.9992, 9.0485) (0.9992, 9.0485) (0.9992, 9.0485) 0.0333 0.0333 0.0333

21× 21 10 (0.9994, 10.0436) (0.9994, 10.0436) (0.9994, 10.0436) 0.0270 0.0270 0.0270

23× 23 11 (0.9995, 11.0397) (0.9995, 11.0397) (0.9995, 11.0397) 0.0223 0.0223 0.0223
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that increases convenience in designing the masks (Table 2, Fig. 4). Note that, based on (15) and (16), the loca-
tions of the forward–backward masks on the binary image can be intuitively determined as

Table 2 shows comparable results of the optimal chamfer weights computed by our method and that of 
Maiseli et al.14. The implication of this comparability is that the derived formulas for optimizing chamfer masks 
generate accurate results.

Efficient chamfer distance transforms. Depending upon the application, distance transforms can be 
engineered in two modes: parallel and sequential, with the later being popular in hardware implementations 
because of its regularity properties and implementation convenience. In sequential DTs, which the current 
research has adopted, the chamfer mask is divided into two halves, namely forward and backward masks, which 
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⌊
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Figure 2.  Operation of sequential distance transform.
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(c) Error lobes from 7× 7 chamfer mask.

Figure 3.  RLog error lobes generated by low-order chamfer masks.
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(j) Optimized 105× 105 chamfer mask.

Figure 4.  RLog Error lobes generated by high-order chamfer masks.
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operate antagonistically to generate chamfer polygons/balls (also called distance maps if operations are per-
formed on binary images).

Sequential DTs undertake two passes to compute chamfer balls. In the first pass, the forward mask slides in 
the left-right and top-down directions (Fig. 2). For every movement step, mask values and corresponding image 
pixel values are added to create a vector of distances. Next, the minimum distance in the vector is evaluated to 
replace a respective pixel just below the mask’s central value. This process continues until the mask perfectly cov-
ers pixels on the most bottom-right corner of the image. During the second pass, similar operations are repeated, 
but with the backward mask slided in the right-left and bottom-top directions.

The sequential chamfer distance transform requires time-consuming manual optimizations and configura-
tions of the chamfer masks. These complexities increase exponentially with the dimensionality of the masks. 
Therefore, the available distance transform algorithms cannot satisfactorily support the time-sensitive industrial 
applications, especially those demanding high accuracy. One could, however, address the challenge through 
dedicated hardware with parallel computing capabilities. But this attempt calls for a huge financial investment, 
making the hardware unaffordable in resource-limited areas. Furthermore, previous approaches limit the process 
of generating optimal errors associated with the high-order chamfer masks.

We have, in this work, proposed an algorithm that uses only dimension of the mask as an input to compute 
distance transform of a binary image (Algorithm 1). In other words, given the desired size of the chamfer mask, 
we can automatically generate the distance map of the binary image. The function to achieve this goal accepts 
two inputs, namely binary image and chamfer mask dimension. Functions proposed by previous scholars require 
additional inputs, including coefficients of the chamfer masks that should analytically be computed.

Similar to the classical sequential algorithms, our algorithm contains forward and backward passes that oper-
ate sequentially to compute the distance maps. The algorithm embeds two external functions (Procedures 1 and 
2): the first function traces the structure of the Farey sequence, and retrieves the number of terms, numerators, 
and denominators; and, the second function computes the values of the optimum chamfer weights. Procedure 2 
shows that the process of optimizing the chamfer masks can be achieved with minimum computational load. The 
complexity of this Procedure is O(C) , where C denotes a constant value that depends on the processor specifica-
tions. In essence, the Procedure needs only the size of the chamfer mask as input, and does not require iterations 
during optimization—hence making the process fast compared with other approaches.

Experiments. 
Various experiments were executed to evaluate the efficacy of our approaches to generate optimum chamfer 
weights of arbitrary-shaped two-dimensional chamfer masks. The experiments, in addition, focused on com-
puting distance maps of binary objects and on evaluating RLog errors associated with such maps. In the first 
experiment, the proposed algorithms were applied on chamfer masks of different sizes to generate RLog errors 
using either Farey sequences or dimensions of the masks. The second experiment was configured to generate 
RLog error lobes exhibited by low- and high-order chamfer masks. In the last experiment, we applied our algo-
rithms to real-world binary images, and the objective of this experiment was to learn more on how the proposed 
approaches may suit practical applications, including those dwelling in computer vision and machine learning. In 
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this last experiment, the distance maps generated by Euclidean, Chamfer metric, and our method were compared 
and evaluated to recognize a superior one.
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Figure 5.  Distance maps generated by various metrics applied on real binary images.

Figure 6.  Error maps generated by different metrics: first row, Butt and Maragos; and, second row, our 
approach.
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The experiments were conducted using MATLAB R2019a and laptop with the following specifications: RAM, 
8 GB; Hard Disk, 1TB; Operating System, 64-bit Windows 10; and, processor, core i7 3.2 GHz speed. We ensured 
same experimental conditions, and the input parameters for all experiments were kept uniform. For instance, 
RLog errors depicted by the same shape of the chamfer mask were compared against different methods to estab-
lish a fairly simple comparison ground. To reproduce our results, implementation codes have been uploaded in 
the MATLAB File Exchange Central (https:// www. mathw orks. com/ matla bcent ral/ filee xchan ge/ 71652- optim 
izati on- of- chamf er- masks).

Results and discussions
We found that Farey sequences can effectively be used to optimize chamfer masks. Furthermore, the current study 
revealed that shape (dimension) of the chamfer mask can be applied to introduce convenience when generating 
more accurate distance maps from high-order chamfer masks. Figure 4 shows that error lobes of larger masks 
above 105× 105 can be achieved through simple formulations that use dimensionality of the chamfer masks. In 
the work by Butt and  Maragos17, error lobes associated with 21× 21 chamfer masks could be displayed. Although 
the authors’ concepts could be extended to larger masks, this extension could be achieved at the expense of 
increased complexity in their formulations.

Figures 5 and 6 show the distance maps of electronic components. For performance evaluation, the compari-
son is usually done with respect to the distance maps generated by the (reference) Euclidean metric. The visual 
results from Figs. 5 and 6 demonstrate that our distance metric generates maps with minimal errors, and which 
are comparable with those generated by the Euclidean and chamfer metrics.

Previous scholars have never exploited structure of the chamfer masks to devise effective approaches to com-
pute optimum weights of the chamfer masks. Therefore, our attempts provide some critical research insights on 
how we can establish faster algorithms for generating distance maps (Figs. 5, 6). Furthermore, practitioners may 
embed such effective algorithms into dedicated hardware that can be deployed into the real environment. Our 
algorithm to compute distance maps has convenience as a major advantage: the algorithm accepts a single input 
argument, dimension of the chamfer mask, and generates relatively more accurate distance maps of a binary 
image. Therefore, a scholar needs only to select the chamfer mask’s dimension for the desired distance map. 
One should note that the proposed algorithm uses this (dimension of the chamfer mask) argument to implicitly 
compute the optimum weights of the chamfer masks, which are necessary to compute the distance maps.

The current research has, in addition, demonstrated another application of Farey sequences in designing 
chamfer masks. We have established elegant relationships between such sequences and weights of the chamfer 
masks. This contribution sets another perspective of Farey sequences in computer vision and image processing, 
and scholars may attempt to extend the established relationships to three-dimensional chamfer masks. This 

https://www.mathworks.com/matlabcentral/fileexchange/71652-optimization-of-chamfer-masks
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further extension may allow the algorithm to be applied in other sensitive fields, including medical imaging 
where three-dimensional images of body organs are  common22,23.

In this work, we have provided formulations and derivations that may be suitable to advance the field of 
chamfer metrics. In Refs.20,21, the author gave an error metric, called symmetric mean absolute percentage error 
(SMAPE), for selecting more accurate weather forecasting models. This metric, defined by

may be used to generate optimal chamfer weights similar to those generated by RLog. The variables on the right 
side of (18) are defined in Fig. 1. Using Farey sequences and shapes of chamfer masks, one can intuitively show 
that the respective maximum values of Y are

and

In essence, Farey sequences become useful in situations where larger chamfer masks are needed to compute 
more accurate distance transforms in binary images. Because of the relationship between Farey sequences and 
size of the chamfer masks, we have demonstrated that optimal weights of large-size chamfer masks can easily 
be computed using closed-form equations, an advantage that has never been realized before. Our belief is that 
the discovery made in this work may open new research directions in image processing and computer vision.

Conclusion
The knowledge on Farey sequences has never been extended and applied to optimize chamfer masks. In this 
work, we have demonstrated that such sequences are important, and can provide simple closed-form equations 
to compute optimal local weights of chamfer masks. In addition, the work gives mathematical relationships 
between shapes of chamfer masks and optimal chamfer weights. Compared with the earlier work by Maiseli 
et al., “Robust cost function for optimizing chamfer masks”, we have demonstrated that the same results can 
be obtained with the proposed equations that are simpler and effective. Finally, we have established algorithms 
with minimum number of input arguments to more effectively compute error maps associated with arbitrary-
shaped chamfer masks. The algorithms can work well in the optimization of even high-order chamfer masks. In 
future, researchers may consider expanding our methods and algorithms to deal with chamfer masks suitable for 
computing distance maps of multi-dimensional objects, commonly found in the field of medical imaging. Also, 
it may be interesting to further explore the applications of our formulations in other fields.

Farey sequences serve as an important tool to efficiently optimize chamfer masks. This advantage may be 
useful in the implementation of embedded systems for computing distance transforms of complex digital images. 
Results from our work show that Farey sequences can be used to optimize chamfer masks based on their dimen-
sionality. Despite these advantages, researchers may attempt to extend our results to three-dimensional and high-
order chamfer masks. Subsequently, distance transform algorithms based on Farey sequences and dimensionality 
of chamfer masks are needed.

Data availability
The link with supporting data and implementation codes has been included in this paper.
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