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Abstract

The lung endothelium is vulnerable to both exogenous and endogenous insults, so a properly coordinated efficient repair system is

essential for the timely recovery of the lung after injury. The agents that cause endothelial injury and dysfunction fall into a broad

range from mechanical forces such as pathological cyclic stretch and shear stress to bacterial pathogens and their virulent com-

ponents, vasoactive agonists including thrombin and histamine, metabolic causes including high glucose and oxidized low-density

lipoprotein (OxLDL), circulating microparticles, and inflammatory cytokines. The repair mechanisms employed by endothelial cells

(EC) can be broadly categorized into three groups: (1) intrinsic mechanism of recovery regulated by the cross-talk between small

GTPases as exemplified by Rap1-mediated EC barrier recovery from Rho-mediated thrombin-induced EC hyperpermeability;

(2) agonist-assisted recovery facilitated by the activation of Rac and Rap1 with subsequent inhibition of Rho signaling as observed

with many barrier protective agonists including oxidized phospholipids, sphingosine 1-phosphate, prostacyclins, and hepatocyte

growth factor; and (3) self-recovery of EC by the secretion of growth factors and other pro-survival bioactive compounds including

anti-inflammatory molecules such as lipoxins during the resolution of inflammation. In this review, we will discuss the molecular and

cellular mechanisms of pulmonary endothelium repair that is critical for the recovery from various forms of lung injuries.
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Introduction

The pulmonary endothelium is composed of a continuous
monolayer of endothelial cells (EC) that forms a semi-
permeable barrier between the blood and interstitium.
Being a major component of the alveolar-capillary unit,
the endothelium is prone to injury from diverse insults
including mechanical forces and various barrier disruptive
agents such as bacterial pathogens, endotoxins, oxidized
low-density lipoprotein (OxLDL), thrombin, histamine,
and pro-inflammatory cytokines from the pulmonary circu-
lation.1,2 The increased endothelial permeability caused by
the disruption of the EC barrier leads to an influx of protein-
rich edematous fluid into the airspaces and subsequent
inflammatory responses play a key role in the pathogenesis
of acute lung injury (ALI) and its most severe form acute
respiratory distress syndrome (ARDS).3–6 Both ALI and

ARDS are clinically characterized by acute respiratory fail-
ure with a high mortality rate of 20–50% and ALI alone has
an incidence of 200,000/year in the US population.7,8 Since
no effective therapeutics have been developed to date for
both of these severe respiratory disorders, understanding
the molecular and cellular mechanisms of endothelial barrier
repair and recovery is key to the development of novel drugs
targeting the prevention of vascular leak and resolution of
inflammation.
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When basal endothelial function is perturbed by EC bar-
rier disruption or inflammation, EC can employ three
broadly categorized mechanisms of repair and recovery
from injury. First, EC can undergo self-repair which is facili-
tated by the activation of small GTPases Rac and Rap1.
This intrinsic mechanism of auto-recovery of EC barrier
disruption is best exemplified during thrombin-induced EC
hyperpermeability where Rho-dependent barrier dysfunc-
tion is restored by the activation of Rap1.9 It appears that
a cross-talk between these small GTPases mediates the
recovery process. Second, various barrier protective agents
also activate Rac and Rap1 to enhance basal endothelial
barrier function as well as to induce the recovery from ago-
nists-induced barrier disruption. The third described mech-
anism of EC barrier function restoration involves the
secretion of various growth factors, numerous pro-survival
bioactive metabolites, and anti-inflammatory molecules by
the stimulated pulmonary endothelium. Mechanisms of
auto- and agonist-assisted recovery will be discussed in the
following sections.

In addition to the direct role of EC in the recovery
of injured lung endothelium, its dynamic interaction and
cross-talk with epithelial cells also contributes to the repair
process. The precise mechanisms of epithelial–endothelial
interactions and their role in EC barrier protection remains
largely unknown, but the secretion of growth factors, cyto-
kines, and other bioactive barrier protective molecules by
one cell type may facilitate the protection and recovery of
the other cell type against injurious stimuli, thereby enhan-
cing the overall barrier function. For instance, soluble fac-
tors of endothelial origin have been shown to enhance
epithelial barrier integrity.10,11 Conversely, a recent study
showed that epithelial cell-derived prostaglandin E2
(PGE2) enhances endothelial barrier function via activation
of EP4 and S1P1 receptors.12 Furthermore, the same study
also showed that cyclooxygenase-2 (COX-2), an enzyme
involved in the synthesis of PGE2, expression is increased
in epithelial cells following lipopolysaccharide (LPS) chal-
lenge, suggesting a possible recovery response of epithelial–
endothelial interactions against LPS. With regard to the role
of cell–cell interactions in the repair of injured lung
endothelium, it is noteworthy to mention that immune
cells, especially resident or inflammation-induced circulating
macrophages, play a critical role in the resolution of inflam-
mation (reviewed in Herold et al.13). Macrophage-mediated
resolution of inflammation is credited to their secretion of
anti-inflammatory lipid mediators including lipoxins.14 In
brief, it appears that organ remodeling during recovery
from injury is possible by the combined interactive actions
of epithelial, endothelial, immune cells, and fibroblasts.

Small GTPases in the regulation of endothelial
permeability and barrier recovery

In response to barrier disruptive stimuli, EC have a self-
repair mechanism in place which involves the activation

of small GTPases and their cross-talk. By cycling between
GTP-bound active and GDP-bound inactive states, small
GTPases act as a molecular switch in numerous signaling
pathways that ultimately regulate various cellular functions.
The switch of GTPase between active and inactive states is
mediated by different factors. Guanine nucleotide exchange
factors (GEF) promote an active GTPase state by exchan-
ging GDP to GTP. GTPase activating proteins (GAP) lead
to inactive GTPase by promoting GTP hydrolysis. Finally,
guanine nucleotide dissociation inhibitors (GDI) also sup-
press small GTPases functional activity by stabilizing them
in GDP-bound state. The Rho family of small GTPases
RhoA and Rac1 as well as the Ras family GTPase Rap1
play a central role in regulating EC barrier function by
modulating cytoskeletal remodeling.15–17 Among these,
RhoA is responsible for increasing endothelial permeability
thereby decreasing EC barrier function. RhoA also mediates
the barrier disruptive pathway induced by various agonists
including thrombin and vascular endothelial growth factor
(VEGF).18–21 The increased phosphorylation of myosin
light chain (MLC) mediated by Rho-associated kinase
(ROCK)-induced inactivation of MLC phosphatase is con-
sidered as the mechanism by which RhoA causes acto-
myosin contractility.22 On the other hand, Rac1 plays a
major role in maintaining basal endothelial barrier function
in resting cells and also mediates EC barrier enhancement
induced by various barrier protective agents.5,23 In addition,
recent studies, including from our group, have demonstrated
the important role of Rap1 in positively modulating EC
barrier function.9,24 These GTPases control EC barrier
integrity by modifying cytoskeletal organization as evi-
denced by the formation of actin stress fibers, paracellular
gaps with Rho activation and accumulation of peripheral
actin, sealing of junctional gaps and enhanced junctional
assembly with Rac or Rap1 activation.

Intrinsic mechanism of EC recovery

A dynamic cross-talk facilitated by the time-dependent acti-
vation of different small GTPases seems to regulate the
auto-recovery of EC following the disruptive insults. This
notion was established by our study where we showed that
thrombin-induced EC permeability and recovery coincide
with activation of Rho and Rap1, respectively9 (Fig. 1).
The rapid activation of Rho mediates thrombin-induced
EC permeability.19 In turn, barrier recovery is initiated by
the activation of Src kinase-dependent phosphorylation of
Rap1-specific GEF C3G leading to the activation of Rap1.
Consistent with these functional roles of RhoA and Rap1,
thrombin induced Rho activation and Rap1 inhibition at
early time points (� 10min), which was followed by activa-
tion of Rap1 and downregulation of Rho at later time
points. Rap1-dependent recovery of EC barrier function
was evident with the dissolution of actin stress fibers, reseal-
ing of intercellular gaps, and formation of lamelliopodia-
like structures. The molecular inhibition of Rap1 with
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small interfering RNA abolished thrombin-induced EC bar-
rier recovery, supporting that Rap1 controls the downregu-
lation of Rho signaling during EC recovery during thrombin
challenge. Similar time-dependent activation of Rho, Rac,
and Cdc42 during thrombin-induced transient and revers-
ible EC barrier disruption was postulated by Beckers et al.
based on the findings from multiple studies (reviewed in
Beckers et al.15).

In light of the pivotal role of cross-talk among small
GTPases in governing self-repair of EC barrier dysfunction,
it is essential to explore the role of various intermediate
signaling molecules that facilitate the interaction between
these GTPases. From our findings, Rap1-mediated associ-
ation of afadin with p120-catenin appeared critical in down-
regulation of Rho.9 Moreover, Rap1 can also activate Rac1
via Tiam1, a Rac-specific GEF, and thus Rap1-mediated EC
barrier recovery may also involve Rac, which is known to
suppress Rho activation by multiple mechanisms including
direct interaction with RhoGDI, PAK1-dependent inhib-
ition of p115RhoGEF, and stimulation of
p190RhoGAP.25–27 Based on the findings from a plethora
of studies, it can be concluded that activation of a Rap1/Rac
pathway might be a universal mechanism of EC barrier
auto-recovery by reversing Rho-mediated disruption. This
notion is further validated as various barrier protective
agonists also upregulate Rap1/Rac to neutralize the detri-
mental effects of Rho activation during EC barrier protec-
tion which will be discussed in the next section.

EC recovery assisted by endogenous bioactive molecules
and therapeutic agonists

In the past two decades, a significant amount of studies have
focused on identifying potential EC barrier protective agents
that can be developed into therapeutics against vascular leak
and inflammation caused by endothelial barrier dysfunction.

These studies have led to the discovery of a number of EC
barrier protective agonists and their synthetic analogs with
therapeutic potential to increase basal endothelial function
and offer protection in clinical settings of lung injury. In
addition, in response to noxious stimuli, the activated endo-
thelium secretes various bioactive molecules that can trigger
the recovery process. This type of EC recovery and reso-
lution of lung inflammation is best exemplified by upregu-
lated production of growth factors, and anti-inflammatory
and barrier protective peptides.28–32 In addition, the change
in repertoire of pro-inflammatory bioactive lipid mediators
secreted during the acute phase of ALI to anti-inflammatory
lipid mediators such as lipoxins, resolvins, and protectins
synthesized during ALI resolution drives the recovery
of inflammation.33,34 Barrier-promoting agonists and
mechanisms of their action will be discussed in more detail
below.

cAMP and cAMP derivatives. An elevation in cAMP levels in
EC has been shown to enhance EC barrier function and also
to provide protection via protein kinase A (PKA)-dependent
mechanisms against EC barrier disruption evoked by dis-
ruptive agents such as thrombin.35,36 PKA-independent
mechanism of cAMP-induced EC barrier protection against
thrombin or VEGF occurs by the activation of Epac-Rap1
signaling which promotes enhancement of VE-cadherin-
containing adherens junctions in endothelial cells.37 The
role of Epac-Rap1 pathway in improving EC barrier func-
tion has been further substantiated by other studies.38–40

Several reports have also demonstrated the role of Rac in
mediating cAMP-induced EC barrier function.41–43 Our
study described the positive cross-talk between Rap1 and
Rac, as a convergence mechanism of RhoA inhibition and
EC barrier protection against thrombin caused by adminis-
tration of atrial natriuretic peptide (ANP).44 Rac1 was
determined as a central hub for both PKA-dependent and
-independent EC barrier recovery pathways.45 The results
from all of these studies strongly indicate that cAMP-elevat-
ing agents such as forskolin, rolipram, and other cell perme-
able synthetic cAMP analogs including 8-Bromoadenosine 3’,
5’-cyclic monophosphate and 8-(4-chlorophenylthio)adeno-
sine 3’, 5’’-cyclic monophosphate could be potential thera-
peutics against lung injury and inflammation elicited by
endothelial barrier dysfunction.

Prostaglandins. Prostaglandins (PGs) and some of their
derivatives have been known to exert barrier protective
and anti-inflammatory effects on the pulmonary endothe-
lium.46–48 However, the cellular effects of PGs are deter-
mined by the engagement of different receptor types and
often show detrimental effects in the lung.49 Nevertheless,
a series of studies from our group have established the pro-
tective effects of various PGs in several models of ALI and
inflammation in vitro and in vivo. Among these, PGE2

and PGI2 protected from thrombin-induced EC barrier

Fig. 1. Mechanism of EC barrier auto-recovery after thrombin chal-

lenge. In parallel with rapid activation of the Rho pathway leading to

increased EC permeability, thrombin causes activation of Src kinase,

which stimulates the Rap1-specific GEF C3G and, via Rap1-Tiam1,

turns on the Rac1 signaling. Activation of the Rap1–Rac1 signaling axis

downregulates the Rho pathway of barrier disruption and promotes

reassembly of AJ complexes and endothelial monolayer barrier

restoration.

Pulmonary Circulation Volume 8 Number 1 | 3



disruption by activating both PKA-dependent and
PKA-independent Epac-Rap1 pathways.50 In the same
study, PGI2 analog beraprost protected mechanical ventila-
tion-induced lung barrier dysfunction in mice. By employing
pharmacological activators/inhibitors and knockout mice,
our study further substantiated the role of beraprost-
activated Rap1 pathway in protecting LPS-induced
in vitro and in vivo lung injury.51 Multiple studies testing
the role of another prostacyclin analog, iloprost,
also showed its potent protective effects against mechanical
ventilation and LPS-induced lung injury by activating
Rap1 and inhibiting Rho.51–53 Given that both of the
aforementioned prostacyclin analogs are clinically used to
treat pulmonary hypertension, their marked protective
effects in several models of lung injury and inflammation
also bolsters their potential therapeutic use in these
conditions.

Phospholipids. In recent years, a number of studies have high-
lighted EC barrier protective and anti-inflammatory proper-
ties of various phospholipids. In particular, treatment with
oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phos-
phorylcholine (OxPAPC) has shown great promise in pre-
venting lung injury and inflammation. Extensive studies by
our and other groups have established that OxPAPC exerts
protection against a diverse range of barrier disruptive and
pro-inflammatory agents including mechanical forces (ven-
tilator, cyclic stretch), thrombin, LPS, and heat-killed

Staphylococcus aureus54–57 which was due to antagonistic
effects of OxPAPC on agonist-induced activation of
toll-like receptors TLR2, TLR4, and TLR9.58–61

Independently on TLR antagonism, OxPAPC exhibits
potent barrier-enhancing effects on vascular endothelium
which are initiated by interaction of OxPAPC with cell sur-
face-associated molecular chaperone with signaling proper-
ties, GRP78.62 OxPAPC-induced barrier protection was
facilitated by cytoskeletal remodeling with enhanced assem-
bly of adherens junctions and tight junctions mediated by
Rap1 and Rac activation.23,63,64 Additional activation of
prostaglandin E receptor-4 (EP4) which triggers cAMP-
PKA and cAMP-Epac1-Rap1 pathways of cytoskeleton
remodeling and cell junction enhancement may also mediate
the barrier protective effects of OxPAPC as evidenced in our
latest study.65 More detailed analysis of phospholipid oxi-
dation products contained in the OxPAPC preparation
revealed that full-length PAPC oxidation products provide
EC barrier protection while fragmented products evoke bar-
rier disruption.66 A summary of OxPAPC-induced signaling
pathways leading to EC barrier enhancement is presented
in Fig. 2.

Our most recent study showed that preconditioning of
both quiescent or inflamed pulmonary EC with OxPAPC
or injection of OxPAPC to LPS-challenged mice induces
the production of lipoxin A4 (LXA4), which contributes
to anti-inflammatory effect of OxPAPC in vitro and
in vivo; and the mechanism of LXA4 action involves

Fig. 2. Summary of signaling mechanisms activated by barrier-protective oxidized phospholipids.
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activation of EC-expressed formyl-peptide receptor-2
(FPR2/ALX).67 EC-protective effects of LXA4 have also
been confirmed by other groups.68–70

In addition to oxidized phospholipids, another lipid
mediator, sphingosine-1-phosphate (S1P), also exhibits
potent barrier protective effects on pulmonary EC via bind-
ing to its receptor S1PR1 and activation of Rac1 signal-
ing.71–73 Interestingly, OxPAPC also transactivates S1PR1

and this event contributes to OxPAPC barrier-enhancing
properties. FTY720, a potent agonist of S1PR1, also
enhances EC barrier function, although involvement of
S1PR1 receptor-mediated mechanism in FTY720 effects is
controversial.74–76

Growth factors. Among growth factors, hepatocyte growth
factor (HGF) is a prominent EC barrier protective agent.
HGF increases basal endothelial function by cytoskeletal
rearrangement mediated by the activation of various kinases
including phosphatidylinositol 3’-kinase (PI3K), extracellu-
lar signal-related kinase (Erk), p38 mitogen-activated pro-
tein kinase, and PKC leading to the phosphorylation of
glycogen synthase kinase-3b.77 HGF protects against
thrombin-induced EC dysfunction by Tiam1-mediated acti-
vation of Rac and inhibition of Rho pathways.78 Likewise,
HGF-induced protection against LPS-caused lung injury
and inflammation was dependent on the activation of
Asef, a Rac-specific GEF.79 Microtubules also appear to
play a key role in mediating HGF-induced EC barrier
enhancement.80 Contribution of other growth factors upre-
gulated during lung injury in EC barrier function recovery
still remains to be clarified. A recent study has shown that
epidermal growth factor (EGF) protects blood–spinal cord
barrier disruption during acute spinal cord injury by activat-
ing the PI3K/Akt/Rac pathway.81

Other barrier protective molecules. Statin, an inhibitor of the
rate-limiting enzyme in cholesterol synthesis, has been
shown to protect against thrombin-induced endothelial
permeability in vitro by inhibiting membrane translocation
of Rho and prevents vascular leaks in vivo.82 The EC
barrier protective functions of simvastatin has been con-
firmed by several other studies.83–85 Hyaluronan is a
major glycosaminoglycan component of extracellular
matrix of many tissues. High molecular weight hyaluro-
nan, a natural component of extracellular matrix also pre-
sent in circulation in soluble form, enhances EC barrier
function in part via transactivation of S1PR1 receptor86

and protects LPS-induced vascular leak.87 An endogenous
peptide adrenomedullin is reported to protect vascular
barrier integrity.88,89 Angiopoietin protects against
VEGF-induced endothelial permeability by inhibiting Src
activation and preventing the phosphorylation of VE-cad-
herin.90 The endothelial barrier protective and anti-inflam-
matory roles of angiopoietin have been observed in
various settings.91,92

Conclusion

The timely and efficient recovery of the endothelium from
various toxic insults and injuries is vital for the proper func-
tion of the lung. The repair process in EC is assisted by
either intrinsic or agonist-induced small GTPases activation
with cytoskeletal remodeling. Sequential activation and
dynamic cross-talk between these GTPases regulate the
overall endothelial function (Fig. 3). In response to toxic
stimuli, the endothelium also generates various bioactive
molecules which assist during the recovery. Among them,
lipoxins appear to be of significant importance with their
potent barrier protective and anti-inflammatory functions
as well as their accumulation by EC barrier enhancing oxi-
dized phospholipid species, OxPAPC. The comprehensive
understanding of the molecular and cellular mechanisms
of intrinsic or agonist-mediated endothelium repair and
recovery will pave a way for the development of novel thera-
peutics against pulmonary disorders associated with endo-
thelial dysfunction.
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