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SUMMARY

Community ecology theory suggests that an individual’s phenotype is determined by the phenotypes
of its coexisting members to the extent at which this process can shape community evolution. Here,
we develop a mapping theory to identify interaction quantitative trait loci (QTL) governing inter-indi-
vidual dependence. We mathematically formulate the decision-making strategy of interacting individ-
uals. We integrate these mathematical descriptors into a statistical procedure, enabling the joint
characterization of how QTL drive the strengths of ecological interactions and how the genetic archi-
tecture of QTL is driven by ecological networks. In three fish full-sib mapping experiments, we identify
a set of genome-wide QTL that control a range of societal behaviors, including mutualism, altruism,
aggression, and antagonism, and find that these intraspecific interactions increase the genetic varia-
tion of body mass by about 50%. We showcase how the interaction QTL can be used as editors to
reconstruct and engineer new social networks for ecological communities.

INTRODUCTION

Quantitative genetic theory has long focused on modeling how the phenotype of an individual is deter-
mined by its genes, known as quantitative trait loci (QTL), and the environment where it grows (Ritchie
et al., 2015). An increasing body of evidence has revealed that an individual’s phenotype in a population
is also affected by the phenotypes of other members that coexist with it (Magnuson, 1962; Wolf et al.,
1998; Shuster et al., 2006; Ribas et al., 2017; Schneider et al., 2017; Santostefano et al., 2017). As such,
how a particular individual performs is influenced not only directly by its own QTL, but also indirectly by
the QTL of its conspecifics (Jiang et al., 2018). For instance, in an association study of laying hens, a set
of genes from a single hen were identified within the serotonin pathway to affect the feather condition
of its cage mates (Biscarini et al., 2010). The flowering gene FRIGIDA from focal plants in Arabidopsis af-
fects the developmental processes of their neighbors, according to genetic mapping using structural
equation models (Wolf et al., 2011). In Drosophila melanogaster, several QTL detected for aggressive
behavior are at play by interacting with social environments (Rohde et al., 2017).

Although inter-individual interdependence and interactions inducing phenotypic variation involve a ge-
netic component, existing genetic mapping theory does not enable the detailed characterization of how
the underlying QTL act in a mapping population. The genetic effects of QTL may be activated by ecological
interactions, such as competition, where one individual grows at the cost of others exploiting the same re-
sources, or cooperation, by which multiple individuals can better buffer against environmental perturba-
tions than any single one alone (Fisher and Mcadam, 2017). These ecologically meaningful QTL can be
better identified if we equip a mapping approach with the ecological and social principles that can explain
why an individual chooses to compete or cooperate with others. The motivation of this study is to upgrade
quantitative genetic theory by embedding fundamental principles of competition and cooperation, to a
level at which geneticists can map specific QTL responsible for ecological interactions, estimate how these
QTL affect population phenotypes through direct and indirect effects, and test how ecological interactions
can induce new genetic variation for complex traits.

To test this theory, we designed and conducted a QTL mapping experiment by genotyping a full-sib family
(H1) of the common carp (Cyprinus carpio) and culturing its n = 71 siblings in a shared water pool. Previous
cultural experiments showed that fish growth, behavior, and survival are highly plastic to the crowdedness
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2017). In a natural ecosystem of coral reef, fish make their decisions to feed on algae or escape from pred-
ators according to actions of other fish (Gil and Hein, 2017). As such, we anticipate that pervasive social in-
teractions occur among the co-cultured fish, which exert an impact on fish phenotype. Traditional mapping
approaches simply associate phenotype with genotype, without considering social interactions. The appli-
cation of these approaches to our mapping population detected no QTL responsible for fish body mass
(Figure S1), a trait that is sensitive to competition (Magnuson, 1962). However, when the same data were
analyzed under our theory, a number of QTL have been identified. To validate these discoveries, we con-
ducted two additional mapping experiments, from each of which consistent results are obtained.

RESULTS
Mathematical Descriptors of Ecological Interactions

In a socialized environment, a fish may maneuver its living territory by continuously changing its neighbors
to which it pays attention (Jiang et al., 2017) so as to maximize its chance for survival and reproductive suc-
cess (McFarland, 1977; Dugatkin and Reeve, 2000). This process, often guided by rational choice-based
game theory (Harp, 2017), as recognized in humans (Park et al., 2017), rodents (Dias-Ferreira et al., 2009,
Friedman et al., 2017), and microbes (Damore and Gore, 2012), incurs a so-called collective motion phe-
nomenon, ubiquitous across the animal kingdom (Vicsek and Zafeiris, 2012; Jiang et al., 2017). Under nat-
ural selection, animal collective behavior has been shaped toward two tendencies. First, animals tend to
swarm, flock, or shoal with individuals that resemble themselves in a cooperative way by which the so-called
oddity effect, i.e., those individuals displaying difference in appearance from the group are at a greater risk
to be predated (Hoare et al., 2000), can be avoided. Thus, animals of roughly similar size, color, and even
smell in a population enjoy mutual cooperation and coordination (Camazine et al., 2001; Sumpter, 2006,
2010; Herbert-Read et al., 2011), and the similarity of two animals is proportional to the degree of the desire
by which they cooperate. In mathematics, the similarity of two variables is positively correlated with their
product, given that their sum is fixed. Taken together, we hypothesize that the product of two animals’
body sizes can serve as a proxy for the strength of mutualism. In contrast, we use the inverse of the product
of body sizes of two animals to approximately measure the strength of their antagonism.

Second, animals of larger body size tend to display agonistic behavior to those of smaller body size when a
limited amount of resource needs to be allocated among members of the same population (Chance and
Larson, 1976; Desjardins et al., 2012; Romenskyy et al., 2017). As an aggressive and defensive action, this
behavior is adaptive, widely believed to play an important role in resource acquisition, reproductive suc-
cess, and survival (Pan et al., 2010). Hence, we hypothesize that the ratio of body size of a larger over a
smaller animal in the socialized environment reflects the extent to which the former exerts its aggression
toward the latter. Accordingly, the body size difference of larger and smaller animals, divided by the
body mass of the larger one, can be used as a surrogate for the strength of altruism. Based on the
above-mentioned analysis, we derive mathematical descriptors to measure four types of intraspecific inter-
actions, mutualism, antagonism, aggression, and altruism, by examining and comparing the body sizes of
two interactive animals (Figure 1).

Biological Justification of Interaction Measures

For a particular pair of animals in co-culture, we name the larger individual as L and the smaller individual as
S. Let w and ws denote the body size of L and S in co-culture, respectively. We argue that Figure 1's math-
ematical descriptors derived from wi_and ws can measure the strengths of different interaction types that
occur between the animals. To test these hypotheses, we analyze two real datasets, one from a cultural
experiment of fish and the second from a published bacterial cultural study (Jiang et al., 2018). In each
experiment, organisms were paired and two members in each pair were cultured both separately and
jointly. Substantial evidence suggests that the organism often changes its phenotype in response to
ecological interactions when it is shifted from an isolated environment to a socialized environment
(Bohn and Amundsen, 2004; Fordyce, 2006; Lang and Benbow, 2013; Gamfeldt et al., 2013; Barraclough,
2015; Gracia-Lazaro et al., 2018). By quantifying the extent to which the phenotypic traits of the two indi-
viduals change from monoculture to co-culture, the strength of their ecological interaction can be
measured and assessed.

We use ui and us to denote the body size of individuals L and S in monoculture, respectively. Note that u is

not necessarily greater than us, although w_is always greater than ws by definition. If two individuals coop-
erate with each other, then the relative body size of each individual in co-culture over monoculture should
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Figure 1. Mathematical Descriptors of Four Types of Ecological Interactions, Mutualism (z,,,), Antagonism (z,,),
Aggression (z,), and Altruism (z,))

We use wi_and ws to denote phenotypic values of a larger animal L and a smaller animal S, respectively, constituting a pair
in a mapping population. The product of phenotypic values between two animals is used as a descriptor for the strength
of mutualism, i.e., how much the two animals benefit from one another through cooperation (Zhu et al., 2016). The
strength of antagonism is described by the inverse of the product of phenotypic values, reflecting how much one animal
grew reciprocally at a cost of the other. To adjust the scale effect, these two descriptors are normalized by dividing them
by the phenotypic difference of the larger from the smaller animal. The ratio of phenotypic values of the larger over the
smaller animal is used to measure the strength of aggression, by which the former grows by harming the latter. The
strength of altruism is calculated as one minus the ratio of phenotypic values of the smaller over the larger animal.

not be less than 1.0 (Ghoul and Mitri, 2016). If one individual is aggressive on the other, i.e., the former
grows at a cost of the latter, then the relative body size of the former over the latter would increase
when the two individuals are relocated from their respective isolated environments to the common envi-
ronment. Accordingly, if one individual is altruistic toward the other, i.e., the former sacrifices itself to
benefit the latter, then the relative body size of the latter in co-culture over monoculture should be larger
than the relative body size of the former in co-culture over monoculture. Based on these lines of reasoning,
we use My = (wi/u_ + ws/us)/2 to quantify the strength of mutualism between individuals L and S, A, =
(wi/ws)/(u/us) to quantify the strength of individual L's aggression toward individual S, and A, = (ws/us)/
(wi/up) to quantify the strength of individual L's altruism toward individual S.

Fish Experiment

We sampled five fish pairs from a population, in which the relative size of a smaller over larger one is 0.10,
0.38, 0.61, 0.80, and 1.00, with the larger one having a roughly similar size among pairs. Each pair was
repeated four times. We reared each pair of fish in shared and isolated water buckets and measured their
body mass 2 weeks after the fish was cultured. We calculated gains of body mass for each fish during
culture.

Using the expressions given in Figure 1, we calculated and plotted parameters z,g, Zm,, and z, against Ag,
M., and A, for body mass gain across different fish pairs, respectively. We can test how well these three
parameters can be used to measure the strengths of mutualism, parasitism, and altruism. It is interesting
to find that z,4 is positively correlated with Ag (Figure 2A), thus suggesting that the former can approxi-
mately represent the strength of competition, especially the strength of aggression. We found that z.,,
is positively correlated with M,, (Figure 2B), indicating that the former can well serve as a proxy to quantify
the strength of mutualism. The positive correlation between z, and A, (Figure 2C) implies that the former is
a good representation of the strength of altruism. From the above-mentioned analysis of fish data, it is
suggested that the mathematical descriptors proposed can be used to measure different types of ecolog-
ical interactions.

Microbial Experiment

Microbes have been widely used as a system to study ecological interactions (Damore and Gore, 2012). We
further validated Figure 1's mathematical descriptors by re-analyzing a published bacterial data. Jiang
et al. (2018) cultured two bacterial species, Escherichia coli and Staphylococcus aureus, in socialized and
socially isolated conditions, respectively. They collected 45 diverse bacterial strains from each species.
Each strain from one species was grown in monoculture and its interspecific pair with a randomly selected
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Figure 2. Biological Validation of Interaction Measures in a Fish Experiment

Scatterplots of mathematical descriptors given in Figure 1 against the strength of ecological interactions across five
different pairs of fish (dots) with relative body mass 0.10, 0.38, 0.61, 0.80, and 1.00.

(A) Aggression descriptor (zag) versus the strength of aggression.

(B) Mutualism descriptor (z.,,) versus the strength of mutualism.

(C) Altruism descriptor (z,) versus the strength of altruism. The relationship between two variables is roughly fitted by a
curve, with correlation coefficient (r) given within each plot.

strain from the other species grown in co-culture. The abundance of each strain was measured once every
2 h during the first 24 h, followed by once every 4 h till 36 h, after the two types of culture were initiated.

Organismic growth obeys a certain rule that can be described by a growth equation (West et al., 2001).
We used an optimal growth equation to fit time-dependent abundance data of each strain and further
partitioned its growth curve into lag, linear, and asymptotic phases (Zwietering et al., 1990). Using the
mathematical expressions of Figure 1, we calculated parameters Zag, Zmu, @and z, at each time points
and plotted these parameters against Ag, M,, and A, respectively, estimated from co-culture and mono-
culture data across all strains. We found that z.4 is positively correlated with A4 (Figure 3A) (p < 0.01),
showing the effectiveness of the former to measure the strength of aggression. These two variables
display the strongest correlation at the asymptotic phase, followed by one at the linear and lag phases.
This indicates that the ratio of a larger over smaller strain can better serve as a measure of the strength of
aggression when the growth of strains tends to be stable. We found that z,,, is positively correlated with
M, (p < 0.01), especially at the asymptotic phase (Figure 3B; p < 0.001), suggesting that the former can
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Figure 3. Biological Validation of Interaction Measures in a Bacterial Experiment

Scatterplots of mathematical descriptors given in Figure 1 against the strength of ecological interactions across 45 interspecific pairs of strains from E. coli
strains and S. aureus at three distinct phases of microbial growth (lag, linear, and asymptotic).

(A) Aggression descriptor (z,g) versus the strength of aggression.

(B) Mutualism descriptor (z.,,) versus the strength of mutualism. The strength of mutualism is measured by the average of the ratio of abundance of each bacterial
species in co-culture to monoculture. Thus, this ratio average quantifies the strength of cooperation if it is above 1 and the strength of competition if it is below 1.
(C) Altruism descriptor (z,)) versus the strength of altruism. Dots represent observations of different interspecific strain pairs at each time point. The
relationship between two variables is roughly fitted by a curve, with correlation coefficient (1) given within each plot.

be effectively used as the strength of cooperation. The zy, values are much smaller in the competition
zone (M, < 1) than cooperation zone (M, > 1). We found that z, is positively correlated with A, across
strain pairs at three distinct phases, especially at linear and asymptotic phases (Figure 3C; p < 0.001),
suggesting that the former can be effectively used as a proxy to measure the strength of altruism toward
a larger individual from a smaller individual.

In summary, we formulate the mathematical descriptors of four typical ecological interactions, mutualism,
antagonism, aggression, and altruism. We have carried out the fish experiment to validate the biological
relevance of these descriptors, which was confirmed by a micribial experiment. A statistical model is imple-
mented to map the genetic architecture of ecological interactions by treating these descriptors as
phenotypes.
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Identification of Social QTL and Their Biological Relevance

The biological validation of the mathematical descriptors allows us to calculate and use four derived pa-
rameters, Zmu, Zan, Zag, and z, (Figure 1), as measures of the strength of mutualism, antagonism, aggression,
and altruism, respectively, between each pair of fish in our mapping population. We used these parameters
to construct the networks of each interaction type. These ecological interaction networks were incorpo-
rated into the statistical framework of QTL mapping (see the Transparent Methods). Among 39,960
high-density SNPs (with an average marker distance of 0.75 cM), our model identified 158 QTL distributed
over various chromosomes for body mass, including 80 acting through mutualism, 45 through antagonism,
98 through aggression, and 76 through altruism. Yet, no QTL for body mass can be detected by traditional
approaches (Figure S1). We replicated the mapping experiment by generating two independent full-sib
families G1 (n = 115, with 97,532 SNPs) and Z22 (n = 62, with 86,370 SNPs) from different common carp par-
ents, from each of which a similar conclusion was reached; i.e., a number of QTL on different regions of the
genome were detected by the ecological interaction-implemented model, whereas none was detected by
traditional approaches (Figures S2 and S3).

We performed an extensive gene enrichment analysis for the significant SNPs by screening their up- and
down-stream 10 kb regions on the sequenced genome of the common carp (Xu et al., 2014). Together,
a large proportion of QTL detected from three mapping families were annotated to candidate genes:
86.2% for mutualism, 85.7% for antagonism, 85.9% for aggression, and 85.4% for altruism (Tables S1, S2,
S3, and S4). We found that significant SNPs located in clusters are individually annotated to different genes
(Figures S1-S3). All candidate genes have been previously reported in association with growth traits. For
example, pdlim4 (PDZ and LIM domain protein 4) of QTL carp227526 from family Z22 and pdlim3 of QTL
carp168806 from family G1 detected simultaneously by mutualistic, aggressive, and altruistic models are
closely related to muscle growth and development (Hsieh et al., 2014). These three models also detected
gpc4 gene of carp028224 from family G1, notch2 gene of QTL carp152585 from family Z22, and gpr1017
gene of QTL carp123609 from family G1. A family of gpc genes, e.g., gpcTa, gpc3, and gpc4, encoding gly-
picans, are expressed during the gastrulation stage of zebrafish, with their expression becoming more
tissue specific and defined at the somitogenesis stages (Gupta and Brand, 2013). notch2 has been widely
reported to play a vital role in skeletal and muscle development (Zanotti and Canalis, 2013). gpr107 gene of
QTL carp123609 from family G1is involved in skeletal development (Beckers et al., 2015), and its other close
GPR family members interact with IGFs and are crucial for muscle and body growth (Yang et al., 2014). Addi-
tionally, other genes identified uniquely by a certain model are also relevant in terms of biological func-
tions; for instance, the genes prss23 of carp170891 from family G1, rarab of carp055558 from family H1,
bmp1 of carp017510 from family H1, and acer? of carp117856 from family H1 were detected by the mutu-
alistic, antagonistic, aggressive, and altruistic models, respectively. Molecular experiments in zebrafish
showed that prss23 was essential for endothelial-to-mesenchymal transition during valvulogenesis (Chen
et al., 2013). Mice studies showed the involvement of rarab in fatty acid oxidation and energy homeostasis
(Li et al., 2013). bmp1 (bone morphogenetic protein 1) affects embryo development and osteogenesis
(Muir et al., 2014) and is essential for human type 1 collagen fibrillogenesis (Valencia et al., 2014) acerT is
important for mammalian skin homeostasis and the regulation of energy expenditure (Liakath-Ali et al.,
2016).

To glean insight into the genetic mechanisms underlying the formation of body mass, we further per-
formed GO and KEGG enrichment analyses for the QTL detected (Tables S5, S6, S7, and S8, Figures
S4-S6). GO analysis identified significant enrichments of mutualism, aggression, and altruism QTL in
“multicellular organism development (GO: 0007275)" and “fin development (GO: 003333),” both of which
include two genes reported to affect zebrafish development, notch2 (Zanotti and Canalis, 2013) and
hmen1 (Feitosa et al., 2012). GO terms were enriched by the mutualistic model in “regulation of Notch
signaling pathway (GO: 0008593),” which plays a vital role in bone and neurite development (Zanotti
and Canalis, 2013). The antagonist model enriched “steroid hormone mediated signaling pathway (GO:
0043401)" (Li et al., 2013) and "B cell activation (GO: 0042113).” The enriched "B cell activation” suggests
that stress-related genes, such as prkcbb, participate in fish-fish competition by regulating the D,-like
dopamine autoreceptor (Luderman et al., 2015). “Somitogenesis (GO: 0001756),” uniquely identified by
the aggressive model, is interestingly closely related to myogenesis and muscle growth (Gupta and Brand,
2013), which enhance the fish to develop a strong capacity for aggression. “Lipid metabolic process (GO:
0006629),” only detected by the altruistic model, is remarkably involved in energy expenditure (Liakath-Ali
et al., 2016) and inhibits aggression, invoking altruism.
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Figure 4. Quantitative Genetic Dissection of Genotype Combination Values For Fish Body Mass

Upper panel: Genotypic values of combinations CC x CC, CC x TC, and TC x TC at pdlim3 (testcross QTL) for the strength of mutualism; combinations AA
x AA, AA x GA, and GA x GA at thraa (testcross QTL) for the strength of antagonism; combinations GG x GG, GG x CG, CG x GG, and CG x CG at
bmp1 (testcross QTL) for the strength of aggression; and combinations CC x CC, CC x CT,CC x TT,CT x CC,CT x CT,CT x TT, TT x CC, TT x CT, and
TT x TT at notch2 (intercross QTL) for the strength of altruism. Lower panel: Direct genetic effects that describe how the alleles of a fish in a pair affects its
own body mass; indirect genetic effects that specify how each fish gene affects its conspecific’'s phenotypes; and genome-genome epistatic effects that
quantify how the interactions between genes of two fish affect the phenotype of each fish. For the intercross QTL, both the direct and indirect effects include
additive (blue) and dominant (green) effects and genome-genome epistatic effects include additive X additive, additive X dominant, dominant x additive,
and dominant X dominant effects (in order from left to right). Standard errors for each value are given.

KEGG analysis found even more fascinating enriched pathways (Table S9). The mutualistic, aggressive, and
altruistic models enriched four pathways closely associated with body weight: the “neuroactive ligand-re-
ceptor interaction,” "mTOR signaling pathway,

"won

progesterone-mediated oocyte maturation,” and
"“adrenergic signaling in cardiomyocytes.” For example, gnai3 in the last pathway has been reported to
regulate pig postnatal growth by engaging in miRNA-mRNA interactions (Ye et al., 2015). Mutualistic
and altruistic models both identified the “Wnt signaling pathway,” which plays an important role in
body axis patterning, cell proliferation, and cell migration and, therefore, embryonic development. These
processes within the Wnt signaling pathway not only are necessary for bone and muscle formation but also
control adult bone marrow, skin, and intestine tissue regeneration (Clevers et al., 2014), which is key to
longevity and function.

How QTL Act: Direct, Indirect, and Genome-Genome Epistatic Effects

Our theory can partition the genotypic value of a social QTL into its different genetic components (see the
Methods). pdlim3 detected from family G1 is a testcross QTL for mutualism with two genotypes paired
among the fish. The fish carrying the same genotype TC at this mutualism QTL are more cooperative
with each other than with those carrying the alternative CC (Figure 4). At the rarab gene detected from fam-
ily H1, stronger antagonism occurs between the fish of the same genotype AA than between those carrying
different genotypes, and the fish with the same alternative genotype GA are the least antagonistic to each
other. The fish carrying GG at bmp1, detected from family H1, repress those with the same genotype much
more severely than with the alternative CG, whereas the fish of the same genotype CG are the least aggres-
sive to each other. As an intercross QTL, the notch2 detected from family H1, G1, and Z22, have three ge-
notypes (CC, CT, and TT) forming nine genotype combinations among pairing fish. Genotype CT is more
altruistic to the same genotype and genotype CC than to genotype TT, and genotype TT is the least altru-
istic to the same genotype among all combinations. Our model can separate the direct genetic effect of a
QTL from one fish on its own body mass; the indirect genetic effect of a QTL from one fish on the body mass
of its pairing partner; and the genome-genome epistatic effect of a QTL from two fish on the body mass of
each fish. We found that mutualism pdlim3 controls the body mass of fish not only through its direct effect
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but also through its indirect effect (Figure 4). The influence of genome-genome epistatic effect was
evidently detected for antagonism rarab. Surprisingly, indirect and genome-genome epistatic effects
are more pronounced than direct effect at aggression bmp1. As an intercross QTL, altruism notch2 may
exert its genetic impact by additive and dominant effects and their epistatic interactions. In fact, a remark-
able indirect effect through both additive and dominant inheritance triggered by this QTL was found,
although its genome-genome epistatic effects are not significant.

We further estimated the proportions of variance due to each of these effects to the total genetic variance
at each QTL. Averaged over all QTL, indirect and genome-genome epistatic effects together explained
approximately 50% of the total genetic variance for body mass, a phenomenon detected consistently in
three mapping families (Table S10). These two portions of genetic components, largely neglected in pre-
vious quantitative and evolutionary genetic studies, may help geneticists chart a more complete genetic
signature.

Social Networks and QTL Networks

Using marginal genotypic values at each QTL, we modified an ordinary differential equation method (see
the Methods) to infer a directed, signed, and weighted network of social interactions among the fish based
on all QTL for mutualism, antagonism, aggression, and altruism. In the family H1 of 71 fish, this QTL-driven
social network is composed of a total of 314 pillar connections from 2,485 possible links (Figure 5A), by
which one fish connects and interacts with other fish selectively according to the game theory. For example,
the network is dominated by 11 hub fish, which are larger than their marginal counterparts (p < 0.01) (Fig-
ure 5B). Of all mutualistic relationships, 80% occurs between the hub fish, 20% between the hub and mar-
ginal fish, and none between the marginal fish. The hub fish are less aggressive toward each other than
toward the marginal conspecifics, although the marginal fish have some degree of aggression toward
the hub fish and other marginal fish. The hub fish are also much less altruistic toward each other, compared
with how much benefit they offer to the marginal ones. Similarly, the marginal fish are less altruistic toward
each other than toward the hubs, although this difference is much more moderate compared with the dif-
ference detected in the hubs. All of these fish behaviors, which are consistent with the predictions from the
game theory, suggest that animal’s decision making in a socialized environment involves a strong genetic
component.

In this study, we investigate how the underlying QTL govern behaviors of fish-fish interactions. We recon-
structed four QTL-driven social fish networks by excluding either QTL for mutualism, or antagonism, or
aggression, or altruism. The number of connections within each of these networks was, respectively,
reduced sharply to 137, 132, 162, and 206 (Figure 5C), suggesting that a large number of QTL are essential
for the maintenance of complex social networks. Specifically, when mutualism QTL were excluded, the
number of mutualistic relationships was reduced to one, compared with five in the network constructed
from all detected QTL. Similarly, aggressive relationships within the aggression QTL-excluded network
and altruistic relationships within the altruism QTL-excluded network both become much less frequent
(i.e., 64 and 114, respectively, compared with 140 and 169 within the network from all QTL). Similar findings
have been confirmed in the other two families G1 and Z22 (Figure 5C). These results suggest that mutu-
alism, aggression, and altruism QTL play an important role in forming and preserving, respectively, mutu-
alistic, aggressive, and altruistic relationships in an interactive community. In other words, community
structure, organization, and even function can be altered, modified, and engineered by activating, repres-
sing, or removing the expression of specific social QTL.

To demonstrate how the detected QTL jointly affect the fish social network, we implemented ordinal
Bayesian networks (see the Transparent Methods) to construct a directed acyclic graph (DAG) of QTL in-
teractions for family H1 (Figure 6). We found that mutualism and antagonism QTL that determine two
extreme patterns of social behaviors organize into distinct modules, connected via aggression and altruism
QTL. A total of 10 QTL (COX5B, STAR, ADAMY, LMOA41, Igsec2, Colgalt2, GPR160, Tnik, rpsékaé, and Msn)
pleiotropically affected the behavior of mutualism, aggression, and altruism. Other pleiotropic QTL
included VPS13A for mutualism and aggression; MYOTF for mutualism and altruism; and BBOF1, ODO1,
RIFK, SAL, and AGRD1 for aggression and altruism. No QTL were detected to be shared for antagonism
and the other types of interactions. Eleven QTL established a set of hub genes that modulate the structure
and organization of the QTL network by activating or inhibiting other QTL. bmp1 is socially an aggression
QTL, but it is not genetically “aggressive” because its expression needs to be regulated by many other
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Figure 5. A Bidirectional, Signed, and Weighted Social Network of All Fish Driven by Various Types of QTL
Constructed from Ordinary Differential Equations

(A) Social network of family H1 constructed from all QTL with edges representing how one fish interacts with others
through mutualism (doubly arrowed), antagonism (doubly T-shaped), aggression (singly T-shaped), or altruism (singly
arrowed). Hubs of the network are highlighted in red.

(B) The network is characterized by the difference in body mass between groups of hubs (red) and non-hubs (blue), the
percentages of mutualistic and antagonistic edges among hubs (red), among hubs and non-hubs (purple), and among
non-hubs, and the percentages of aggressive and altruistic edges from one fish to the second both from the hub group
(red), from one fish from the hub group to the second from the non-hub group (purple), from one fish from the non-hub
group to the second from the hub group (gray), and from one fish to the second both from the non-hub group (blue).
(C) The numbers of mutualistic, antagonistic, aggressive, or altruistic edges with the social networks constructed from all
QTL as well as from all QTL, except for, respectively, mutualism, antagonism, aggression, and altruism QTL. Comparisons
of edge numbers are given not only for family H1, but also for the two family replicates G1 and Z22.
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Figure 6. Dynamic Bayesian Genetic Network of All Detected QTL

The entire network is dissolved into two distinct modules: one composed of mutualism QTL (green circle), aggression QTL (yellow circle), and altruism QTL
(purple circle) and the other composed of antagonism QTL (red circle). The first module contains a proportion of QTL (mix-colored circle) that pleiotropically
affect mutualistic, aggressive, and altruistic behaviors. In each module, hub QTL are highlighted in dark colors. Of all significant detected SNPs, 41 (each
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Figure 6. Continued

labeled by a number) were identified as uniquely segregating in the mapped population, which was used for QTL network construction. It is possible
that different uniquely segregating SNPs may correspond to the same candidate gene if they are physically close enough on the common carp genome.
Candidate genes adjacent to significant SNPs are listed below. Aggression bmp 1, mutualism hmen1, and antagonism rarab are annotated, respectively,
by SNPs #37 and #38 and SNPs #35 and #24. The arrow denotes the direction by which one gene regulates the other.

QTL. hmen1 affects fish mutualistic behavior, but its effect depends on the joint regulation of other QTL.
Antagonism rarab is regulated by other genes, such as suv420h2 and prkcbb, but it also modulates the
expression of other genes. Overall, this QTL network helps to maintain the balance of social interactions
by guiding the decision of individual fish to cooperate or compete with their conspecifics. Taken together,
a detailed portrait of QTL DAG provides a mechanistic understanding of how QTL determine body mass in
a fish population through their epistatic network. A similar phenomenon was also detected in families G1
and Z22, in which QTL form different but connected genetic modules according to their social behavior.
These results, drawn consistently from three independent fish families, could provide evidence about
the biological relevance of our theory.

Monte Carlo Simulation

We examined the statistical behavior of our model through computer simulation. Our model estimates
reasonably well the genetic effects of QTL, including direct, indirect, and genome-genome epistatic ef-
fects, and possesses good power for QTL detection (Table S11). This can be attributed to the increase
of information from pairwise phenotypes under the design of our model. The same data were analyzed
by a traditional model, which shows reduced power for QTL detection. The advantage of our model is
more evident when the heritability and/or sample size are modest. The false-positive rates of our model
are reasonably low (<0.08) even when the mapping population is modest (e.g., 70).

DISCUSSION

No organism can live in absolute isolation, rather the phenotype and fitness of an organism should be
determined not only by its own intrinsic properties, but also by the strategies its conspecifics develop
and use in response to the biological environment (Magnuson, 1962; Ribas et al., 2017; Schneider et al.,
2017; Santostefano et al., 2017). However, measuring the strength of such ecological and social interactions
from a mapping experiment is highly challenging. Based on animal behavioral ecology theory, we formu-
late the mathematical rule of thumb to quantitatively describe the strength of different interaction types
that take place in a mapping population. The cultural experiments of fish and bacteria consistently support
the biological relevance of our mathematical descriptors. We propose a mapping theory for complex traits
by incorporating the mathematical descriptors of ecological interactions. We further arm our theory with a
computational toolkit to map and identify QTL acting through direct genetic effects (by which an individ-
ual’'s QTL affects its own phenotype), indirect genetic effects (by which an individual’'s QTL influences the
phenotype of its conspecifics), and trans-genome epistatic effects (by which the interaction of QTL derived
from different individuals controls each of their phenotypes).

Our theory was used in three independent mapping experiments of fish, obtaining consistent results. We
estimate the contributions of direct, indirect, and trans-genome epistatic genetic effects to quantitative
genetic variation and find that the latter two effects can together account for approximately half of the total
genetic variance in body mass. Many earlier studies have recognized the importance of indirect genetic
effects (Schneider et al., 2017; Santostefano et al., 2017), but quantification of how they contribute to ge-
netic variation has been lacking. Our mapping theory opens a gateway to capturing these overlooked sour-
ces of genetic variation, thereby portraying a more comprehensive genetic architecture of complex traits.

Apart from its increasing precision of trait mapping, our theory raises two key interdisciplinary questions for
future research. First, quantitative genetic theory has been increasingly coupled with behavioral ecology to
reveal the genetic mechanisms underlying social traits, such as aggression and response to social oppo-
nents (Dingemanse and Araya-Ajoy, 2015), and to uncover why selection maintains behavioral variation
rather than eroding it (Santostefano et al., 2017). The major social interaction types of mutualism, antago-
nism, aggression, and altruism profoundly impact the structure and function of ecological communities in
their unique ways. We found that these interactive processes have distinct genetic bases for fitness-related
body size in the fish. To establish a complex social network, more QTL should be activated by playing a
single or multifaceted role. By excluding mutualism, aggression, and altruism QTL, the fish become,
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respectively, less cooperative, aggressive, and altruistic in the population. This result has an immediate
implication for the genetic study and possible manipulation in the real world of behavioral variation and
evolution. By repressing or even eliminating the expression of aggression QTL through modern gene edit-
ing, such as CRISPR, researchers in ecology, breeding, or medicine can create and preserve more cooper-
ative (e.g., for the gut microbiota) or more antagonistic (e.g., for intra-tumoral cells) communities beneficial
to humans.

Second, indirect genetic effects arising from communal interactions are regarded as a source of additional
genetic variation, whose impact on the social-traits evolutionary dynamics, by enhancing rapid selection
responses or functioning as evolutionary constraint on phenotypes, has been well documented in many
experimental studies (Wolf et al., 1998; Shuster et al., 2006; Wilson et al., 2011; Schneider et al., 2017; San-
tostefano et al., 2017). Not only are behavioral traits affected by indirect genetic effects, but also, as shown
by our result, morphological traits, such as body mass, are influenced by an indirect genetic component.
Our finding is innovative and insightful; for instance, we can infer through psychology that our human
behavior responds indirectly to the presence of other surrounding humans’ genes and their related-effects
as these both affect our psyche and choices in food, which in turn then affect our body mass. The incorpo-
ration into evolutionary studies of these indirect genetic effects and trans-genome epistatic effects, ex-
pressed at specific QTL levels, can improve our insight into how social interactions between conspecifics
impose a diverse array of selective pressures on various behaviors and how evolutionary stasis occurs for
phenotypic traits involved in social interactions.

Limitations of the Study

We propose a mapping theory for charting a more complete map of the genetic architecture of complex
traits by incorporating the impact of ecological interactions on phenotypic variation. Although this theory
has successfully identified the previously unknown genetic variation of body size in animals, it is unclear how
it works to study and dissect other types of phenotypic traits, such as disease-related and physiological
traits. Furthermore, our biological justification of interaction descriptors was based on cultural experiments
of mobile animals and microbes, but we do not know whether this justification can be extended to immo-
bile plants that communicate with each other differently from the way mobile organisms do. The unique
feature of our theory is to take advantage of behavioral ecology to enhance the efficiency of trait mapping.
The biological processes of how different organisms cooperate or compete for living resources in popula-
tions, communities, or ecosystems are also governed by evolutionary principles, developmental biology,
habitat ecology, and network science. The seamless integration of all these disciplines into our mapping
theory will certainly facilitate its widespread use to construct mechanistic links from genotype to
phenotype.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

All data and computer code are given in GitHub https://github.com/LiboJiang/Fish or can be directly re-
quested from the corresponding author.

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.1016/].is¢i.2019.11.002.
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Figure S1. Manhattan plot of log-likelihood ratios (LR) for testing significant SNPs, including testcross markers (+)
and intercross markers (), throughout the common carp genome in family H1 by the traditional mapping model (A) and
our mapping model (B — E), related to Figures 4-6. Whereas the former did not discoevr any significant QTL, the latter
has identified a number of significant loci for mutualism (B), antagonism (C), aggression (D), and altruism (E). The
genome-wide critical threshold at the 5% significance level, indicated by solid lines for testcross markers and broke lines
for intercross markers, was determined by 10,000 permutation tests. Through GO analysis, significant QTL for different
types of social interactions, labelled by 1 — 158, are annotated by candidate genes with names given in the lower panel.
Among a total of 158 QTL detected, 80 are for mutualism, 45 for antagonism, 98 for aggression and 76 for altruism, with
a portion of QTL that pleiotropically affect more than one interaction type.
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S2. Manhattan plot of log-likelihood ratios (LR) for testing significant SNPs, including testcross markers (+)
and intercross markers (o) throughout the common carp genome in family G1 by the traditional mapping model (A) and
our mapping model (B — E), related to Figures 4-6. Whereas the former did not discoevr any significant QTL, the latter
ntified a number of significant loci for mutualism (B), antagonism (C), aggression (D), and altruism (E). The
genome-wide critical threshold at the 5% significance level, indicated by solid lines for testcross markers and broke lines
rcross markers, was determined by 10,000 permutation tests. Through GO analysis, significant QTL for different
f social interactions, labelled by 1 — 59, were annoated by candidate genes with names given in the lower panel.
Among a total of 59 QTL detected, 40 are for mutualism, 10 for antagonism, 36 for aggression and 33 for altruism, with

a portion of QTL that pleiotropically affect more than one interaction type.



A
e
—

B‘I40—
— 70—

LR A

w
o

N
wv

8
4
0

0

[=]

0

0

]

T T

i

]

L1111
_ .

.................... %9--------JM: (T e R . R,

.................... -JL----_,-Juvvi--gu--------

_ﬂhiti ﬁitﬂlt‘iﬂihﬁﬁﬂ

3-6, 257#0 27-28

rYYIPIY I PYYIVITT I AT

Chromosorne

1
2
3
3
4
5
6
7
7
8

Figure S3. Manhattan plot of log-likelihood ratios (LR) for testing significant SNPs, including testcross markers (+)
and intercross markers (e) throughout the common carp genome in family Z22 by the traditional mapping model (A) and
our mapping model (B — E), related to Figures 4-6. Whereas the former did not discover any significant QTL, the latter
has identified a number of significant loci for mutualism (B), antagonism (C), aggression (D), and altruism (E). The
genome-wide critical threshold at the 5% significance level, indicated by solid lines for testcross markers and broke lines
for intercross markers, was determined by 10,000 pertumtation tests. Through GO analysis, significant QTL for different
types of social interactions, labelled by 1 — 39, were annoated to candidate genes with names given in the lower panel.
Among a total of 39 QTL detected, 18 are for mutualism, 5 for antagonism, 25 for aggression and 31 for altruism, with
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Figure S4. Biological processes of GO terms enriched in mutualism QTL (A), antagonism QTL (B), aggression
QTL (C), and altruism QTL (D) for body mass, related to Figures 4-6.

Colors of the bubbles represent the significance level of GO terms. The size of bubbles represents the gene numbers
involved in each GO term. X and Y dimensions represent the semantic spaces among different GO terms.
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Figure S5. Cellular components of GO terms enriched in mutualism QTL (A), antagonism QTL (B), aggression
QTL (C), and altruism QTL (D) for body mass, related to Figures 4-6.

Colors of the bubbles represent the significance level of GO terms. The size of bubbles represents the gene numbers
involved in each GO term. X and Y dimensions represent the semantic spaces among different GO terms.
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Figure S6. Molecular functions of GO terms enriched in mutualism QTL (A), antagonism QTL (B), aggression
QTL (C), and altruism QTL (D) for body mass, related to Figures 4-6.

Colors of the bubbles represent the significance level of GO terms. The size of bubbles represents the gene numbers
involved in each GO term. X and Y dimensions represent the semantic spaces among different GO terms.
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Figure S7. Histograms of mutualistic, antagonistic, aggressive, and altruistic traits, calculated from equation (1), and their log-transformation in three full-sib families,
H1, G1, and Z22, of the common carp, related to Figures 4-6.



Supplementary Tables

Table S1 - S9 are excel tables.

Table S10. Proportions of the total genetic variance explained by direct genetic, indirect genetic, and
genome-genome (GG) epistatic genetic effects averaged over all mutualism QTL, antagonism QTL,
aggression QTL, or altruism QTL for three full-sib families of the common carp, related to Figures 5

and 6.

Family  QTLtype  Testcross Intercross Direct Indirect GG epistatic
H1 Mutualism 74 23 0.532+0.077 0.285+0.075 0.183+0.080
Antagonism 42 10 0539+0.070  0.402+0.066 0.059+0.020
Aggression 89 25 0.515+0.079  0.252+0.075 0.233+0.105
Altruism 70 22 0532+0.073  0.269+0.071 0.199+0.085

Gl Mutualism 40 3 0.451+0.089 0.423+0.089 0.126+0.030
Antagonism 4 8 0.589+0.156  0.252+0.152  0.149+0.097
Aggression 29 13 0.468+0.085 0.389+0.110 0.143+0.044
Altruism 30 6 0.461+0.084 0.400+0.106 0.139+0.038

722 Mutualism 7 13 0.572+0.158 0.307+0.118 0.121+0.092
Antagonism 4 2 0.396+0.142 0.322+0.121 0.282+0.110
Aggression 16 13 0.519+0.132  0.379+0.131 0.102+0.084
Altruism 21 15 0.514+0.130 0.389+0.135 0.097+0.083




Table S11. Power comparison of QTL detection from a mapping population by a traditional model
and our model under different heritability (H?) and sample sizes (m), related to Figures 4-6.

H?=0.05 H2=0.1
m=70 m =200 m=70 m =200
Social model 0.78+0.046 0.84+0.044 0.83+0.037 0.91+0.025

Traditional model 0.31+0.094 0.34+0.073 0.35+0.028 0.38+0.031




Table S12. Toy example showing how to reformat a mapping data (left panel) into the data structure of mapping social interactions (right panel). Animals in the original data
(left panel) are ordered from large to small. In each pair, a larger animal is arrayed in column L and a smaller one in column S (right panel), related to Figures 1-3. See Fig.
1 for the definition of different types of interactions.

Progeny Marker  Phenotype
1 AA W1
2 Aa W»
3 Aa W3
4 AA Wy
5 Aa Ws
6 AA We

=)

Social Interaction

Pair with L and S

No. Pair GxG Mutualism (zmu) Antagonism (zan) Aggression (Zag) Altruism (zmu) X|L Y\S
1 1x2 AAxAa W1W2/ (W17W2) 1/ (W1W2 (W17W2)) W1/ W» 17W2/ W1 W1 W3
2 1x3 AAxAa W1W3/ (W17W3) 1/ (W1W3 (W17W3)) W1/ W3 17W3/ W1 W1 W3
3 1x4 AAxAA W1Wa/(W1—Wa) 1/ (Wawa(W1—Wa)) W1/Wg 1-walwy Wi W4
4 1x5 AAxAa W1 Ws/(W1—Ws) 1/(W1Ws(W1—Ws)) W1/Ws 1-wis/wy Wi Ws
5 1x6 AAXAA WaWe/ (W1—We) 1/(W1We(Wi1—Ws)) W1/We 1-we/w1 W1 We
6 2%3 AaxAa WoW3/ (Wo—W3) 1/ (Wow3(Wa—W3)) Wa/Ws3 1-ws/w; Wo W3
7 2x4 AaxAA WoWa/ (Wa—Wis) 1/(WaWa(Wo—Wa)) Wa/Wy 1-wal/wo Wo Wa
8 2x5 AaxAa W2W5/ (Wz—Ws) 1/ (W2W5 (Wz—Ws)) W2/ Ws 1—W5/ W» W» W5
9 2%6 AaxAA WoWe/(Wo—We) 1/ (WoWe(Wo—Ws)) Wa/We 1-we/w; Wo We
10 3x4 AaxAA W3Wa/(W3—Wa) 1/(WaWa(Wz—Wa)) W3/Wy 1-walws W3 W4
11 3x5 AaxAa W3Ws/(W3—Ws) 1/(Wsws(W3—Ws)) Ws/Ws 1-ws/ws W3 Ws
12 3x6 AaxAA W3We/ (W3—We) 1/ (W3We (W3—We)) W3/ Wg 1—We/ W3 W3 Ws
13 4x5 AAxAa W4W5/ (W4—W5) 1/ (W4W5 (W4—W5)) W4/ Ws 1—W5/ Wy Wy W5
14 4x6 AAXAA W4W5/ (W4—We) 1/ (W4We (W4—W6)) W4/ Wg 1—We/ Wy Wy Wg
15 5%6 AaxAA WsWe/(Ws—We) 1/ (wswWe(Ws—wsl) Ws/We 1-we/ws Ws We
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Table S13. Genotypic values of four GG combinations and their underlying components: direct genetic, indirect genetic,
and genome-genome (gg) epistatic effects, derived from animal pairs, each with a larger one arrayed in column L and a
smaller one in column S, related to Figures 1-3.

GG Combination Column L Column S
Testcross Marker

AA x AA thy =t +a A, e =y Ay Ay ey,
AA x Aa ,L;z:ux+a —a, —e;a Iy =y Ay, — Ay —€),
Aa x AA Hoy =ty =3 +a, —€ Hor =y =8 Ay, —6,
Aa x Aa 1= =8~ +El 1=ty =8y~ T,
Overall Mean fy = 5 (s + 115 + iy + 155) Hy =5y + 15 + 151 + 143,)
Direct Effect &, = 0+ 1y — 18, - 15,) ., =50~y + 10, — 11),)
Indirect Effect  a,_ =204 — i1y + 16— 183,) Ay = 5 (s + s = 1y~ 113,)
gg Epistasis € = 7 (th1 — thy = My + 43;) €2 = ¢ (41— 1y — 1 + 113,)

Intercross Marker

AA x AA W=+, Ta,  +E Wy =p,+a, , +a,  +el
AA x Aa thy =ty 8, + 0, ey fip =ty + 8y +dy ey
AA x aa ths = M+, —8 , —€ M=, +a, , —a, , —€,
Aa x AA oy = i+, A, +ey toy =p, +d,  +a,  +eg
Aa x Aa oy, = i+ +d,  +EY 1, =, +d,  +d, e,
Aax aa Moy = + 0y =8y —€g M=ty +dy  —ay  +eg,
aa x AA Mo = I =8 T, —€ My =y =8y Hay L~
aa x Aa [y =ty =8 + 0, —€ 1 =, —a, , +d,  —ely
aax aa Mg = My~ —B , +€) M=y, —8,  —a,, +e,
Overall Mean  y,=1y" 3" ui, = 2
Direct Effect ey =7 (11 + 3 — gy — H33) Ay =4 () + s — 131 — 1433)
Oy = (2005 — p3) = (stly + 55— 31— 1133)] Ay, = 5120085 — 113) — (e + 1y — 1 — 1135)]
Indirect Effect  a_ =2 () + s — ey — 1) = 5 (h + 15— 13, — 1435)
ooy = 712005, — p135) = gy + 13y — s + 1535)] dyex = 112013, — 195) — (et + 113y — 145 — 135)]
gg Epistasis e, %(,u11 + gy — L5 — Uy € = 7 (W1 + 115y — 10— 431)
€ = 21205 — t3,) — (s + 133 — g1 — fhss) € = 512011 — 1) — (1 + s — 5y — 433)
€aa = 12013, — t55) — (131 + fhgs — 145 — 143) €40 = 11201ty — 1155) = (g1 + g5 = 6y = 113,)
€4 =7 (2105, — 11y — 1 — Hy3 — o) €4q = 5 (2105, — 1 — My — M3 — 143,)

Note: for a testcross QTL, /l?j and e (i1, j2 = 1, 3) are the genotypic values of GG combinations for column A and B,

respectively; axx and ay«y are the direct effects of columns A and B on their own phenotype; axy and ay. are the
indirect effects of columns B and A on the phenotype of its counterpart; and ¢;, and ¢, are the genome-genome
epistatic effects due to the interactions between columns A’s and B’s alleles on the phenotype of columns A and B,
respectively. All of these definitions can be extended to an intercross QTL that includes additive (a), dominant (d),
genome-genome additive x additive (eaa), genome-genome additive x dominant (eaq), genome-genome dominant x
additive (eqa), and genome-genome dominant x dominant (eqq) effects.
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Table S14. Data structure of a toy mapping population used to infer a directed acyclic graph, related to Figures 5 and 6. Social network (A) was constructed from ODEs,

whereas QTL networks (B) was constructed from dynamic Bayesian networks. o'é is the genetic variance of a locus and [ is the population mean.

QTL QTL

No. Q Q2 Qs Qs Qs Qs Phenotype Q1 Q2 Qs Qs Qs Qs
S1 AA Aa AA AA aa AA 15 1.70 1.75 1.70 181 1.70 1.77
Sy aa AA aa AA Aa aa 2.12 1.94 1.94 1.86 1.81 1.88 1.98
S3 Aa Aa Aa Aa Aa Aa 1.85 1.89 1.75 1.87 1.86 1.88 1.81
S4 Aa aa Aa aa AA AA 191 :> 1.89 1.84 1.87 181 1.88 1.77
Ss aa AA aa aa Aa Aa 1.76 1.94 1.94 1.86 1.81 1.88 181
Se AA aa Aa Aa AA aa 1.84 1.70 1.84 1.87 1.86 1.88 1.98
S7 Aa Aa AA Aa aa AA 1.9 1.89 1.75 1.70 1.86 1.70 1.77
Sg AA aa aa aa Aa AA 1.77 1.70 1.84 1.86 1.81 1.88 1.77

O_é: 0.011 0.006 0.007 0.001 0.007 0.009 n=1.83 og =0.108 0.079 0.081 0.026 0.082 0.093

B ‘ ‘

ODE-based network Dynamic Bayesian network



Transparent Methods

Mapping design

Consider a full-sib mapping population of animals genotyped for SNPs throughout the whole
genome. By rearing them in a common environment, these animals are allowed to randomly
interact with each other. The animals’ resource- and space-responsive phenotypes, such as
body weight and body length, are measured after the population has experienced full mutual
interactions during ontogeny. To illustrate our new mapping theory, we designed a toy example
in which six animals are genotyped by a testcross marker with two genotypes AA and Aa and
phenotyped by a growth-related trait. Without loss of generality, we labelled and arranged the
six animals in order from high to small phenotypes denoted as wi, ..., ws (left, Table S12). By
pairing all animals, we reformatted genotype and phenotype data across a total of (5 x 6)/2 =
15 pairs, where a larger animal in each pair is arrayed in left column and a smaller one in right
column (right, Table S12). Let w. and ws denote the phenotypic values of the larger animal L
(L=1,...,5) and smaller animal S (S=2, ..., 6) from a pair, respectively. For a particular pair,
we use the mathematic expressions, as shown in Fig. 1, to calculate the parameters zmu, Zan, Zag,
and za that describe the strengths of their mutualism, antagonism, aggression, and altruism,
respectively. Among all pairs, two genotypes at the marker form four possible genotype (G) x
genotype (G) combinations, AA x AA (coded as 1x1), AA x Aa (coded as 1x2), Aa x AA (coded
as 2x1), and Aa x Aa (coded as 2x2). A traditional mapping approach is to associate marker
genotypes with trait phenotypes across individual animals (left, Table S12), whereas our new
mapping model performs the analysis of association between GG combinations and the derived
phenotypes of mutualism, antagonism, aggression, and altruism across animal-animal pairs
(right, Table S12).

Statistical mapping of social interactions

Likelihood: We use z; to denote the value of a derivative trait (i.e., mutualism, antagonism,
aggression, or altruism) for pair i (i = 1, ..., n). Let nix1, Nix2, N2x1, and nax2 denote the
observations of GG combinations, AA x AA, AA x Aa, Aa x AA, and Aa x Aa at a test marker,
respectively. The likelihood of a derivative trait at this marker is formulated as

Nix1 Nix2 Nax1 Nax2

L() = Z fixa (@) Z fixa (2 Z e Z fora (2 (1)

where f.(zi) is the probablllty denS|ty of the derlvatlve trait for a particular GG combination.
The four derivative traits may have complicated forms of density function. However, we first
test if they are normally distributed after log-transformation and implement the normal density
function if they pass the test. In the subsequent data analysis of carp fish body mass, we find
that all derivative traits, except for aggression, approximately follow a normal distribution after
they are log-transformed (Fig. S7). The likelihood (1) has four genotypic values of GG
combinations for a derivative trait, denoted as u?,,, Uix,, Usx1, and us.,, respectively, and a
residual variance. A standard likelihood approach is implemented to obtain the maximum
likelihood estimates (MLES) of these parameters.

As a ratio trait between two variables, aggression can be approached by the Cauchy density
function. Let x and y denote the trait values of animal column L and S, respectively. For ratio
zi = yilxi (xi > i), the density function of GG combination jajz.f; ; (z;) , is a product of a Cauchy
density and a complicated function (Cedilnik et al., 2004), expressed as
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is the error function. The density function (2) was implemented into the likelihood (1) that is
defined by GG combination-dependent genotypic means of variables x (1], ;,) and y (ujylsz),

the residual variances of variables x (o) and y (oy7), and the correlation between the two
variables (p).

Significance test: To determine whether a significant QTL exists to affect a type of social
interaction, we compare the genotypic difference among GG combinations. For mutualism,
antagonism, and altruism traits, four genotypic values of the derivative trait are estimated
directly. For the aggression trait, its genotypic values are estimated as u7 »;, = y]ylsz/y}‘lsz.
In general, we formulate the following hypotheses for significance test:
Ho: uix1 = Hixz = Uix1 = Uxz = K*

Hi: At least one of the above equalities does not hold. 3)
A log-likelihood ratio calculated from the Ho (there is no QTL) and H: hypothesis (there is a
QTL) is used to test if these GG combinations differ from each other for a derivative trait. If
the null hypothesis is rejected, then we could claim the existence of a significant QTL that
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affects the derivative trait. We call such a QTL a mutualism QTL, antagonism QTL, aggression
QTL, or altruism QTL if the derivative trait iS Zmu, Zan, Zag, OF Zai, respectively. The critical
threshold for the significance test can be empirically determined through permutation tests.

Quantitative genetic dissection of social interactions

After a significant QTL for an interaction parameter is detected, the new theory can be used to
test how this QTL affects phenotypic variation. As described above, each pair is composed of
two animals, a larger one L arrayed in left column (with trait value denoted as x) and a smaller
one S in right column (with trait value denoted as y) (right, Table S12). For a QTL significant
by test, we calculate the MLEs of the genotypic value of each GG combination for each column,
i.e., uj ;, for column L and “3'/11'2 for column S (ju, j2 = 1 for AA, 2 for Aa). According to
quantitative genetic theory, we partitioned these genotypic values into their underlying
components (Table S13), including the overall means for different columns, denoted as u for
column L and g for column S; direct genetic effects of QTL alleles from two columns on their
own phenotypes, denoted as ax«x for column L and ay«y for column S; indirect genetic effects
of QTL alleles from two columns on each other’s phenotypes, denoted as ax«y for column S
affecting column L and ay«x for column L affecting column S; and genome-genome epistatic
effects of QTL alleles from different columns, denoted as e}, on column L and e, on
column S.

Based on the component structure of a GG combination genotypic value (Table S13), we solve
these effect parameters by

x [11]
Ayex 101 -1 17" [y 1 1 -1 -1, |
[axhy =§[1 -1 1 -1 |”§f|, Ay =§[1 -1 1 —1]I“;2I (4)
€aa 1 -1 -1 1 l’uilj e, 1 -1 -1 1 [l«‘mJ

U322 :“%]z

After these effect parameters are estimated, we formulate a procedure to test the significance
of each of them by a log-likelihood ratio approach. For example, the null hypotheses for testing
these effects are expressed as

Ho: ax«x = ay«y = 0, for the direct effect (5)
Ho: ax«y = ay«x = 0, for the indirect effect (6)
Ho: eX,= e., =0, for the fish-fish epistatic effect (7)

The critical thresholds for all the above hypotheses tests can be obtained from classic chi-
square statistics or simulation studies. If these effects are significant, we calculate their means
over two columns, i.e., ap = (Axex + Ayey)/2, & = (Axey + ayx)/2, and eaa = (e¥,+e,)/2, as the
estimates of direct, indirect, and genome-genome epistatic effects on a phenotypic trait in the
population.

We next describe a procedure to estimate genetic variances due to direct, indirect, and genome-
genome epistatic effects. Considering columns L and S of the right part of Table S12, we
calculate the genetic variance among the four GG combinations at a significant QTL, denoted
as V& for column L and V¥ for column S. The mean of V¥ and V', expressed as Vg, is the
estimation of the total genetic variance explained by the QTL. Based on column L’s and S’s
genotypes, we calculate the genetic variance of the trait in columns L and S, respectively,
denoted as Vx«x for column L and Vy«y for column S, whose mean is the estimated direct
genetic variance of the QTL, expressed as Vp. Similarly, using column L’s and S’s genotypes,
we can calculate the genetic variance of the trait in columns S and L, respectively, denoted as
Vy«x for column L affecting S and Vx«y for column S affecting L. The mean of these two genetic
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variances, expressed as Vi, is the estimated indirect genetic variance of the QTL. For columns
L and S, we calculate V5 = V¥ — Veey — Veey and V), = V' — V) — V., respectively,
and their mean is the genome-genome epistatic genetic variance of the QTL, denoted as Vaa.
We can further calculate the proportions of direct, indirect, and genome-genome epistatic
effects to the total genetic variance by this QTL.

For an outcrossing species like the carp fish, a full-sib family population derived from two
heterozygous parents may include two types of markers, i.e., testcross markers at which one
parent is heterozygous whereas the other is homozygous, and intercross markers at which both
parents are heterozygous (Wu et al., 2002; Lu et al., 2004). The procedure described above can
be similarly used to map mutualism, antagonism, aggression, or altruism QTL based on
intercross markers. For an intercross marker with three genotypes (AA, Aa, and aa), we use
nine GG combinations, AA x AA (coded as 1x1), AA x Aa (coded as 1x2), AA x aa (coded as
1x3), Aa x AA (coded as 2x1), Aa x Aa (coded as 2x2), Aa x aa (coded as 2x3), aa x Aa (coded
as 3x1), aa x Aa (coded as 3x2), and aa x aa (coded as 3x3). Similarly, we formulated a log-
likelihood approach to estimate the MLEs of genotypic values of nine GG combinations for
columns L and S, and tested and estimated the significance of direct additive (ap) and dominant
genetic effects (dp), indirect additive (ai), and dominant genetic effects (di), and genome-
genome additive-additive (eaa), genome-genome additive-dominant (eap), genome-genome
dominant-additive (epa), and genome-genome dominant-dominant epistatic genetic effects
(eop) (Table S13).

Inferring directed acyclic networks

To better understand how different types of QTL, mutualistic, antagonistic, aggressive, or
altruistic, jointly affect the phenotypic trait of animals, we develop and implement a statistical
algorithm to infer a directed acyclic graph (DAG) of QTL interactions. We use a toy example
to explain our algorithm. Suppose there are six QTL under consideration, each with three
genotypes AA (coded as 1), Aa (coded as 2) and aa (coded as 3). These QTL are segregating in
the mapping population of eight phenotyped animals (left, Table S14). For the trait measured,
we calculate its population mean (l1) averaged over all animals and also its marginal genotypic
means Wik (j = 1, 2, 3) over the animals carrying the same genotype at each QTL k. Now, we
assign each genotype at each QTL by its marginal genotypic mean to form an (8 x 6) matrix of
genotypic values (right, Table S14), from which two types of DAG, constructed by different
QTL and different animals, respectively, were inferred by Bayesian networks.

QTL network: The structure of a QTL network is defined by two sets: the set of nodes
(vertices) represented by individual QTL and the set of directed edges of dependence (directed
epistasis) among the QTL. Because each QTL has three distinct genotypes, its marginal
genotypic values (right, Table S14) can be better viewed as ordinal variables. The most general
approach for constructing ordinal Bayesian networks is to treat ordinal variables as nominal so
that nominal techniques can be used. However, this treatment entails a loss of information
because the ordering among categories is not considered. At present, only a few ordinal-
sensitive procedures for learning Bayesian network from ordinal data have been developed in
order to preserve the ordering of ordinal data (Musella, 2013).

Following Musella’s procedure (Musella, 2013), we describe an ordinal PC algorithm for
learning and inferring a QTL DAG from marginal ranked genotypic values. Consider data
structure, given in Table S14 (right), composed of eight samples on six QTL variables. The
PC algorithm is a stepwise backward algorithm for DAG inference (Spirtes et al., 2013). We

16



first tested the conditional independence Q; L Qs|Q, where Q1, Q2 and Qs are ordinal, each
with three genotypes. We let n; ;, ;. denote the observation of the ji-th genotype of Q1 (j1 =1,

2, 3), jo-th genotype of Q2 (j1 = 1, 2, 3), and js-th genotype of Qs (j1 = 1, 2, 3). Let F,; (Q,)

denote the conditional distribution of Qs given Q1 = j1 and Q2 = jo. The null hypothesis of the
test is formulated as

Ho: F1j,(js) = F2j,(j3) = F35,(j3), V)2, Vj3 (8
whose alternative test reflecting a stochastic ordering among distributions is written as

Hy {1112(]3) > ]1]2(]3)
Fi;,(3) <F j! 1, (3)’

From tests (8) and (9), we calculate a so-called Jonkheere-Terpstra (JT) test statistic as

with j1 <j'1, Vj2, Vj3 9)

3 Ji—1p 3
nj, . (n- g, + 1)
J1J2\""J1'J)2
=3 Y 5[5 w2l )
J2=1j1=1jj=1Ls=
where w; ;:; was the Wilcoxon score described by
s—1
nj s, +Nirg; +1
_ J1SJ2 J1SJ2

Wiiitsi, = Z(njﬂf]z + n]{tjz) + 2 . (11)

t=1

Under the null hypothesis, the mean of JT was calculated as
3

3
1
E(JT|Hy) = ) Z (n-z-jz - z nj21'j2)

J2=1 Jj1=1

Per Lehmann (D'Abrera and Lehmann, 1975) and Pirie (Pirie, 1983), we derive the asymptotic
variance of JT under the null hypothesis as

£ Vs
Var(]TIHO)

"36(n.,, — Dy, —2) 8., (n), — 1)

where
Vl = N.j, (n"jz - 1)(271..]'2 + 5) - Z?3(nf1'f2 (njl'jz + 5) - 2?3(71-}'2}'3 - 1)(2n'j2j3 + 5))’
— '3 3
V, = 2{3;1(71]'1']'2 (nh'jz - 1)(271]-1.3]-2 - 2) - Zja(n'jzk - 1)(11.]-2]-3 —2)),
Vs = Zh(njl'jz (nj1'j2 ) Z]'3(n'j2]'3 (n'jzj3 —1).
Based on these derivations, it can be proved that the test statistic is asymptotically normally
distributed.

The ordinal PC algorithm infers a QTL DAG (Musella, 2013) using the three steps as follows:

Step 1: Build the skeleton of the graph. Starting with a complete undirected graph, we obtain
agraph where all QTL are connected to each other. Given a chosen significance level, statistical
tests based on the Jonkheere-Terpstra test are performed to decide if we need to remove or
maintain edges between QTL in the graph. This procedure leads to the detection of the skeleton
of the graph.

Step 2: Find v-configurations. If two QTL, Q1 and Q2, are not conditionally independent
given a QTL Qs, then Qs is a collider node or a common sink and a v-configuration Q1 — Qs
« Q2 (i.e., converging directed edges into the same node) is drawn; otherwise edges remain
undirected Q1 — Q3 — Q.
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Step 3: Create no new v-configuration. Some constraints must be given to orient other edges
without creating additional colliders or some cycles.

Musella (2013) showed that the ordinal PC algorithm outperforms the PC algorithm (for
modeling discrete data without considering their ranking) in terms of sensitivity (specified by
true positive rate) and precision (specified by true discovery rate), especially when sample size
is small. Yet, the two algorithms do not differ dramatically in specificity (specified by false
positive rate).

Social network: Different animals interact with each other through mutualism, antagonism,
aggression, or altruism to form a community. We implement an ordinary differential equation
(ODE) approach proposed by Wu et al. (2014) to investigate how QTL modulate the structure
and organization of an animal-animal interaction network. In such a QTL-driven social
network, the nodes are individual animals and the edges are animal-animal interactions whose
direction, sign, and strength are determined by QTL. Consider Table S14’s toy example for a
mapping population, where eight animals were each collected by six markers. We assign each
individual at a given QTL by a value, i.e., its marginal genotypic mean at this QTL. Taken
together, we obtain an (8x6) matrix of genotypic values. Unlike a QTL each with three ranked
categories of genotypic values over all animals, each animal form a set of somewhat continuous
genotypic values across QTL (right, Table S14). Next, we show that a nonparametric approach
can be used to model how an animal changes its genotypic value over QTL.

Let gik denote the genotypic value of individual i (i=1, ..., 8)at QTLk (k=1, ..., 6). Note that
gik depends on the genotype individual i carries at QTL k. Because of social interactions, the
genotypic value of one individual is affected by or affects those of other individuals. This
allows us to formulate a system of ODEs, expressed as

8
Jik = fl(glk) + Z hi<—i, (gl k) (12)
i#i i =1

where g;, is the rate of the overall change of genotypic value for individual i from one QTL
to next, fi(gi) is the function that describes the change rate of individual i’s genotypic value
independent of any other individuals, and h,_,- (g,-,) is the function that specifies the
change rate of genotypic value due to the impact of any other individual i’ that affects individual
i. h, ;- (g, ,) determines the sign, direction, and strength of social interaction between
individual i and i'. If both h,_,- (gi’k) and h,-_,(gix) are positive or negative, this
suggests that these two individuals are mutualistic and antagonistic, respectively. If both are
zero, then the two individuals have no interactions. If h,_.- (g,-,) is positive or zero but
h,- _;(gix) is negative, this indicates that individual i is aggressive on individual i'. If
h, ; (gi' k) is positive but h;- _,(gu) is zero, this shows that individual i’ is altruistic for
individual i. The magnitudes of h,_.- (g,-,) and h,- _,(gi) can quantify the strength of
social interactions.

To solve ODE (12), we integrate three rules from different disciplines. First, in sociological
studies, there is the Dunbar's law, stating that the number of stable relationships a human can
comfortably maintain in his social network is not beyond a limit (Dunbar, 1992). Under the
Dunbar's law, using real data from both hunter-gather and modern communities, Harre and
Prokopenko (2016) calculated the average number of links maintained by individuals to form
cooperative groups, which changes with group size. For example, a person in a group of five,

18



15, 45, and 132 needs to maintain an average of one to two, two to three, three to four links,
and four to five links respectively. This rule can largely simplify our joint modeling of ODEs
(12), making ODE parameter estimation and interpretation feasible and tractable, especially
when the dimension of this equation group is large. Second, statistical rules of variable
selection can be used to determine an optimal small set of individuals that interact stably with
a focal individual. Group LASSO (Yuan and Lin, 2006) and adaptive group LASSO (Wang
and Leng, 2008) derived from Tibshirani’s original LASSO (Tibshirani, 1996) have proven to
be powerful for variable selection. In previous studies, several authors have already worked
out model selection in high-dimensional ODEs (Lu et al., 2011; Henderson and Michailidis,
2014; Wu et al., 2014). Thus, the integration of the Dunbar's law with variable selection enables
the construction of a sparse social network, which facilitates the characterization of most
important social connections within the network.

Third, how does the locus-varying genotypic value of an individual change from one QTL to
next? In quantitative genetics, the genetic effect of a QTL is generally positively associated
with its genetic variance. Based on this rule, we can model the genotypic value of an individual
at a QTL as a function of standard genetic deviation explained by this QTL. By arranging all
QTL in an order of their genetic deviations, we incorporate a Legendre Orthogonal Polynomial
(LOP)-based nonparametric approach to fit the functions, f;(giy) and h,_;- (gi' k), that
jointly describe QTL-varying genotypic value of each individual in equation (12). Because of
its advantage in orthogonality and efficient convergence, the LOP is effective for modeling the
curves of any complex form using sparse data in quantitative genetic studies (Das et al., 2011;
Jiang et al., 2016). The LOP, a solution of the Legendre differential equation,
(1 —vz)dz—u— Zvd—u+r(r+ Du=0
dv? dv B
can be expressed as
g (2r — 2¢)! ,

— C r—4c¢

) = CZ)( D e —ora=201”

which is called the Legendre polynomial of order r, where C is an integer, expressed as r/2 or
(r — 1)/2, and v is an independent variable, i.e., standard genetic deviation in social network
modeling. In practice, it needs to be corrected ast™ = 1 + 2(t — tmax)/(tmax— tmin) Within interval
[-1,1], where tmin and tmax are the two extreme points at the low and high end, respectively. By
defining a series of basis values, the LOP is used to determine the curvature of QTL-varying
genotypic values by choosing an optimal polynomial order.

In Table S14 (right), we construct the QTL network and social network for the toy example by
the above approaches. These toy networks can help the readers better understand the utility of
these approaches.

Monte Carol simulation

To examine the statistical properties of the new model, we perform computer simulation by
mimicking the data structure of a mapping population. We show how to simulate the
phenotypic data of a trait under the constraint of animal-animal interactions. We let w;, and
w;,denote the phenotypic value of animal i1 and iz (0 < i1 < i2 < m), respectively, from the
population of m animals and zi (i = 1, ..., m(m-1)/2) denote the strength of one of their
interaction types, as defined in Fig. 1. To simulate the trait data of the pairing animals, we need
to determine the variance of phenotypic values among m animals under the constraint of a
social interaction considered. This requires us to derive the variance of an interaction derivative
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(zi) among m(m-1)/2 pairs in terms of the variances of w; and wj;,. As an example, we
assume that the aggression variable, expressed as the ratio of a larger to smaller animal, is
simulated.

We reformat the data by adding reciprocal pairs, generating a total of m(m-1) pairs. Let x >y
denote the phenotypic values of animals at the left and right sides, respectively, in pairs.
Assuming that x and y are independent, the variance of z = x/y is expressed by

1
Vz = 7+ (¥*Vx + X2Vy — 2pxy/VxVy, (13)
where X and y are the means of x and y variables, Vx and Vy are the variances of x and y

variables, and p is the correlation between the two variables, respectively. In spite of different
orders, x and y variables contained the same set of phenotypic data for m fish so that Vx = Vy
and x = y.

Consider a testcross QTL with two genotypes AA and Aa of an equal proportion in the mapping
population. A total of m(m-1) pairs are clustered into four GG combinations (right panel, Table
S12). The phenotypic data of an animal pair are simulated by summing the GG genotypic value
and a residual error with mean zero and residual variance (Vz) (14) scaled by the heritability
(H2) explained by GG combinations at the assumed QTL. From the simulated data of animal
pairs, we need to simulate the phenotypic data of individual animals (left, Table S12). This
was done by randomly sampling values of m animals that meet their ratios across m(m-1)/2

pairs, but under the constraint that m animals’ values have a variance ,/V;, expressed by
equation (13).

Our simulation was based on four scenarios designed per GG heritability HZ (large 0.10 vs.
small 0.05) and mapping size m (large 200 vs. small 70). For each scenario, we calculated the
accuracy and precision of each genetic effect (such as the direct, indirect, and genome-genome
epistatic effects) from pairwise data (right, Table S12) by the new model, testing the statistical
property of the new model. Also, we calculate and compare the power of QTL detection by the
new model and the traditional model that analyzes original data directly (left, Table S12). The
false positive rates of the new model is also calculated.

Mapping experiment

Animal material: The experiment of genetic mapping was conducted using an F1 family
(named H1) of Cyprinus carpio including 71 progeny produced by Hebao Red carp and Koi
carp. The fish were cultured at the Research Institute for Heilongjiang River Fisheries, Harbin,
China, and measured for body mass after anesthesia with MS222 when they reached an adult
stage of fish growth. The H1 family was served as the discovery cohort, whose results were
directly used to test our new theory. To validate the results discovered by the new theory, we
replicated the mapping study by two additional F1 families (hamed G1 and Z22) of Yellow
River carp. These two families with 115 and 62 progeny, respectively, were cultured at the
Henan Academy of Fishery Sciences, Zhengzhou, China. The same trait, body mass, was
measured for each family at the adult stage of fish growth.

SNP array genotyping and quality control: Genomic DNA was extracted from blood
samples (400-800ul caudal peduncle) of the hybrids and their parents using a DNeasy Blood
& Tissue Kit (Qiagen, Shanghai, China) following manufacturer’s protocol. DNA was
quantified by Nanovue (Thermo Scientific) and the integrity of DNA was examined by 1%
agarose gel electrophoresis stained with ethidium bromide. Then qualified DNA was
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genotyped using the Affymetrix Axiom Carp SNP array containing ~250 K validated SNPs (P.
Xu et al., 2014; J. Xu et al., 2014). Genotyping results were provided by GeneSeek (Lincoln,
Nebraska, USA). After quality control, we obtained 39,960 Mendelian segregating SNPs
throughout the common carp genome of size ~1.42 Gb in the H1 family, from which a high-
density linkage map, with an average marker interval of 0.75 cM, was constructed by OneMap
(Margarido et al., 2007). For G1 and Z22 families, we genotyped 39,960, 97,532, and 86,370
SNPs following Mendel’s first law, respectively.

Annotation of candidate genes: The significant SNPs detected by our theory are annotated
using the database of the common carp genome project. Genes located within upstream and
downstream 10 kb of the candidate SNPs were selected. Based on the selected gene lists, Gene
Ontology and KEGG Enrichment analyses are conducted using DAVID ( Huang et al., 2009;
Huang et al., 2009) online programs with default parameters, and figures are drawn using
REVIGO software (Supek et al., 2011).
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