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SUMMARY

Community ecology theory suggests that an individual’s phenotype is determined by the phenotypes

of its coexisting members to the extent at which this process can shape community evolution. Here,

we develop a mapping theory to identify interaction quantitative trait loci (QTL) governing inter-indi-

vidual dependence. Wemathematically formulate the decision-making strategy of interacting individ-

uals. We integrate these mathematical descriptors into a statistical procedure, enabling the joint

characterization of how QTL drive the strengths of ecological interactions and how the genetic archi-

tecture of QTL is driven by ecological networks. In three fish full-sibmapping experiments, we identify

a set of genome-wide QTL that control a range of societal behaviors, including mutualism, altruism,

aggression, and antagonism, and find that these intraspecific interactions increase the genetic varia-

tion of body mass by about 50%. We showcase how the interaction QTL can be used as editors to

reconstruct and engineer new social networks for ecological communities.
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INTRODUCTION

Quantitative genetic theory has long focused on modeling how the phenotype of an individual is deter-

mined by its genes, known as quantitative trait loci (QTL), and the environment where it grows (Ritchie

et al., 2015). An increasing body of evidence has revealed that an individual’s phenotype in a population

is also affected by the phenotypes of other members that coexist with it (Magnuson, 1962; Wolf et al.,

1998; Shuster et al., 2006; Ribas et al., 2017; Schneider et al., 2017; Santostefano et al., 2017). As such,

how a particular individual performs is influenced not only directly by its own QTL, but also indirectly by

the QTL of its conspecifics (Jiang et al., 2018). For instance, in an association study of laying hens, a set

of genes from a single hen were identified within the serotonin pathway to affect the feather condition

of its cage mates (Biscarini et al., 2010). The flowering gene FRIGIDA from focal plants in Arabidopsis af-

fects the developmental processes of their neighbors, according to genetic mapping using structural

equation models (Wolf et al., 2011). In Drosophila melanogaster, several QTL detected for aggressive

behavior are at play by interacting with social environments (Rohde et al., 2017).

Although inter-individual interdependence and interactions inducing phenotypic variation involve a ge-

netic component, existing genetic mapping theory does not enable the detailed characterization of how

the underlyingQTL act in amapping population. The genetic effects of QTLmay be activated by ecological

interactions, such as competition, where one individual grows at the cost of others exploiting the same re-

sources, or cooperation, by which multiple individuals can better buffer against environmental perturba-

tions than any single one alone (Fisher and Mcadam, 2017). These ecologically meaningful QTL can be

better identified if we equip a mapping approach with the ecological and social principles that can explain

why an individual chooses to compete or cooperate with others. The motivation of this study is to upgrade

quantitative genetic theory by embedding fundamental principles of competition and cooperation, to a

level at which geneticists can map specific QTL responsible for ecological interactions, estimate how these

QTL affect population phenotypes through direct and indirect effects, and test how ecological interactions

can induce new genetic variation for complex traits.

To test this theory, we designed and conducted a QTL mapping experiment by genotyping a full-sib family

(H1) of the common carp (Cyprinus carpio) and culturing its n = 71 siblings in a shared water pool. Previous

cultural experiments showed that fish growth, behavior, and survival are highly plastic to the crowdedness

of the environment (Magnuson, 1962; Fox and Flowers, 1990; Szkudlarek and Zakes, 2007; Ribas et al.,
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2017). In a natural ecosystem of coral reef, fish make their decisions to feed on algae or escape from pred-

ators according to actions of other fish (Gil and Hein, 2017). As such, we anticipate that pervasive social in-

teractions occur among the co-cultured fish, which exert an impact on fish phenotype. Traditional mapping

approaches simply associate phenotype with genotype, without considering social interactions. The appli-

cation of these approaches to our mapping population detected no QTL responsible for fish body mass

(Figure S1), a trait that is sensitive to competition (Magnuson, 1962). However, when the same data were

analyzed under our theory, a number of QTL have been identified. To validate these discoveries, we con-

ducted two additional mapping experiments, from each of which consistent results are obtained.

RESULTS

Mathematical Descriptors of Ecological Interactions

In a socialized environment, a fish may maneuver its living territory by continuously changing its neighbors

to which it pays attention (Jiang et al., 2017) so as to maximize its chance for survival and reproductive suc-

cess (McFarland, 1977; Dugatkin and Reeve, 2000). This process, often guided by rational choice-based

game theory (Harp, 2017), as recognized in humans (Park et al., 2017), rodents (Dias-Ferreira et al., 2009;

Friedman et al., 2017), and microbes (Damore and Gore, 2012), incurs a so-called collective motion phe-

nomenon, ubiquitous across the animal kingdom (Vicsek and Zafeiris, 2012; Jiang et al., 2017). Under nat-

ural selection, animal collective behavior has been shaped toward two tendencies. First, animals tend to

swarm, flock, or shoal with individuals that resemble themselves in a cooperative way by which the so-called

oddity effect, i.e., those individuals displaying difference in appearance from the group are at a greater risk

to be predated (Hoare et al., 2000), can be avoided. Thus, animals of roughly similar size, color, and even

smell in a population enjoy mutual cooperation and coordination (Camazine et al., 2001; Sumpter, 2006,

2010; Herbert-Read et al., 2011), and the similarity of two animals is proportional to the degree of the desire

by which they cooperate. In mathematics, the similarity of two variables is positively correlated with their

product, given that their sum is fixed. Taken together, we hypothesize that the product of two animals’

body sizes can serve as a proxy for the strength ofmutualism. In contrast, we use the inverse of the product

of body sizes of two animals to approximately measure the strength of their antagonism.

Second, animals of larger body size tend to display agonistic behavior to those of smaller body size when a

limited amount of resource needs to be allocated among members of the same population (Chance and

Larson, 1976; Desjardins et al., 2012; Romenskyy et al., 2017). As an aggressive and defensive action, this

behavior is adaptive, widely believed to play an important role in resource acquisition, reproductive suc-

cess, and survival (Pan et al., 2010). Hence, we hypothesize that the ratio of body size of a larger over a

smaller animal in the socialized environment reflects the extent to which the former exerts its aggression

toward the latter. Accordingly, the body size difference of larger and smaller animals, divided by the

body mass of the larger one, can be used as a surrogate for the strength of altruism. Based on the

above-mentioned analysis, we derive mathematical descriptors to measure four types of intraspecific inter-

actions, mutualism, antagonism, aggression, and altruism, by examining and comparing the body sizes of

two interactive animals (Figure 1).

Biological Justification of Interaction Measures

For a particular pair of animals in co-culture, we name the larger individual as L and the smaller individual as

S. Let wL and wS denote the body size of L and S in co-culture, respectively. We argue that Figure 1’s math-

ematical descriptors derived from wL and wS can measure the strengths of different interaction types that

occur between the animals. To test these hypotheses, we analyze two real datasets, one from a cultural

experiment of fish and the second from a published bacterial cultural study (Jiang et al., 2018). In each

experiment, organisms were paired and two members in each pair were cultured both separately and

jointly. Substantial evidence suggests that the organism often changes its phenotype in response to

ecological interactions when it is shifted from an isolated environment to a socialized environment

(Bohn and Amundsen, 2004; Fordyce, 2006; Lang and Benbow, 2013; Gamfeldt et al., 2013; Barraclough,

2015; Gracia-Lázaro et al., 2018). By quantifying the extent to which the phenotypic traits of the two indi-

viduals change from monoculture to co-culture, the strength of their ecological interaction can be

measured and assessed.

We use uL and uS to denote the body size of individuals L and S in monoculture, respectively. Note that uL is

not necessarily greater than uS, although wL is always greater than wS by definition. If two individuals coop-

erate with each other, then the relative body size of each individual in co-culture over monoculture should
110 iScience 22, 109–122, December 20, 2019



Figure 1. Mathematical Descriptors of Four Types of Ecological Interactions, Mutualism (zmu), Antagonism (zan),

Aggression (zag), and Altruism (zal)

We usewL and wS to denote phenotypic values of a larger animal L and a smaller animal S, respectively, constituting a pair

in a mapping population. The product of phenotypic values between two animals is used as a descriptor for the strength

of mutualism, i.e., how much the two animals benefit from one another through cooperation (Zhu et al., 2016). The

strength of antagonism is described by the inverse of the product of phenotypic values, reflecting how much one animal

grew reciprocally at a cost of the other. To adjust the scale effect, these two descriptors are normalized by dividing them

by the phenotypic difference of the larger from the smaller animal. The ratio of phenotypic values of the larger over the

smaller animal is used to measure the strength of aggression, by which the former grows by harming the latter. The

strength of altruism is calculated as one minus the ratio of phenotypic values of the smaller over the larger animal.
not be less than 1.0 (Ghoul and Mitri, 2016). If one individual is aggressive on the other, i.e., the former

grows at a cost of the latter, then the relative body size of the former over the latter would increase

when the two individuals are relocated from their respective isolated environments to the common envi-

ronment. Accordingly, if one individual is altruistic toward the other, i.e., the former sacrifices itself to

benefit the latter, then the relative body size of the latter in co-culture over monoculture should be larger

than the relative body size of the former in co-culture over monoculture. Based on these lines of reasoning,

we use Mu = (wL/uL + wS/uS)/2 to quantify the strength of mutualism between individuals L and S, Ag =

(wL/wS)/(uL/uS) to quantify the strength of individual L’s aggression toward individual S, and Al = (wS/uS)/

(wL/uL) to quantify the strength of individual L’s altruism toward individual S.

Fish Experiment

We sampled five fish pairs from a population, in which the relative size of a smaller over larger one is 0.10,

0.38, 0.61, 0.80, and 1.00, with the larger one having a roughly similar size among pairs. Each pair was

repeated four times. We reared each pair of fish in shared and isolated water buckets and measured their

body mass 2 weeks after the fish was cultured. We calculated gains of body mass for each fish during

culture.

Using the expressions given in Figure 1, we calculated and plotted parameters zag, zmu, and zal against Ag,

Mu, and Al for body mass gain across different fish pairs, respectively. We can test how well these three

parameters can be used to measure the strengths of mutualism, parasitism, and altruism. It is interesting

to find that zag is positively correlated with Ag (Figure 2A), thus suggesting that the former can approxi-

mately represent the strength of competition, especially the strength of aggression. We found that zmu

is positively correlated with Mu (Figure 2B), indicating that the former can well serve as a proxy to quantify

the strength of mutualism. The positive correlation between zal and Al (Figure 2C) implies that the former is

a good representation of the strength of altruism. From the above-mentioned analysis of fish data, it is

suggested that the mathematical descriptors proposed can be used to measure different types of ecolog-

ical interactions.

Microbial Experiment

Microbes have been widely used as a system to study ecological interactions (Damore and Gore, 2012). We

further validated Figure 1’s mathematical descriptors by re-analyzing a published bacterial data. Jiang

et al. (2018) cultured two bacterial species, Escherichia coli and Staphylococcus aureus, in socialized and

socially isolated conditions, respectively. They collected 45 diverse bacterial strains from each species.

Each strain from one species was grown in monoculture and its interspecific pair with a randomly selected
iScience 22, 109–122, December 20, 2019 111



Figure 2. Biological Validation of Interaction Measures in a Fish Experiment

Scatterplots of mathematical descriptors given in Figure 1 against the strength of ecological interactions across five

different pairs of fish (dots) with relative body mass 0.10, 0.38, 0.61, 0.80, and 1.00.

(A) Aggression descriptor (zag) versus the strength of aggression.

(B) Mutualism descriptor (zmu) versus the strength of mutualism.

(C) Altruism descriptor (zal) versus the strength of altruism. The relationship between two variables is roughly fitted by a

curve, with correlation coefficient (r) given within each plot.
strain from the other species grown in co-culture. The abundance of each strain was measured once every

2 h during the first 24 h, followed by once every 4 h till 36 h, after the two types of culture were initiated.

Organismic growth obeys a certain rule that can be described by a growth equation (West et al., 2001).

We used an optimal growth equation to fit time-dependent abundance data of each strain and further

partitioned its growth curve into lag, linear, and asymptotic phases (Zwietering et al., 1990). Using the

mathematical expressions of Figure 1, we calculated parameters zag, zmu, and zal at each time points

and plotted these parameters against Ag, Mu, and Al, respectively, estimated from co-culture and mono-

culture data across all strains. We found that zag is positively correlated with Ag (Figure 3A) (p < 0.01),

showing the effectiveness of the former to measure the strength of aggression. These two variables

display the strongest correlation at the asymptotic phase, followed by one at the linear and lag phases.

This indicates that the ratio of a larger over smaller strain can better serve as a measure of the strength of

aggression when the growth of strains tends to be stable. We found that zmu is positively correlated with

Mu (p < 0.01), especially at the asymptotic phase (Figure 3B; p < 0.001), suggesting that the former can
112 iScience 22, 109–122, December 20, 2019



Figure 3. Biological Validation of Interaction Measures in a Bacterial Experiment

Scatterplots of mathematical descriptors given in Figure 1 against the strength of ecological interactions across 45 interspecific pairs of strains from E. coli

strains and S. aureus at three distinct phases of microbial growth (lag, linear, and asymptotic).

(A) Aggression descriptor (zag) versus the strength of aggression.

(B) Mutualism descriptor (zmu) versus the strength of mutualism. The strength of mutualism is measured by the average of the ratio of abundance of each bacterial

species in co-culture to monoculture. Thus, this ratio average quantifies the strength of cooperation if it is above 1 and the strength of competition if it is below 1.

(C) Altruism descriptor (zal) versus the strength of altruism. Dots represent observations of different interspecific strain pairs at each time point. The

relationship between two variables is roughly fitted by a curve, with correlation coefficient (r) given within each plot.
be effectively used as the strength of cooperation. The zmu values are much smaller in the competition

zone (Mu < 1) than cooperation zone (Mu > 1). We found that zal is positively correlated with Al across

strain pairs at three distinct phases, especially at linear and asymptotic phases (Figure 3C; p < 0.001),

suggesting that the former can be effectively used as a proxy to measure the strength of altruism toward

a larger individual from a smaller individual.

In summary, we formulate the mathematical descriptors of four typical ecological interactions, mutualism,

antagonism, aggression, and altruism. We have carried out the fish experiment to validate the biological

relevance of these descriptors, which was confirmed by a micribial experiment. A statistical model is imple-

mented to map the genetic architecture of ecological interactions by treating these descriptors as

phenotypes.
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Identification of Social QTL and Their Biological Relevance

The biological validation of the mathematical descriptors allows us to calculate and use four derived pa-

rameters, zmu, zan, zag, and zal (Figure 1), as measures of the strength of mutualism, antagonism, aggression,

and altruism, respectively, between each pair of fish in our mapping population. We used these parameters

to construct the networks of each interaction type. These ecological interaction networks were incorpo-

rated into the statistical framework of QTL mapping (see the Transparent Methods). Among 39,960

high-density SNPs (with an average marker distance of 0.75 cM), our model identified 158 QTL distributed

over various chromosomes for body mass, including 80 acting through mutualism, 45 through antagonism,

98 through aggression, and 76 through altruism. Yet, no QTL for body mass can be detected by traditional

approaches (Figure S1). We replicated the mapping experiment by generating two independent full-sib

families G1 (n = 115, with 97,532 SNPs) and Z22 (n = 62, with 86,370 SNPs) from different common carp par-

ents, from each of which a similar conclusion was reached; i.e., a number of QTL on different regions of the

genome were detected by the ecological interaction-implemented model, whereas none was detected by

traditional approaches (Figures S2 and S3).

We performed an extensive gene enrichment analysis for the significant SNPs by screening their up- and

down-stream 10 kb regions on the sequenced genome of the common carp (Xu et al., 2014). Together,

a large proportion of QTL detected from three mapping families were annotated to candidate genes:

86.2% for mutualism, 85.7% for antagonism, 85.9% for aggression, and 85.4% for altruism (Tables S1, S2,

S3, and S4). We found that significant SNPs located in clusters are individually annotated to different genes

(Figures S1–S3). All candidate genes have been previously reported in association with growth traits. For

example, pdlim4 (PDZ and LIM domain protein 4) of QTL carp227526 from family Z22 and pdlim3 of QTL

carp168806 from family G1 detected simultaneously by mutualistic, aggressive, and altruistic models are

closely related to muscle growth and development (Hsieh et al., 2014). These three models also detected

gpc4 gene of carp028224 from family G1, notch2 gene of QTL carp152585 from family Z22, and gpr101

gene of QTL carp123609 from family G1. A family of gpc genes, e.g., gpc1a, gpc3, and gpc4, encoding gly-

picans, are expressed during the gastrulation stage of zebrafish, with their expression becoming more

tissue specific and defined at the somitogenesis stages (Gupta and Brand, 2013). notch2 has been widely

reported to play a vital role in skeletal andmuscle development (Zanotti and Canalis, 2013). gpr101 gene of

QTL carp123609 from family G1 is involved in skeletal development (Beckers et al., 2015), and its other close

GPR family members interact with IGFs and are crucial for muscle and body growth (Yang et al., 2014). Addi-

tionally, other genes identified uniquely by a certain model are also relevant in terms of biological func-

tions; for instance, the genes prss23 of carp170891 from family G1, rarab of carp055558 from family H1,

bmp1 of carp017510 from family H1, and acer1 of carp117856 from family H1 were detected by the mutu-

alistic, antagonistic, aggressive, and altruistic models, respectively. Molecular experiments in zebrafish

showed that prss23 was essential for endothelial-to-mesenchymal transition during valvulogenesis (Chen

et al., 2013). Mice studies showed the involvement of rarab in fatty acid oxidation and energy homeostasis

(Li et al., 2013). bmp1 (bone morphogenetic protein 1) affects embryo development and osteogenesis

(Muir et al., 2014) and is essential for human type 1 collagen fibrillogenesis (Valencia et al., 2014) acer1 is

important for mammalian skin homeostasis and the regulation of energy expenditure (Liakath-Ali et al.,

2016).

To glean insight into the genetic mechanisms underlying the formation of body mass, we further per-

formed GO and KEGG enrichment analyses for the QTL detected (Tables S5, S6, S7, and S8, Figures

S4–S6). GO analysis identified significant enrichments of mutualism, aggression, and altruism QTL in

‘‘multicellular organism development (GO: 0007275)’’ and ‘‘fin development (GO: 003333),’’ both of which

include two genes reported to affect zebrafish development, notch2 (Zanotti and Canalis, 2013) and

hmcn1 (Feitosa et al., 2012). GO terms were enriched by the mutualistic model in ‘‘regulation of Notch

signaling pathway (GO: 0008593),’’ which plays a vital role in bone and neurite development (Zanotti

and Canalis, 2013). The antagonist model enriched ‘‘steroid hormone mediated signaling pathway (GO:

0043401)’’ (Li et al., 2013) and ‘‘B cell activation (GO: 0042113).’’ The enriched ‘‘B cell activation’’ suggests

that stress-related genes, such as prkcbb, participate in fish-fish competition by regulating the D2-like

dopamine autoreceptor (Luderman et al., 2015). ‘‘Somitogenesis (GO: 0001756),’’ uniquely identified by

the aggressive model, is interestingly closely related to myogenesis and muscle growth (Gupta and Brand,

2013), which enhance the fish to develop a strong capacity for aggression. ‘‘Lipid metabolic process (GO:

0006629),’’ only detected by the altruistic model, is remarkably involved in energy expenditure (Liakath-Ali

et al., 2016) and inhibits aggression, invoking altruism.
114 iScience 22, 109–122, December 20, 2019



Figure 4. Quantitative Genetic Dissection of Genotype Combination Values For Fish Body Mass

Upper panel:Genotypic values of combinations CC3 CC, CC3 TC, and TC3 TC at pdlim3 (testcross QTL) for the strength of mutualism; combinations AA

3 AA, AA 3 GA, and GA 3 GA at thraa (testcross QTL) for the strength of antagonism; combinations GG 3 GG, GG 3 CG, CG 3 GG, and CG 3 CG at

bmp1 (testcross QTL) for the strength of aggression; and combinations CC 3 CC, CC 3 CT, CC 3 TT, CT 3 CC, CT 3 CT, CT 3 TT, TT 3 CC, TT 3 CT, and

TT 3 TT at notch2 (intercross QTL) for the strength of altruism. Lower panel: Direct genetic effects that describe how the alleles of a fish in a pair affects its

own body mass; indirect genetic effects that specify how each fish gene affects its conspecific’s phenotypes; and genome-genome epistatic effects that

quantify how the interactions between genes of two fish affect the phenotype of each fish. For the intercross QTL, both the direct and indirect effects include

additive (blue) and dominant (green) effects and genome-genome epistatic effects include additive3 additive, additive 3 dominant, dominant 3 additive,

and dominant 3 dominant effects (in order from left to right). Standard errors for each value are given.
KEGG analysis found even more fascinating enriched pathways (Table S9). The mutualistic, aggressive, and

altruistic models enriched four pathways closely associated with body weight: the ‘‘neuroactive ligand-re-

ceptor interaction,’’ ‘‘mTOR signaling pathway,’’ ‘‘progesterone-mediated oocyte maturation,’’ and

‘‘adrenergic signaling in cardiomyocytes.’’ For example, gnai3 in the last pathway has been reported to

regulate pig postnatal growth by engaging in miRNA-mRNA interactions (Ye et al., 2015). Mutualistic

and altruistic models both identified the ‘‘Wnt signaling pathway,’’ which plays an important role in

body axis patterning, cell proliferation, and cell migration and, therefore, embryonic development. These

processes within the Wnt signaling pathway not only are necessary for bone and muscle formation but also

control adult bone marrow, skin, and intestine tissue regeneration (Clevers et al., 2014), which is key to

longevity and function.

How QTL Act: Direct, Indirect, and Genome-Genome Epistatic Effects

Our theory can partition the genotypic value of a social QTL into its different genetic components (see the

Methods). pdlim3 detected from family G1 is a testcross QTL for mutualism with two genotypes paired

among the fish. The fish carrying the same genotype TC at this mutualism QTL are more cooperative

with each other than with those carrying the alternative CC (Figure 4). At the rarab gene detected from fam-

ily H1, stronger antagonism occurs between the fish of the same genotype AA than between those carrying

different genotypes, and the fish with the same alternative genotype GA are the least antagonistic to each

other. The fish carrying GG at bmp1, detected from family H1, repress those with the same genotype much

more severely than with the alternative CG, whereas the fish of the same genotype CG are the least aggres-

sive to each other. As an intercross QTL, the notch2 detected from family H1, G1, and Z22, have three ge-

notypes (CC, CT, and TT) forming nine genotype combinations among pairing fish. Genotype CT is more

altruistic to the same genotype and genotype CC than to genotype TT, and genotype TT is the least altru-

istic to the same genotype among all combinations. Our model can separate the direct genetic effect of a

QTL from one fish on its own bodymass; the indirect genetic effect of a QTL from one fish on the bodymass

of its pairing partner; and the genome-genome epistatic effect of a QTL from two fish on the body mass of

each fish. We found that mutualism pdlim3 controls the body mass of fish not only through its direct effect
iScience 22, 109–122, December 20, 2019 115



but also through its indirect effect (Figure 4). The influence of genome-genome epistatic effect was

evidently detected for antagonism rarab. Surprisingly, indirect and genome-genome epistatic effects

are more pronounced than direct effect at aggression bmp1. As an intercross QTL, altruism notch2 may

exert its genetic impact by additive and dominant effects and their epistatic interactions. In fact, a remark-

able indirect effect through both additive and dominant inheritance triggered by this QTL was found,

although its genome-genome epistatic effects are not significant.

We further estimated the proportions of variance due to each of these effects to the total genetic variance

at each QTL. Averaged over all QTL, indirect and genome-genome epistatic effects together explained

approximately 50% of the total genetic variance for body mass, a phenomenon detected consistently in

three mapping families (Table S10). These two portions of genetic components, largely neglected in pre-

vious quantitative and evolutionary genetic studies, may help geneticists chart a more complete genetic

signature.
Social Networks and QTL Networks

Using marginal genotypic values at each QTL, we modified an ordinary differential equation method (see

the Methods) to infer a directed, signed, and weighted network of social interactions among the fish based

on all QTL for mutualism, antagonism, aggression, and altruism. In the family H1 of 71 fish, this QTL-driven

social network is composed of a total of 314 pillar connections from 2,485 possible links (Figure 5A), by

which one fish connects and interacts with other fish selectively according to the game theory. For example,

the network is dominated by 11 hub fish, which are larger than their marginal counterparts (p < 0.01) (Fig-

ure 5B). Of all mutualistic relationships, 80% occurs between the hub fish, 20% between the hub and mar-

ginal fish, and none between the marginal fish. The hub fish are less aggressive toward each other than

toward the marginal conspecifics, although the marginal fish have some degree of aggression toward

the hub fish and other marginal fish. The hub fish are also much less altruistic toward each other, compared

with how much benefit they offer to the marginal ones. Similarly, the marginal fish are less altruistic toward

each other than toward the hubs, although this difference is much more moderate compared with the dif-

ference detected in the hubs. All of these fish behaviors, which are consistent with the predictions from the

game theory, suggest that animal’s decision making in a socialized environment involves a strong genetic

component.

In this study, we investigate how the underlying QTL govern behaviors of fish-fish interactions. We recon-

structed four QTL-driven social fish networks by excluding either QTL for mutualism, or antagonism, or

aggression, or altruism. The number of connections within each of these networks was, respectively,

reduced sharply to 137, 132, 162, and 206 (Figure 5C), suggesting that a large number of QTL are essential

for the maintenance of complex social networks. Specifically, when mutualism QTL were excluded, the

number of mutualistic relationships was reduced to one, compared with five in the network constructed

from all detected QTL. Similarly, aggressive relationships within the aggression QTL-excluded network

and altruistic relationships within the altruism QTL-excluded network both become much less frequent

(i.e., 64 and 114, respectively, compared with 140 and 169 within the network from all QTL). Similar findings

have been confirmed in the other two families G1 and Z22 (Figure 5C). These results suggest that mutu-

alism, aggression, and altruism QTL play an important role in forming and preserving, respectively, mutu-

alistic, aggressive, and altruistic relationships in an interactive community. In other words, community

structure, organization, and even function can be altered, modified, and engineered by activating, repres-

sing, or removing the expression of specific social QTL.

To demonstrate how the detected QTL jointly affect the fish social network, we implemented ordinal

Bayesian networks (see the Transparent Methods) to construct a directed acyclic graph (DAG) of QTL in-

teractions for family H1 (Figure 6). We found that mutualism and antagonism QTL that determine two

extreme patterns of social behaviors organize into distinct modules, connected via aggression and altruism

QTL. A total of 10 QTL (COX5B, STAR, ADAM9, LMO41, Iqsec2, Colgalt2,GPR160, Tnik, rps6ka6, andMsn)

pleiotropically affected the behavior of mutualism, aggression, and altruism. Other pleiotropic QTL

included VPS13A for mutualism and aggression; MYO1F for mutualism and altruism; and BBOF1, ODO1,

RIFK, SAL, and AGRD1 for aggression and altruism. No QTL were detected to be shared for antagonism

and the other types of interactions. Eleven QTL established a set of hub genes that modulate the structure

and organization of the QTL network by activating or inhibiting other QTL. bmp1 is socially an aggression

QTL, but it is not genetically ‘‘aggressive’’ because its expression needs to be regulated by many other
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Figure 5. A Bidirectional, Signed, and Weighted Social Network of All Fish Driven by Various Types of QTL

Constructed from Ordinary Differential Equations

(A) Social network of family H1 constructed from all QTL with edges representing how one fish interacts with others

through mutualism (doubly arrowed), antagonism (doubly T-shaped), aggression (singly T-shaped), or altruism (singly

arrowed). Hubs of the network are highlighted in red.

(B) The network is characterized by the difference in body mass between groups of hubs (red) and non-hubs (blue), the

percentages of mutualistic and antagonistic edges among hubs (red), among hubs and non-hubs (purple), and among

non-hubs, and the percentages of aggressive and altruistic edges from one fish to the second both from the hub group

(red), from one fish from the hub group to the second from the non-hub group (purple), from one fish from the non-hub

group to the second from the hub group (gray), and from one fish to the second both from the non-hub group (blue).

(C) The numbers of mutualistic, antagonistic, aggressive, or altruistic edges with the social networks constructed from all

QTL as well as from all QTL, except for, respectively, mutualism, antagonism, aggression, and altruism QTL. Comparisons

of edge numbers are given not only for family H1, but also for the two family replicates G1 and Z22.
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Figure 6. Dynamic Bayesian Genetic Network of All Detected QTL

The entire network is dissolved into two distinct modules: one composed of mutualism QTL (green circle), aggression QTL (yellow circle), and altruism QTL

(purple circle) and the other composed of antagonismQTL (red circle). The first module contains a proportion of QTL (mix-colored circle) that pleiotropically

affect mutualistic, aggressive, and altruistic behaviors. In each module, hub QTL are highlighted in dark colors. Of all significant detected SNPs, 41 (each
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Figure 6. Continued

labeled by a number) were identified as uniquely segregating in the mapped population, which was used for QTL network construction. It is possible

that different uniquely segregating SNPs may correspond to the same candidate gene if they are physically close enough on the common carp genome.

Candidate genes adjacent to significant SNPs are listed below. Aggression bmp1, mutualism hmcn1, and antagonism rarab are annotated, respectively,

by SNPs #37 and #38 and SNPs #35 and #24. The arrow denotes the direction by which one gene regulates the other.
QTL. hmcn1 affects fish mutualistic behavior, but its effect depends on the joint regulation of other QTL.

Antagonism rarab is regulated by other genes, such as suv420h2 and prkcbb, but it also modulates the

expression of other genes. Overall, this QTL network helps to maintain the balance of social interactions

by guiding the decision of individual fish to cooperate or compete with their conspecifics. Taken together,

a detailed portrait of QTL DAG provides a mechanistic understanding of how QTL determine body mass in

a fish population through their epistatic network. A similar phenomenon was also detected in families G1

and Z22, in which QTL form different but connected genetic modules according to their social behavior.

These results, drawn consistently from three independent fish families, could provide evidence about

the biological relevance of our theory.

Monte Carlo Simulation

We examined the statistical behavior of our model through computer simulation. Our model estimates

reasonably well the genetic effects of QTL, including direct, indirect, and genome-genome epistatic ef-

fects, and possesses good power for QTL detection (Table S11). This can be attributed to the increase

of information from pairwise phenotypes under the design of our model. The same data were analyzed

by a traditional model, which shows reduced power for QTL detection. The advantage of our model is

more evident when the heritability and/or sample size are modest. The false-positive rates of our model

are reasonably low (<0.08) even when the mapping population is modest (e.g., 70).

DISCUSSION

No organism can live in absolute isolation, rather the phenotype and fitness of an organism should be

determined not only by its own intrinsic properties, but also by the strategies its conspecifics develop

and use in response to the biological environment (Magnuson, 1962; Ribas et al., 2017; Schneider et al.,

2017; Santostefano et al., 2017). However, measuring the strength of such ecological and social interactions

from a mapping experiment is highly challenging. Based on animal behavioral ecology theory, we formu-

late the mathematical rule of thumb to quantitatively describe the strength of different interaction types

that take place in a mapping population. The cultural experiments of fish and bacteria consistently support

the biological relevance of our mathematical descriptors. We propose a mapping theory for complex traits

by incorporating the mathematical descriptors of ecological interactions. We further arm our theory with a

computational toolkit to map and identify QTL acting through direct genetic effects (by which an individ-

ual’s QTL affects its own phenotype), indirect genetic effects (by which an individual’s QTL influences the

phenotype of its conspecifics), and trans-genome epistatic effects (by which the interaction of QTL derived

from different individuals controls each of their phenotypes).

Our theory was used in three independent mapping experiments of fish, obtaining consistent results. We

estimate the contributions of direct, indirect, and trans-genome epistatic genetic effects to quantitative

genetic variation and find that the latter two effects can together account for approximately half of the total

genetic variance in body mass. Many earlier studies have recognized the importance of indirect genetic

effects (Schneider et al., 2017; Santostefano et al., 2017), but quantification of how they contribute to ge-

netic variation has been lacking. Our mapping theory opens a gateway to capturing these overlooked sour-

ces of genetic variation, thereby portraying a more comprehensive genetic architecture of complex traits.

Apart from its increasing precision of trait mapping, our theory raises two key interdisciplinary questions for

future research. First, quantitative genetic theory has been increasingly coupled with behavioral ecology to

reveal the genetic mechanisms underlying social traits, such as aggression and response to social oppo-

nents (Dingemanse and Araya-Ajoy, 2015), and to uncover why selection maintains behavioral variation

rather than eroding it (Santostefano et al., 2017). The major social interaction types of mutualism, antago-

nism, aggression, and altruism profoundly impact the structure and function of ecological communities in

their unique ways. We found that these interactive processes have distinct genetic bases for fitness-related

body size in the fish. To establish a complex social network, more QTL should be activated by playing a

single or multifaceted role. By excluding mutualism, aggression, and altruism QTL, the fish become,
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respectively, less cooperative, aggressive, and altruistic in the population. This result has an immediate

implication for the genetic study and possible manipulation in the real world of behavioral variation and

evolution. By repressing or even eliminating the expression of aggression QTL through modern gene edit-

ing, such as CRISPR, researchers in ecology, breeding, or medicine can create and preserve more cooper-

ative (e.g., for the gut microbiota) or more antagonistic (e.g., for intra-tumoral cells) communities beneficial

to humans.

Second, indirect genetic effects arising from communal interactions are regarded as a source of additional

genetic variation, whose impact on the social-traits evolutionary dynamics, by enhancing rapid selection

responses or functioning as evolutionary constraint on phenotypes, has been well documented in many

experimental studies (Wolf et al., 1998; Shuster et al., 2006; Wilson et al., 2011; Schneider et al., 2017; San-

tostefano et al., 2017). Not only are behavioral traits affected by indirect genetic effects, but also, as shown

by our result, morphological traits, such as body mass, are influenced by an indirect genetic component.

Our finding is innovative and insightful; for instance, we can infer through psychology that our human

behavior responds indirectly to the presence of other surrounding humans’ genes and their related-effects

as these both affect our psyche and choices in food, which in turn then affect our body mass. The incorpo-

ration into evolutionary studies of these indirect genetic effects and trans-genome epistatic effects, ex-

pressed at specific QTL levels, can improve our insight into how social interactions between conspecifics

impose a diverse array of selective pressures on various behaviors and how evolutionary stasis occurs for

phenotypic traits involved in social interactions.
Limitations of the Study

We propose a mapping theory for charting a more complete map of the genetic architecture of complex

traits by incorporating the impact of ecological interactions on phenotypic variation. Although this theory

has successfully identified the previously unknown genetic variation of body size in animals, it is unclear how

it works to study and dissect other types of phenotypic traits, such as disease-related and physiological

traits. Furthermore, our biological justification of interaction descriptors was based on cultural experiments

of mobile animals and microbes, but we do not know whether this justification can be extended to immo-

bile plants that communicate with each other differently from the way mobile organisms do. The unique

feature of our theory is to take advantage of behavioral ecology to enhance the efficiency of trait mapping.

The biological processes of how different organisms cooperate or compete for living resources in popula-

tions, communities, or ecosystems are also governed by evolutionary principles, developmental biology,

habitat ecology, and network science. The seamless integration of all these disciplines into our mapping

theory will certainly facilitate its widespread use to construct mechanistic links from genotype to

phenotype.
METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
DATA AND CODE AVAILABILITY

All data and computer code are given in GitHub https://github.com/LiboJiang/Fish or can be directly re-

quested from the corresponding author.
SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.11.002.
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Supplementary Figures 

 

 
 

Figure S1. Manhattan plot of log-likelihood ratios (LR) for testing significant SNPs, including testcross markers (+) 

and intercross markers (), throughout the common carp genome in family H1 by the traditional mapping model (A) and 

our mapping model (B – E), related to Figures 4–6. Whereas the former did not discoevr any significant QTL, the latter 

has identified a number of significant loci for mutualism (B), antagonism (C), aggression (D), and altruism (E). The 

genome-wide critical threshold at the 5% significance level, indicated by solid lines for testcross markers and broke lines 

for intercross markers, was determined by 10,000 permutation tests. Through GO analysis, significant QTL for different 

types of social interactions, labelled by 1 – 158, are annotated by candidate genes with names given in the lower panel. 

Among a total of 158 QTL detected, 80 are for mutualism, 45 for antagonism, 98 for aggression and 76 for altruism, with 

a portion of QTL that pleiotropically affect more than one interaction type. 
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Figure S2. Manhattan plot of log-likelihood ratios (LR) for testing significant SNPs, including testcross markers (+) 

and intercross markers () throughout the common carp genome in family G1 by the traditional mapping model (A) and 

our mapping model (B – E), related to Figures 4–6. Whereas the former did not discoevr any significant QTL, the latter 

has identified a number of significant loci for mutualism (B), antagonism (C), aggression (D), and altruism (E). The 

genome-wide critical threshold at the 5% significance level, indicated by solid lines for testcross markers and broke lines 

for intercross markers, was determined by 10,000 permutation tests. Through GO analysis, significant QTL for different 

types of social interactions, labelled by 1 – 59, were annoated by candidate genes with names given in the lower panel. 

Among a total of 59 QTL detected, 40 are for mutualism, 10 for antagonism, 36 for aggression and 33 for altruism, with 

a portion of QTL that pleiotropically affect more than one interaction type. 
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Figure S3. Manhattan plot of log-likelihood ratios (LR) for testing significant SNPs, including testcross markers (+) 

and intercross markers () throughout the common carp genome in family Z22 by the traditional mapping model (A) and 

our mapping model (B – E), related to Figures 4–6. Whereas the former did not discover any significant QTL, the latter 

has identified a number of significant loci for mutualism (B), antagonism (C), aggression (D), and altruism (E). The 

genome-wide critical threshold at the 5% significance level, indicated by solid lines for testcross markers and broke lines 

for intercross markers, was determined by 10,000 pertumtation tests. Through GO analysis, significant QTL for different 

types of social interactions, labelled by 1 – 39, were annoated to candidate genes with names given in the lower panel. 

Among a total of 39 QTL detected, 18 are for mutualism, 5 for antagonism, 25 for aggression and 31 for altruism, with 

a portion of QTL that pleiotropically affect more than one interaction type. 
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Figure S4. Biological processes of GO terms enriched in mutualism QTL (A), antagonism QTL (B), aggression 

QTL (C), and altruism QTL (D) for body mass, related to Figures 4–6. 

Colors of the bubbles represent the significance level of GO terms. The size of bubbles represents the gene numbers 

involved in each GO term. X and Y dimensions represent the semantic spaces among different GO terms.
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Figure S5. Cellular components of GO terms enriched in mutualism QTL (A), antagonism QTL (B), aggression 

QTL (C), and altruism QTL (D) for body mass, related to Figures 4–6. 

Colors of the bubbles represent the significance level of GO terms. The size of bubbles represents the gene numbers 

involved in each GO term. X and Y dimensions represent the semantic spaces among different GO terms.
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Figure S6. Molecular functions of GO terms enriched in mutualism QTL (A), antagonism QTL (B), aggression 

QTL (C), and altruism QTL (D) for body mass, related to Figures 4–6. 

Colors of the bubbles represent the significance level of GO terms. The size of bubbles represents the gene numbers 

involved in each GO term. X and Y dimensions represent the semantic spaces among different GO terms.
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Figure S7. Histograms of mutualistic, antagonistic, aggressive, and altruistic traits, calculated from equation (1), and their log-transformation in three full-sib families, 

H1, G1, and Z22, of the common carp, related to Figures 4–6.
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Supplementary Tables 

 

 
Table S1 - S9 are excel tables. 

 
Table S10. Proportions of the total genetic variance explained by direct genetic, indirect genetic, and 

genome-genome (GG) epistatic genetic effects averaged over all mutualism QTL, antagonism QTL, 

aggression QTL, or altruism QTL for three full-sib families of the common carp, related to Figures 5 

and 6. 

 

Family QTL type Testcross Intercross Direct Indirect GG epistatic 

H1 Mutualism 74 23 0.532±0.077 0.285±0.075 0.183±0.080 

 Antagonism 42 10 0539±0.070 0.402±0.066 0.059±0.020 

 Aggression 89 25 0.515±0.079 0.252±0.075 0.233±0.105 

 Altruism 70 22 0532±0.073 0.269±0.071 0.199±0.085 

       

G1 Mutualism 40 3 0.451±0.089 0.423±0.089 0.126±0.030 

 Antagonism 4 8 0.589±0.156 0.252±0.152 0.149±0.097 

 Aggression 29 13 0.468±0.085 0.389±0.110 0.143±0.044 

 Altruism 30 6 0.461±0.084 0.400±0.106 0.139±0.038 

       

Z22 Mutualism 7 13 0.572±0.158 0.307±0.118 0.121±0.092 

 Antagonism 4 2 0.396±0.142 0.322±0.121 0.282±0.110 

 Aggression 16 13 0.519±0.132 0.379±0.131 0.102±0.084 

 Altruism 21 15 0.514±0.130 0.389±0.135 0.097±0.083 
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Table S11. Power comparison of QTL detection from a mapping population by a traditional model 

and our model under different heritability (H2) and sample sizes (m), related to Figures 4–6. 

 

 H2 = 0.05 H2 = 0.1 

 m = 70 m = 200 m = 70 m = 200 

Social model 0.78±0.046 0.84±0.044 0.83±0.037 0.91±0.025 

Traditional model 0.31±0.094 0.34±0.073 0.35±0.028 0.38±0.031 
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Table S12. Toy example showing how to reformat a mapping data (left panel) into the data structure of mapping social interactions (right panel). Animals in the original data 

(left panel) are ordered from large to small. In each pair, a larger animal is arrayed in column L and a smaller one in column S (right panel), related to Figures 1–3. See Fig. 

1 for the definition of different types of interactions.  
 

    
Social Interaction Pair with L and S 

  
Progeny Marker  Phenotype 

 
No. Pair G×G Mutualism (zmu) Antagonism (zan) Aggression (zag) Altruism (zmu)  x|L y\S 

  
1 AA w1 

 
1 1×2 AA×Aa w1w2/(w1–w2) 1/(w1w2(w1–w2)) w1/w2 1–w2/w1 w1 w2   

2 Aa w2 
 

2 1×3 AA×Aa w1w3/(w1–w3) 1/(w1w3(w1–w3)) w1/w3 1–w3/w1 w1 w3   
3 Aa w3 

 
3 1×4 AA×AA w1w4/(w1–w4) 1/(w1w4(w1–w4)) w1/w4 1–w4/w1 w1 w4   

4 AA w4 
 

4 1×5 AA×Aa w1w5/(w1–w5) 1/(w1w5(w1–w5)) w1/w5 1–w5/w1 w1 w5   
5 Aa w5 

 
5 1×6 AA×AA w1w6/(w1–w6) 1/(w1w6(w1–w6)) w1/w6 1–w6/w1 w1 w6   

6 AA w6 
 

6 2×3 Aa×Aa w2w3/(w2–w3) 1/(w2w3(w2–w3)) w2/w3 1–w3/w2 w2 w3       
7 2×4 Aa×AA w2w4/(w2–w4) 1/(w2w4(w2–w4)) w2/w4 1–w4/w2 w2 w4       
8 2×5 Aa×Aa w2w5/(w2–w5) 1/(w2w5(w2–w5)) w2/w5 1–w5/w2 w2 w5       
9 2×6 Aa×AA w2w6/(w2–w6) 1/(w2w6(w2–w6)) w2/w6 1–w6/w2 w2 w6       

10 3×4 Aa×AA w3w4/(w3–w4) 1/(w3w4(w3–w4)) w3/w4 1–w4/w3 w3 w4       
11 3×5 Aa×Aa w3w5/(w3–w5) 1/(w3w5(w3–w5)) w3/w5 1–w5/w3 w3 w5       
12 3×6 Aa×AA w3w6/(w3–w6) 1/(w3w6(w3–w6)) w3/w6 1–w6/w3 w3 w6       
13 4×5 AA×Aa w4w5/(w4–w5) 1/(w4w5(w4–w5)) w4/w5 1–w5/w4 w4 w5       
14 4×6 AA×AA w4w6/(w4–w6) 1/(w4w6(w4–w6)) w4/w6 1–w6/w4 w4 w6       
15 5×6 Aa×AA w5w6/(w5–w6) 1/(w5w6(w5–w6|) w5/w6 1–w6/w5 w5 w6   
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Table S13. Genotypic values of four GG combinations and their underlying components: direct genetic, indirect genetic, 

and genome-genome (gg) epistatic effects, derived from animal pairs, each with a larger one arrayed in column L and a 

smaller one in column S, related to Figures 1–3. 

________________________________________________________________________________________ 

GG Combination     Column L                   Column S 

Testcross Marker 

AA  AA      x

aayxxxx

x eaaμμ  11
       y

aayyxyy

y eaaμμ  11
 

AA  Aa      x

aayxxxx

x eaaμμ  12
       y

aayyxyy

y eaaμμ  12
 

Aa  AA      y

aayxxxx

x eaaμμ  21
       y

aayyxyy

y eaaμμ  21
 

Aa  Aa      x

aayxxxx

x eaaμμ  22
       y

aayyxyy

y eaaμμ  22
 

Overall Mean    )μμμ(μμ xxxx

x 222112114
1         )μμμ(μμ yyyy

y 222112114
1   

Direct Effect     )μμμ(μa xxxx

xx 222112114
1 

       )μμμ(μa yyyy

yy 222112114
1 

 

Indirect Effect    )222112114
1 xxxx

yx μμμ(μa 
      )μμμ(μa yyyy

xy 222112114
1 

 

gg Epistasis     )μμμ(μe xxxxx

aa 222112114
1         )μμμ(μe yyyyy

aa 222112114
1   

 

Intercross Marker 

AA  AA       x

aaxxxxx

x eaaμμ  11
        y

aayyxyy

y eaaμμ  11
 

AA  Aa      x

adyxxxx

x edaμμ  12
       y

adyyxyy

y edaμμ  12
 

AA  aa      x

aayxxxx

x eaaμμ  13
       x

aaxxxyy

y eaaμ  13  

Aa  AA      x

dayxxxx

x eadμμ  21
       y

dayyxyy

y eadμμ  21
 

Aa  Aa      x

ddyxxxx

x eddμμ  22
       y

ddyyxyy

y eddμμ  22
 

Aa  aa      x

dayxxxx

x eadμμ  23
       y

dayyxyy

y eadμμ  23
 

aa  AA      y

aayxxxx

x eaaμμ  31
        y

aayyxyy

y eaaμμ  31
 

aa  Aa      x

adyxxxx

x edaμμ  32
       y

adyyxyy

y edaμμ  32
 

aa  aa      y

aayxxxx

x eaaμμ  33
       y

aayyxyy

y eaaμμ  33
 

Overall Mean    


3

1

3

19
1

1 2 21j j

x

jjx μμ            


3

1

3

19
1

1 2 21j j

y

jjy μμ  

Direct Effect   )( 333113114
1 xxxx

xx μμμμa 
      )( 333113114

1 yyyy

yy μμμμa 
 

      )]()(2[ 3331131132124
1 xxxxxx

xx μμμμμd       )]()(2[ 3331131132124
1 yyyyyy

yy μμμμμd    

Indirect Effect  )( 333113114
1 xxxx

yx μμμa           )( 333113114
1 yyyy

xy μμμμa 
 

      )]()(2[ 3313311123214
1 xxxxxx

yx μμμμμd      )]()(2[ 3313311123214
1 yyyyyy

xy μμμμμμd 
 

gg Epistasis   )( 311333114
1 xxxxx

aa μμμμe           )( 311333114
1 yyyyy

aa μμμμe   

)()(2[ 3331131132124
1 xxxxxxx

ad μμμμμe       )()(2[ 3331131132124
1 yyyyyyy

ad μμμμμμe   

)()(2[ 1311333123214
1 xxxxxxx

da μμμμμe      )()(2[ 3111333123214
1 yyyyyyy

da μμμμμμe   

)2( 32232112224
1 xxxxxx

dd μμμμe        )2( 32232112224
1 yyyyyy

dd μμμμμe   

 

Note: for a testcross QTL, x

jjμ 21

 and y

jjμ 21

 (j1, j2 = 1, 3) are the genotypic values of GG combinations for column A and B, 

respectively; axx and ayy are the direct effects of columns A and B on their own phenotype; axy and ayx are the 

indirect effects of columns B and A on the phenotype of its counterpart; and 
x

aae  and y

aae  are the genome-genome 

epistatic effects due to the interactions between columns A’s and B’s alleles on the phenotype of columns A and B, 

respectively. All of these definitions can be extended to an intercross QTL that includes additive (a), dominant (d), 

genome-genome additive × additive (eaa), genome-genome additive × dominant (ead), genome-genome dominant × 

additive (eda), and genome-genome dominant × dominant (edd) effects.
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Table S14. Data structure of a toy mapping population used to infer a directed acyclic graph, related to Figures 5 and 6. Social network (A) was constructed from ODEs, 

whereas QTL networks (B) was constructed from dynamic Bayesian networks. 2

Q  is the genetic variance of a locus and µ is the population mean. 

QTL 
 

QTL 

No. Q1 Q2 Q3 Q4 Q5 Q6 Phenotype 
 

Q1 Q2 Q3 Q4 Q5 Q6 

S1 AA Aa AA AA aa AA 1.5 
 

1.70 1.75 1.70 1.81 1.70 1.77 

S2 aa AA aa AA Aa aa 2.12 
 

1.94 1.94 1.86 1.81 1.88 1.98 

S3 Aa Aa Aa Aa Aa Aa 1.85 
 

1.89 1.75 1.87 1.86 1.88 1.81 

S4 Aa aa Aa aa AA AA 1.91 
 

1.89 1.84 1.87 1.81 1.88 1.77 

S5 aa AA aa aa Aa Aa 1.76 
 

1.94 1.94 1.86 1.81 1.88 1.81 

S6 AA aa Aa Aa AA aa 1.84 
 

1.70 1.84 1.87 1.86 1.88 1.98 

S7 Aa Aa AA Aa aa AA 1.9 
 

1.89 1.75 1.70 1.86 1.70 1.77 

S8 AA aa aa aa Aa AA 1.77 
 

1.70 1.84 1.86 1.81 1.88 1.77 
 

2

Q = 0.011 
0.006 0.007 0.001 0.007 0.009 µ = 1.83 

 
Q = 0.108 0.079 0.081 0.026 0.082 0.093 

 

                                                                

                                                    
                                                               ODE-based network                       Dynamic Bayesian network                                                                    
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Transparent Methods 
 

Mapping design 

Consider a full-sib mapping population of animals genotyped for SNPs throughout the whole 

genome. By rearing them in a common environment, these animals are allowed to randomly 

interact with each other. The animals’ resource- and space-responsive phenotypes, such as 

body weight and body length, are measured after the population has experienced full mutual 

interactions during ontogeny. To illustrate our new mapping theory, we designed a toy example 

in which six animals are genotyped by a testcross marker with two genotypes AA and Aa and 

phenotyped by a growth-related trait. Without loss of generality, we labelled and arranged the 

six animals in order from high to small phenotypes denoted as w1, …, w6 (left, Table S12). By 

pairing all animals, we reformatted genotype and phenotype data across a total of (5  6)/2 = 

15 pairs, where a larger animal in each pair is arrayed in left column and a smaller one in right 

column (right, Table S12). Let wL and wS denote the phenotypic values of the larger animal L 

(L = 1, …, 5) and smaller animal S (S = 2, …, 6) from a pair, respectively. For a particular pair, 

we use the mathematic expressions, as shown in Fig. 1, to calculate the parameters zmu, zan, zag, 

and zal that describe the strengths of their mutualism, antagonism, aggression, and altruism, 

respectively. Among all pairs, two genotypes at the marker form four possible genotype (G)  

genotype (G) combinations, AA  AA (coded as 11), AA  Aa (coded as 12), Aa  AA (coded 

as 21), and Aa  Aa (coded as 22). A traditional mapping approach is to associate marker 

genotypes with trait phenotypes across individual animals (left, Table S12), whereas our new 

mapping model performs the analysis of association between GG combinations and the derived 

phenotypes of mutualism, antagonism, aggression, and altruism across animal-animal pairs 

(right, Table S12). 

 

Statistical mapping of social interactions 

Likelihood: We use zi to denote the value of a derivative trait (i.e., mutualism, antagonism, 

aggression, or altruism) for pair i (i = 1, …, n). Let n11, n12, n21, and n22 denote the 

observations of GG combinations, AA  AA, AA  Aa, Aa  AA, and Aa  Aa at a test marker, 

respectively. The likelihood of a derivative trait at this marker is formulated as 

𝐿(𝑧) = ∑ 𝑓1×1

𝑛1×1

𝑖=1

(𝑧𝑖) ∑ 𝑓1×2

𝑛1×2

𝑖=1

(𝑧𝑖) ∑ 𝑓2×1

𝑛2×1

𝑖=1

(𝑧𝑖) ∑ 𝑓2×2

𝑛2×2

𝑖=1

(𝑧𝑖)                             (1) 

where f.(zi) is the probability density of the derivative trait for a particular GG combination. 

The four derivative traits may have complicated forms of density function. However, we first 

test if they are normally distributed after log-transformation and implement the normal density 

function if they pass the test. In the subsequent data analysis of carp fish body mass, we find 

that all derivative traits, except for aggression, approximately follow a normal distribution after 

they are log-transformed (Fig. S7). The likelihood (1) has four genotypic values of GG 

combinations for a derivative trait, denoted as 𝜇1×1
𝑧 , 𝜇1×2

𝑧 ,  𝜇2×1
𝑧 , and 𝜇2×2

𝑧 , respectively, and a 

residual variance. A standard likelihood approach is implemented to obtain the maximum 

likelihood estimates (MLEs) of these parameters. 

 

As a ratio trait between two variables, aggression can be approached by the Cauchy density 

function. Let x and y denote the trait values of animal column L and S, respectively. For ratio 

zi = yi/xi (xi > yi), the density function of GG combination j1j2,𝑓𝑗
1
×𝑗

2
(𝑧𝑖) , is a product of a Cauchy 

density and a complicated function (Cedilnik et al., 2004), expressed as
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𝑓𝑗1×𝑗2
(𝑧𝑖) =

𝜎𝑥𝜎𝑦√1 − 𝜌2

𝜋(𝜎𝑥
2𝑧𝑖

2 − 2𝜌𝜎𝑥𝜎𝑦𝑧𝑖 + 𝜎𝑥
2)

[exp (−
1

2
sup𝑅𝑗1×𝑗2

2 )(1 +
𝑅𝑗1×𝑗2Φ(𝑅𝑗1×𝑗2)

𝜙(𝑅𝑗1×𝑗2)
)]

=
𝜎𝑥𝜎𝑦√1 − 𝜌2

𝜋(𝜎𝑦
2𝑧𝑖

2 − 2𝜌𝜎𝑥𝜎𝑦 + 𝜎𝑥
2)

[exp (−
1

2
sup𝑅𝑗1×𝑗2

2 )    

+ √2𝜋𝑅𝑗1×𝑗2Φ(𝑅𝑗1×𝑗2)exp (−
1

2
[sup𝑅𝑗1×𝑗2

2 − 𝑅𝑗1×𝑗2
2 ]]                                     (2) 

where 

𝑅𝑗1×𝑗2 =
(𝜎𝑦

2𝜇𝑗1×𝑗2
𝑥 − 𝜌𝜎𝑥𝜎𝑦𝜇𝑗1×𝑗2

𝑦
)𝑧𝑖 − 𝜌𝜎𝑥𝜎𝑦𝜇𝑗1×𝑗2

𝑥 + 𝜎𝑥
2𝜇𝑗1×𝑗2

𝑦

𝜎𝑥𝜎𝑦√1 − 𝜌2√𝜎𝑦
2𝑧𝑖

2 − 2𝜌𝜎𝑥𝜎𝑦𝑧𝑖 + 𝜎𝑥
2

 

             =

(
𝜇𝑗1×𝑗2

𝑥

𝜎𝑥
− 𝜌

𝜇𝑗1×𝑗2

𝑦

𝜎𝑦
) 𝑧𝑖 − (𝜌

𝜇𝑗1×𝑗2
𝑥

𝜎𝑥
−

𝜇𝑗1×𝑗2

𝑦

𝜎𝑅
)
𝜎𝑥

𝜎𝑦

√1 − 𝜌2√𝑧𝑖
2 − 2𝜌

𝜎𝑥

𝜎𝑦
𝑧𝑖 + (

𝜎𝑥

𝜎𝑦
)2

 

  

sup𝑅𝑗1×𝑗2
2 =

𝜎𝑦
2𝜇𝑗1×𝑗2

𝑥 − 2𝜌𝜎𝑥𝜎𝑦𝜇𝑗1×𝑗2
𝑥 𝜇𝑗1×𝑗2

𝑦
+ 𝜎𝐿

2𝜇𝑗1×𝑗2

𝑦

𝜎𝑥
2𝜎𝑦

2(1 − 𝜌)

=

(
𝜇𝑗1×𝑗2

𝑥

𝜎𝑥
)2 − 2

𝜇𝑗1×𝑗2
𝑥

𝜎𝑥

𝜇𝑗1×𝑗2

𝑦

𝜎𝑦
+ (

𝜇𝑗1×𝑗2

𝑦

𝜎𝑦
)2

1 − 𝜌2
 

sup𝑅𝑗1×𝑗2
2 − 𝑅𝑗1×𝑗2

2 =
(𝜇𝑗1×𝑗2

𝑦
− 𝜇𝑗1×𝑗2

𝑥 𝑧𝑖)
2

𝜎𝑥
2𝑧𝑖

2 − 2𝜌𝜎𝑦𝜎𝑥𝑧𝑖 + 𝜎𝑦
2

=

(
𝜇𝑗1×𝑗2

𝑦

𝜎𝑦

𝜎𝑦

𝜎𝑥
−

𝜇𝑗1×𝑗2
𝑥

𝜎𝑥
𝑧𝑖)

2

𝑧𝑖
2 − 2𝜌

𝜎𝑦

𝜎𝑥
𝑧𝑖 + (

𝜎𝑦

𝜎𝑥
)
2 , 

and 

Φ(𝑅𝑗1×𝑗2) = ∫ 𝜙(𝑟)𝑑𝑟 = ∫
1

√2𝜋

𝑅𝑗1×𝑗2

𝑜

𝑅𝑗1×𝑗2

𝑜

𝑒−
𝑟2

2 𝑑𝑟 =
1

2
𝑒𝑟𝑓(

𝑅𝑗1×𝑗2

√2
) 

is the error function. The density function (2) was implemented into the likelihood (1) that is 

defined by GG combination-dependent genotypic means of variables x (𝜇𝑗1×𝑗2
𝑥 ) and y (𝜇𝑗1×𝑗2

𝑦
), 

the residual variances of variables x (𝜎𝑥
2) and y (𝜎𝑦

2), and the correlation between the two 

variables ().  

 

Significance test: To determine whether a significant QTL exists to affect a type of social 

interaction, we compare the genotypic difference among GG combinations. For mutualism, 

antagonism, and altruism traits, four genotypic values of the derivative trait are estimated 

directly. For the aggression trait, its genotypic values are estimated as 𝜇𝑗1×𝑗2
𝑧 = 𝜇𝑗1×𝑗2

𝑦
/𝜇𝑗1×𝑗2

𝑥 . 

In general, we formulate the following hypotheses for significance test: 

                H0: 𝜇1×1
𝑧 = 𝜇1×2

𝑧 = 𝜇2×1
𝑧 = 𝜇2×2

𝑧 = 𝜇𝑧 

H1: At least one of the above equalities does not hold.              (3) 

A log-likelihood ratio calculated from the H0 (there is no QTL) and H1 hypothesis (there is a 

QTL) is used to test if these GG combinations differ from each other for a derivative trait. If 

the null hypothesis is rejected, then we could claim the existence of a significant QTL that 
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affects the derivative trait. We call such a QTL a mutualism QTL, antagonism QTL, aggression 

QTL, or altruism QTL if the derivative trait is zmu, zan, zag, or zal, respectively. The critical 

threshold for the significance test can be empirically determined through permutation tests. 

 

Quantitative genetic dissection of social interactions 

After a significant QTL for an interaction parameter is detected, the new theory can be used to 

test how this QTL affects phenotypic variation. As described above, each pair is composed of 

two animals, a larger one L arrayed in left column (with trait value denoted as x) and a smaller 

one S in right column (with trait value denoted as y) (right, Table S12). For a QTL significant 

by test, we calculate the MLEs of the genotypic value of each GG combination for each column, 

i.e., 𝜇𝑗1𝑗2
𝑥  for column L and 𝜇𝑗1𝑗2

𝑦
 for column S (j1, j2 = 1 for AA, 2 for Aa). According to 

quantitative genetic theory, we partitioned these genotypic values into their underlying 

components (Table S13), including the overall means for different columns, denoted as x for 

column L and y for column S; direct genetic effects of QTL alleles from two columns on their 

own phenotypes, denoted as axx for column L and ayy for column S; indirect genetic effects 

of QTL alleles from two columns on each other’s phenotypes, denoted as axy for column S 

affecting column L and ayx for column L affecting column S; and genome-genome epistatic 

effects of QTL alleles from different columns, denoted as 𝑒𝑎𝑎
𝑥  on column L and 𝑒𝑎𝑎

𝑦
 on 

column S. 

 

Based on the component structure of a GG combination genotypic value (Table S13), we solve 

these effect parameters by 

[

𝑎𝑥←𝑥

𝑎𝑥←𝑦

𝑒𝑎𝑎
𝑥

] =
1

4
[
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

]

[
 
 
 
𝜇11

𝑥

𝜇12
𝑥

𝜇21
𝑥

𝜇22
𝑥 ]

 
 
 
, [

𝑎𝑦←𝑥

𝑎𝑦←𝑦

𝑒𝑎𝑎
𝑦

] =
1

4
[
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

]

[
 
 
 
 
𝜇11

𝑦

𝜇12
𝑦

𝜇21
𝑦

𝜇22
𝑦

]
 
 
 
 

          (4)  

After these effect parameters are estimated, we formulate a procedure to test the significance 

of each of them by a log-likelihood ratio approach. For example, the null hypotheses for testing 

these effects are expressed as 

                 H0: axx = ayy = 0, for the direct effect                        (5) 

              H0: axy = ayx = 0, for the indirect effect                      (6) 

H0: 𝑒𝑎𝑎
𝑥 = 𝑒𝑎𝑎

𝑦
 = 0, for the fish-fish epistatic effect               (7) 

The critical thresholds for all the above hypotheses tests can be obtained from classic chi-

square statistics or simulation studies. If these effects are significant, we calculate their means 

over two columns, i.e., aD = (axx + ayy)/2, aI = (axy + ayx)/2, and eaa = (𝑒𝑎𝑎
𝑥 +𝑒𝑎𝑎

𝑦
)/2, as the 

estimates of direct, indirect, and genome-genome epistatic effects on a phenotypic trait in the 

population. 

 

We next describe a procedure to estimate genetic variances due to direct, indirect, and genome-

genome epistatic effects. Considering columns L and S of the right part of Table S12, we 

calculate the genetic variance among the four GG combinations at a significant QTL, denoted 

as 𝑉𝐺
𝑥 for column L and 𝑉𝐺

𝑦
 for column S. The mean of 𝑉𝐺

𝑥  and 𝑉𝐺
𝑦

, expressed as VG, is the 

estimation of the total genetic variance explained by the QTL. Based on column L’s and S’s 

genotypes, we calculate the genetic variance of the trait in columns L and S, respectively, 

denoted as Vxx for column L and Vyy for column S, whose mean is the estimated direct 

genetic variance of the QTL, expressed as VD. Similarly, using column L’s and S’s genotypes, 

we can calculate the genetic variance of the trait in columns S and L, respectively, denoted as 

Vyx for column L affecting S and Vxy for column S affecting L. The mean of these two genetic 
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variances, expressed as VI, is the estimated indirect genetic variance of the QTL. For columns 

L and S, we calculate 𝑉𝑎𝑎
𝑥 = 𝑉𝐺

𝑥 − 𝑉𝑥←𝑥 − 𝑉𝑥←𝑦 and 𝑉𝑎𝑎
𝑦

= 𝑉𝐺
𝑦

− 𝑉𝑦←𝑦 − 𝑉𝑦←𝑥 , respectively, 

and their mean is the genome-genome epistatic genetic variance of the QTL, denoted as Vaa. 

We can further calculate the proportions of direct, indirect, and genome-genome epistatic 

effects to the total genetic variance by this QTL.  

 

For an outcrossing species like the carp fish, a full-sib family population derived from two 

heterozygous parents may include two types of markers, i.e., testcross markers at which one 

parent is heterozygous whereas the other is homozygous, and intercross markers at which both 

parents are heterozygous (Wu et al., 2002; Lu et al., 2004). The procedure described above can 

be similarly used to map mutualism, antagonism, aggression, or altruism QTL based on 

intercross markers. For an intercross marker with three genotypes (AA, Aa, and aa), we use 

nine GG combinations, AA  AA (coded as 11), AA  Aa (coded as 12), AA  aa (coded as 

13), Aa  AA (coded as 21), Aa  Aa (coded as 22), Aa  aa (coded as 23), aa  Aa (coded 

as 31), aa  Aa (coded as 32), and aa  aa (coded as 33). Similarly, we formulated a log-

likelihood approach to estimate the MLEs of genotypic values of nine GG combinations for 

columns L and S, and tested and estimated the significance of direct additive (aD) and dominant 

genetic effects (dD), indirect additive (aI), and dominant genetic effects (dI), and genome-

genome additive-additive (eAA), genome-genome additive-dominant (eAD), genome-genome 

dominant-additive (eDA), and genome-genome dominant-dominant epistatic genetic effects 

(eDD) (Table S13). 

 

Inferring directed acyclic networks 

To better understand how different types of QTL, mutualistic, antagonistic, aggressive, or 

altruistic, jointly affect the phenotypic trait of animals, we develop and implement a statistical 

algorithm to infer a directed acyclic graph (DAG) of QTL interactions. We use a toy example 

to explain our algorithm. Suppose there are six QTL under consideration, each with three 

genotypes AA (coded as 1), Aa (coded as 2) and aa (coded as 3). These QTL are segregating in 

the mapping population of eight phenotyped animals (left, Table S14). For the trait measured, 

we calculate its population mean (µ) averaged over all animals and also its marginal genotypic 

means µjk (j = 1, 2, 3) over the animals carrying the same genotype at each QTL k. Now, we 

assign each genotype at each QTL by its marginal genotypic mean to form an (8  6) matrix of 

genotypic values (right, Table S14), from which two types of DAG, constructed by different 

QTL and different animals, respectively, were inferred by Bayesian networks. 

 

QTL network: The structure of a QTL network is defined by two sets: the set of nodes 

(vertices) represented by individual QTL and the set of directed edges of dependence (directed 

epistasis) among the QTL. Because each QTL has three distinct genotypes, its marginal 

genotypic values (right, Table S14) can be better viewed as ordinal variables. The most general 

approach for constructing ordinal Bayesian networks is to treat ordinal variables as nominal so 

that nominal techniques can be used. However, this treatment entails a loss of information 

because the ordering among categories is not considered. At present, only a few ordinal-

sensitive procedures for learning Bayesian network from ordinal data have been developed in 

order to preserve the ordering of ordinal data (Musella, 2013). 

 

Following Musella’s procedure (Musella, 2013), we describe an ordinal PC algorithm for 

learning and inferring a QTL DAG from marginal ranked genotypic values. Consider data 

structure, given in Table S14 (right), composed of eight samples on six QTL variables. The 

PC algorithm is a stepwise backward algorithm for DAG inference (Spirtes et al., 2013). We 
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first tested the conditional independence 𝑄1 ⊥ 𝑄3|𝑄2  where Q1, Q2 and Q3 are ordinal, each 

with three genotypes. We let  𝑛𝑗1𝑗2𝑗3  denote the observation of the j1-th genotype of Q1 (j1 = 1, 

2, 3), j2-th genotype of Q2 (j1 = 1, 2, 3), and j3-th genotype of Q3 (j1 = 1, 2, 3). Let )( 321
QF jj

 

denote the conditional distribution of Q3 given Q1 = j1 and Q2 = j2. The null hypothesis of the 

test is formulated as 

H0: 𝐹1𝑗2
(𝑗3) = 𝐹2𝑗2

(𝑗3) = 𝐹3𝑗2
(𝑗3), ∀𝑗2, ∀𝑗3                                              (8) 

whose alternative test reflecting a stochastic ordering among distributions is written as 

H1:{
𝐹𝑗1𝑗2

(𝑗3) > 𝐹𝑗1
′𝑗2

(𝑗3)

𝐹𝑗1𝑗2
(𝑗3) < 𝐹𝑗1

′𝑗2
(𝑗3)

, with j1 < j1, j2, j3                   (9) 

From tests (8) and (9), we calculate a so-called Jonkheere-Terpstra (JT) test statistic as 

JT = ∑ ∑ ∑ [∑𝑤𝑗1𝑗1
′𝑠𝑗2

𝑛𝑗1𝑠𝑗2 −
𝑛𝑗1∙𝑗2(𝑛𝑗1∙𝑗2 + 1)

2

3

𝑠=1

]

𝑗1−1

𝑗1
′=1

3

𝑗1=1

3

𝑗2=1

                           (10) 

where 𝑤𝑗1𝑗1
′𝑠𝑗2

was the Wilcoxon score described by 

𝑤𝑗1𝑗1
′𝑠𝑗2

= ∑(𝑛𝑗1𝑡𝑗2 + 𝑛𝑗1
′𝑡𝑗2

) +
𝑛𝑗1𝑠𝑗2 + 𝑛𝑗1

′𝑠𝑗2
+ 1

2

𝑠−1

𝑡=1

.                                    (11) 

                                                 

Under the null hypothesis, the mean of JT was calculated as 

𝐸(JT|H0) =
1

4
∑(𝑛∙∙𝑗2

2 − ∑ 𝑛𝑗1∙𝑗2
2

3

𝑗1=1

)

3

𝑗2=1

 

. 

Per Lehmann (D'Abrera and Lehmann, 1975) and Pirie (Pirie, 1983), we derive the asymptotic 

variance of JT under the null hypothesis as 

𝑉𝑎𝑟̂(JT|H0) =
𝑉1

72
+

𝑉2

36(𝑛∙∙𝑗2 − 1)(𝑛∙∙𝑗2 − 2)
+

𝑉3

8(𝑛∙∙𝑗2(𝑛∙∙𝑗2 − 1))
 

where 

𝑉1 = 𝑛∙∙𝑗2(𝑛∙∙𝑗2 − 1)(2𝑛∙∙𝑗2 + 5) − ∑ (𝑛𝑗1∙𝑗2(𝑛𝑗1∙𝑗2 + 5) − ∑ (𝑛∙𝑗2𝑗3 − 1)(2𝑛∙𝑗2𝑗3 + 5)3
𝑗3

)3
𝑗3

, 

𝑉2 = ∑ (𝑛𝑗1∙𝑗2(𝑛𝑗1∙𝑗2 − 1)(2𝑛𝑗1∙𝑗2 − 2) − ∑ (𝑛∙𝑗2𝑗3 − 1)(𝑛∙𝑗2𝑗3 − 2)3
𝑗3

)3
𝑗1

, 

𝑉3 = ∑ (𝑛𝑗1∙𝑗2(𝑛𝑗1∙𝑗2 − 1)) − ∑ (𝑛∙𝑗2𝑗3(𝑛∙𝑗2𝑗3 − 1))3
𝑗3

3
𝑗1

. 

Based on these derivations, it can be proved that the test statistic is asymptotically normally 

distributed. 

 

The ordinal PC algorithm infers a QTL DAG (Musella, 2013) using the three steps as follows: 

 

Step 1: Build the skeleton of the graph. Starting with a complete undirected graph, we obtain 

a graph where all QTL are connected to each other. Given a chosen significance level, statistical 

tests based on the Jonkheere-Terpstra test are performed to decide if we need to remove or 

maintain edges between QTL in the graph. This procedure leads to the detection of the skeleton 

of the graph. 

 

Step 2: Find v-configurations. If two QTL, Q1 and Q2, are not conditionally independent 

given a QTL Q3, then Q3 is a collider node or a common sink and a v-configuration Q1  Q3 

 Q2 (i.e., converging directed edges into the same node) is drawn; otherwise edges remain 

undirected Q1 – Q3 – Q2.  
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Step 3: Create no new v-configuration. Some constraints must be given to orient other edges 

without creating additional colliders or some cycles. 

 

Musella (2013) showed that the ordinal PC algorithm outperforms the PC algorithm (for 

modeling discrete data without considering their ranking) in terms of sensitivity (specified by 

true positive rate) and precision (specified by true discovery rate), especially when sample size 

is small. Yet, the two algorithms do not differ dramatically in specificity (specified by false 

positive rate).  

 

Social network: Different animals interact with each other through mutualism, antagonism, 

aggression, or altruism to form a community. We implement an ordinary differential equation 

(ODE) approach proposed by Wu et al. (2014) to investigate how QTL modulate the structure 

and organization of an animal-animal interaction network. In such a QTL-driven social 

network, the nodes are individual animals and the edges are animal-animal interactions whose 

direction, sign, and strength are determined by QTL. Consider Table S14’s toy example for a 

mapping population, where eight animals were each collected by six markers. We assign each 

individual at a given QTL by a value, i.e., its marginal genotypic mean at this QTL. Taken 

together, we obtain an (8×6) matrix of genotypic values. Unlike a QTL each with three ranked 

categories of genotypic values over all animals, each animal form a set of somewhat continuous 

genotypic values across QTL (right, Table S14). Next, we show that a nonparametric approach 

can be used to model how an animal changes its genotypic value over QTL. 

 

Let gik denote the genotypic value of individual i (i = 1, …, 8) at QTL k (k = 1, …, 6). Note that 

gik depends on the genotype individual i carries at QTL k. Because of social interactions, the 

genotypic value of one individual is affected by or affects those of other individuals. This 

allows us to formulate a system of ODEs, expressed as 

𝑔̇𝑖𝑘 = 𝑓𝑖(𝑔𝑖𝑘) + ∑ ℎ𝑖←𝑖′(𝑔𝑖′𝑘)                                             (12)

8

𝑖≠𝑖′,𝑖′=1

 

where 𝑔̇𝑖𝑘 is the rate of the overall change of genotypic value for individual i from one QTL 

to next, fi(gik) is the function that describes the change rate of individual i’s genotypic value 

independent of any other individuals, and ℎ𝑖←𝑖′(𝑔𝑖′𝑘)  is the function that specifies the 

change rate of genotypic value due to the impact of any other individual i that affects individual 

i. ℎ𝑖←𝑖′(𝑔𝑖′𝑘) determines the sign, direction, and strength of social interaction between 

individual i and i. If both ℎ𝑖←𝑖′(𝑔𝑖′𝑘)  and ℎ𝑖′←𝑖
(𝑔𝑖𝑘)   are positive or negative, this 

suggests that these two individuals are mutualistic and antagonistic, respectively. If both are 

zero, then the two individuals have no interactions. If ℎ𝑖←𝑖′(𝑔𝑖′𝑘) is positive or zero but 

ℎ𝑖′←𝑖
(𝑔𝑖𝑘)  is negative, this indicates that individual i is aggressive on individual i. If 

ℎ𝑖←𝑖′(𝑔𝑖′𝑘) is positive but ℎ𝑖′←𝑖
(𝑔𝑖𝑘) is zero, this shows that individual i is altruistic for 

individual i. The magnitudes of ℎ𝑖←𝑖′(𝑔𝑖′𝑘) and ℎ𝑖′←𝑖
(𝑔𝑖𝑘) can quantify the strength of 

social interactions. 

 

To solve ODE (12), we integrate three rules from different disciplines. First, in sociological 

studies, there is the Dunbar's law, stating that the number of stable relationships a human can 

comfortably maintain in his social network is not beyond a limit (Dunbar, 1992). Under the 

Dunbar's law, using real data from both hunter-gather and modern communities, Harre and 

Prokopenko (2016) calculated the average number of links maintained by individuals to form 

cooperative groups, which changes with group size. For example, a person in a group of five, 
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15, 45, and 132 needs to maintain an average of one to two, two to three, three to four links, 

and four to five links respectively. This rule can largely simplify our joint modeling of ODEs 

(12), making ODE parameter estimation and interpretation feasible and tractable, especially 

when the dimension of this equation group is large. Second, statistical rules of variable 

selection can be used to determine an optimal small set of individuals that interact stably with 

a focal individual. Group LASSO (Yuan and Lin, 2006) and adaptive group LASSO (Wang 

and Leng, 2008) derived from Tibshirani’s original LASSO (Tibshirani, 1996) have proven to 

be powerful for variable selection. In previous studies, several authors have already worked 

out model selection in high-dimensional ODEs (Lu et al., 2011; Henderson and Michailidis, 

2014; Wu et al., 2014). Thus, the integration of the Dunbar's law with variable selection enables 

the construction of a sparse social network, which facilitates the characterization of most 

important social connections within the network. 

 

Third, how does the locus-varying genotypic value of an individual change from one QTL to 

next? In quantitative genetics, the genetic effect of a QTL is generally positively associated 

with its genetic variance. Based on this rule, we can model the genotypic value of an individual 

at a QTL as a function of standard genetic deviation explained by this QTL. By arranging all 

QTL in an order of their genetic deviations, we incorporate a Legendre Orthogonal Polynomial 

(LOP)-based nonparametric approach to fit the functions, 𝑓𝑖(𝑔𝑖𝑘)  and ℎ𝑖←𝑖′(𝑔𝑖′𝑘) , that 

jointly describe QTL-varying genotypic value of each individual in equation (12). Because of 

its advantage in orthogonality and efficient convergence, the LOP is effective for modeling the 

curves of any complex form using sparse data in quantitative genetic studies (Das et al., 2011; 

Jiang et al., 2016). The LOP, a solution of the Legendre differential equation, 

(1 − 𝑣2)
𝑑2𝑢

𝑑𝑣2
− 2𝑣

𝑑𝑢

𝑑𝑣
+ 𝑟(𝑟 + 1)𝑢 = 0 

can be expressed as 

𝑃𝑟(𝑣) = ∑(−1)𝑐

𝐶

𝑐=0

(2𝑟 − 2𝑐)!

2𝑟! (𝑟 − 𝑐)! (𝑟 − 2𝑐)!
𝑣𝑟−2𝑐 

which is called the Legendre polynomial of order r, where C is an integer, expressed as r/2 or 

(r – 1)/2, and v is an independent variable, i.e., standard genetic deviation in social network 

modeling. In practice, it needs to be corrected as t* = 1 + 2(t – tmax)/(tmax – tmin) within interval 

[–1,1], where tmin and tmax are the two extreme points at the low and high end, respectively. By 

defining a series of basis values, the LOP is used to determine the curvature of QTL-varying 

genotypic values by choosing an optimal polynomial order. 

 

In Table S14 (right), we construct the QTL network and social network for the toy example by 

the above approaches. These toy networks can help the readers better understand the utility of 

these approaches. 

 

Monte Carol simulation 

To examine the statistical properties of the new model, we perform computer simulation by 

mimicking the data structure of a mapping population. We show how to simulate the 

phenotypic data of a trait under the constraint of animal-animal interactions. We let 𝑤𝑗1 and   

𝑤𝑗2denote the phenotypic value of animal i1 and i2 (0 ≤ i1 < i2 ≤ m), respectively, from the 

population of m animals and zi (i = 1, …, m(m–1)/2) denote the strength of one of their 

interaction types, as defined in Fig. 1. To simulate the trait data of the pairing animals, we need 

to determine the variance of phenotypic values among m animals under the constraint of a 

social interaction considered. This requires us to derive the variance of an interaction derivative 
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(zi) among m(m–1)/2 pairs in terms of the variances of  𝑤𝑗1  and  𝑤𝑗2 . As an example, we 

assume that the aggression variable, expressed as the ratio of a larger to smaller animal, is 

simulated. 

 

We reformat the data by adding reciprocal pairs, generating a total of m(m–1) pairs. Let x > y 

denote the phenotypic values of animals at the left and right sides, respectively, in pairs. 

Assuming that x and y are independent, the variance of z = x/y is expressed by 

𝑉𝑍 =
1

𝑦̅4
(𝑦̅2𝑉𝑋 + 𝑥̅2𝑉𝑌 − 2𝜌𝑥̅𝑦̅√𝑉𝑋𝑉𝑌,                                                (13) 

where x and y are the means of x and y variables, VX and VY are the variances of x and y 

variables, and  is the correlation between the two variables, respectively. In spite of different 

orders, x and y variables contained the same set of phenotypic data for m fish so that VX = VY 

and 𝑥̅ = 𝑦̅.  

 

Consider a testcross QTL with two genotypes AA and Aa of an equal proportion in the mapping 

population. A total of m(m–1) pairs are clustered into four GG combinations (right panel, Table 

S12). The phenotypic data of an animal pair are simulated by summing the GG genotypic value 

and a residual error with mean zero and residual variance (VZ) (14) scaled by the heritability 

(𝐻𝑍
2) explained by GG combinations at the assumed QTL. From the simulated data of animal 

pairs, we need to simulate the phenotypic data of individual animals (left, Table S12). This 

was done by randomly sampling values of m animals that meet their ratios across m(m–1)/2 

pairs, but under the constraint that m animals’ values have a variance √𝑉𝑍 , expressed by 

equation (13). 

 

Our simulation was based on four scenarios designed per GG heritability 𝐻𝑍
2 (large 0.10 vs. 

small 0.05) and mapping size m (large 200 vs. small 70). For each scenario, we calculated the 

accuracy and precision of each genetic effect (such as the direct, indirect, and genome-genome 

epistatic effects) from pairwise data (right, Table S12) by the new model, testing the statistical 

property of the new model. Also, we calculate and compare the power of QTL detection by the 

new model and the traditional model that analyzes original data directly (left, Table S12). The 

false positive rates of the new model is also calculated. 

 

Mapping experiment 

Animal material: The experiment of genetic mapping was conducted using an F1 family 

(named H1) of Cyprinus carpio including 71 progeny produced by Hebao Red carp and Koi 

carp. The fish were cultured at the Research Institute for Heilongjiang River Fisheries, Harbin, 

China, and measured for body mass after anesthesia with MS222 when they reached an adult 

stage of fish growth. The H1 family was served as the discovery cohort, whose results were 

directly used to test our new theory. To validate the results discovered by the new theory, we 

replicated the mapping study by two additional F1 families (named G1 and Z22) of Yellow 

River carp. These two families with 115 and 62 progeny, respectively, were cultured at the 

Henan Academy of Fishery Sciences, Zhengzhou, China. The same trait, body mass, was 

measured for each family at the adult stage of fish growth. 

 

SNP array genotyping and quality control: Genomic DNA was extracted from blood 

samples (400–800μl caudal peduncle) of the hybrids and their parents using a DNeasy Blood 

& Tissue Kit (Qiagen, Shanghai, China) following manufacturer’s protocol. DNA was 

quantified by Nanovue (Thermo Scientific) and the integrity of DNA was examined by 1% 

agarose gel electrophoresis stained with ethidium bromide. Then qualified DNA was 
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genotyped using the Affymetrix Axiom Carp SNP array containing ~250 K validated SNPs (P. 

Xu et al., 2014; J. Xu et al., 2014). Genotyping results were provided by GeneSeek (Lincoln, 

Nebraska, USA). After quality control, we obtained 39,960 Mendelian segregating SNPs 

throughout the common carp genome of size ~1.42 Gb in the H1 family, from which a high-

density linkage map, with an average marker interval of 0.75 cM, was constructed by OneMap 

(Margarido et al., 2007). For G1 and Z22 families, we genotyped 39,960, 97,532, and 86,370 

SNPs following Mendel’s first law, respectively. 

 

Annotation of candidate genes: The significant SNPs detected by our theory are annotated 

using the database of the common carp genome project. Genes located within upstream and 

downstream 10 kb of the candidate SNPs were selected. Based on the selected gene lists, Gene 

Ontology and KEGG Enrichment analyses are conducted using DAVID ( Huang et al., 2009; 

Huang et al., 2009) online programs with default parameters, and figures are drawn using 

REVIGO software (Supek et al., 2011). 
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