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ABSTRACT
Objectives: Current therapeutic options for organophosphorus (OP) insecticide self-poisoning includ-
ing atropine and oximes are inadequate and case fatality may exceed 20%. An OP hydrolase enzyme,
OpdA, has been used for environmental cleansing of OP insecticides and prevented death in rat and
non-human primate models of OP insecticide poisoning if given very quickly after exposure. We here
tested OpdA’s ability to break down OP insecticides in human serum and in clinically relevant minipig
models of OP insecticide poisoning.
Methods: Human serum was spiked with seven diverse WHO Class II OP insecticides (chlorpyrifos, qui-
nalphos, diazinon, dimethoate, fenthion, phenthoate, and profenofos) and the effect of OpdA on deg-
radation measured. The pharmacodynamic and clinical effects of OpdA treatment were studied in
Gottingen minipigs orally poisoned with agricultural formulations of dimethoate EC40 or methyl para-
thion EC60; pharmacodynamic effects were also assessed in profenofos EC50-poisoned pigs.
Results: OpdA effectively hydrolysed OP insecticides in human serum, with rates varying from 856 (SD
44) down to 0.107 (SD 0.01) moles of substrate hydrolysed/mole of enzyme/sec (kcat) for quinalphos
and phenthoate, respectively, although at rates 2–3 log orders less than found in vitro in buffered
solution. It showed clinical benefit in minipig models, reducing the dose of noradrenaline required to
sustain an adequate mean arterial pressure after dimethoate (mean 0.149 [SD 0.10] lg/kg/h vs. 1.07
[SD 0.77] lg/kg/h, p< .0001) and methyl parathion (mean 0.077 [SD 0.08] lg/kg/h vs. 0.707 [SD 0.49]
lg/kg/h, p< .0001) poisoning. OpdA reduced blood OP insecticide concentration and acetylcholin-
esterase inhibition after poisoning by dimethoate, methyl parathion, and profenofos insecticides.
Conclusions: In vitro incubation of OpdA in human serum showed hydrolysis of diverse OP insecti-
cides, although at lower rates than found in buffer solutions. This activity results in clinical and phar-
macodynamic efficacy in vivo against several OP insecticides. These results support the testing of
OpdA in further animal models before considering human trials to determine whether it may become
an urgently required novel therapeutic agent for OP insecticide self-poisoning.
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Introduction

Organophosphorus (OP) insecticide poisoning kills over
200,000 people each year, mostly following self-harm, in rural
Asia [1,2]. These compounds inhibit multiple enzymes, in par-
ticular, acetylcholinesterase (AChE) and butyrylcholinesterase
(BuChE) [3–5]. While BuChE inhibition appears unimportant
in acute poisoning, AChE inhibition results in overstimulation
of acetylcholine receptors in the autonomic nervous system,
neuromuscular junction (NMJ), and central nervous system
[3]. This syndrome is termed the cholinergic crisis and causes
acute respiratory and cardiovascular failure. Self-poisoning is
also complicated by the presence of large amounts of sol-
vents which are themselves toxic [6]. Many deaths occur
within hours of pesticide ingestion during the acute choliner-
gic crisis, usually due to acute respiratory failure that occurs
before mechanical lung ventilation is instigated [7]. Other

deaths occur later, in ventilated patients due to cardiovascu-
lar collapse [8], failure of NMJ transmission, or complications
of aspiration [9,10].

Standard treatment of acute OP poisoning involves resus-
citation, and the administration of oxygen, the muscarinic
antagonist atropine, and an oxime AChE reactivator such as
pralidoxime or obidoxime [4,11,12]. Unfortunately, this stand-
ard therapy is frequently ineffective, with many patients who
survive to hospital presentation dying after admission
[10,13]. Respiratory failure does not respond to atropine,
often requiring tracheal intubation and mechanical lung ven-
tilation for several weeks [9]. Clinical trials of pralidoxime do
not show consistent clinical benefit [14–16]. Overall, medical
management is difficult in the Asian district hospitals that
admit the majority of patients [17]. There are too few inten-
sive care resources and effective treatments as well as too
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little good evidence with which to improve treatment for
patients after ingestion of these highly toxic com-
pounds [18].

The aryldialkylphosphatase (EC 3.1.8.1), or OP hydrolase
enzyme, OpdA has been isolated from the bacterium
Agrobacterium radiobacter P230. It is highly effective at
hydrolysing OP pesticides and G-series nerve agents (e.g.,
soman) in vitro [19,20] and in contaminated agricultural
water (OpdA fixed to a matrix structure cleared > 90% of
methyl parathion from 84,000 L of fast-flowing water in just
10min in a field trial [21]). Compared with a range of other
OP hydrolases [22,23], it has excellent in vitro activity against
a wide range of pesticides that might be encountered in
human poisoning.

The addition of OpdA to usual clinical treatment might
improve the effectiveness of treatment for OP pesticide poi-
soning, in particular allowing oximes to work in mega-dose
suicides [24]. It prevents death in rats when given immedi-
ately after dosing with highly toxic dichlorvos, parathion or
methyl parathion OP insecticides, improving the effectiveness
of pralidoxime [25], and prevents acute toxicity after oral
dichlorvos poisoning in non-human primates [26,27].
However, before development can start, additional studies
are required. In these studies, we aimed to assess its function
in human serum since it is uncertain how it will interact with
components of serum and to test its efficacy at hydrolysing
OP insecticides in more relevant in vivo models to allow
broader assessment than possible from rodent studies.
Evidence of hydrolysis in these studies would support the
production of an enzyme to Good Manufacturing Practice
standards that could be used for further studies and progres-
sion into pre-clinical toxicology and human studies.

Methods

OpdA was produced by CSIRO at a concentration of 8.1mg/mL
in saline. Shake flask cultures produce �50mg of pure enzyme
per litre of the medium [28]. OpdA was kept under conditions
under which it had previously been shown to be stable; the
enzyme was pure by Coomasie-stained SDS/PAGE.

Serum studies

The following OP insecticides were selected to represent a
range of WHO Class II toxicity OP insecticides [29] from three
different OP chemical classes: diethyl (chlorpyrifos, quinal-
phos, diazinon), dimethyl (dimethoate, fenthion, phenthoate),
and S-alkyl (profenofos) [30]. We selected Class II toxicity OP
insecticides since the Food and Agriculture Organisation
(FAO) has recommended withdrawing all WHO Class I toxicity
pesticides from agricultural practice [31,32]; WHO Class II OP
insecticides are, therefore, becoming more important in agri-
culture and in poisoning over time.

OpdA activity assays against OP insecticide substrates
were conducted in pooled human serum spiked with 500 mM
substrate and 100 mM internal standard (3-chloroaniline and
thiobencarb) at 25 �C. A control with no enzyme was run
with each experiment and the background-subtracted to

account for non-specific pesticide degradation. Data on activ-
ity in the buffer (50mM Tris-HCl, pH 8.0) was taken from pre-
viously collected unpublished CSIRO data.

Samples were taken at time points from 0 to 16min with
a minimum of 30 sec interval between samples. At each time
point, 100 mL of sample was removed from the 5mL incuba-
tion mixture, stopped with an equal volume of toluene, the
OP insecticides extracted into the organic phase by vortexing
for 2min followed by centrifugation at 14,000 g at 4 �C, and
then analysed by gas chromatography-mass spectrometry
(GC-MS) on an Agilent GC-MS as per previously published
methods [33]. Reference OP insecticide compounds were
obtained from Sigma-Aldrich as Pestanal standards (>99%
pure). Enzyme concentrations varied from 2nM to 2mM, and
samples were collected at intervals to enable at least seven
time points with a linear loss of substrate. All assays were
repeated in triplicate. The rate of reaction was calculated by
loss of substrate using SigmaPlot (Systat software, Germany).

Pig studies

After institutional ethical review, studies were performed
under UK Home Office Licence in 30 adult male G€ottingen
minipigs (Ellegaard Minipigs ApS, Dalmose, Denmark) with a
mean weight of 19.7 (SD 3.6) kg. Animals were drug-naïve
and barrier bred and shown to be free of infections before
shipment. Animals were treated in accordance with the
Animals (Scientific Procedures) Act of 1986

Study design

The individual animal was the experimental unit. Bias was
minimised by randomly allocating animals to treatment using
a random number list. The allocation could not be predicted;
the study was an open study but the outcomes were robust
and not likely to be affected by bias [34].

Anaesthesia

Animals were kept in pens with free access to food scattered
in their bedding and water under the care of institutional
veterinary surgeons. Food was withheld for one night before
each study. Pre-anaesthetic medication was intramuscular
ketamine (5mg/kg) and midazolam (0.5mg/kg). Anaesthesia
was induced with 5% isoflurane (selected since the effect of
this anaesthetic on AChE activity is well-characterized [35]) in
oxygen delivered via facemask. The trachea was intubated
and anaesthesia maintained to a clinically acceptable depth
using isoflurane in oxygen delivered initially via a circle
breathing system. Intermittent positive pressure ventilation
(IPPV) was provided as necessary using a minute volume div-
ider (Manley Pulmovent, Harlow, UK) adjusted to maintain
normocapnia.

Inspired and expired carbon dioxide, oxygen and isoflur-
ane concentrations were monitored. Heart rate, oesophageal
and peripheral temperature, electrocardiogram, and percent-
age of saturated haemoglobin were recorded (Datex,
Clearwater, FL). The temperature was maintained as close to
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physiological values as possible by the use of forced warm
air blankets (Bair Hugger, Arizant, Wakefield, UK), heat pads
and high ambient temperature. Ten millilitre per kilogram
per hour Ringer’s lactate solution was administered for the
first 30min after induction of anaesthesia and then at 5ml/
kg/h for the remainder of the study. Fluid administration was
increased as necessary to maintain urine output and opti-
mize central venous pressure.

Instrumentation and monitoring

A central arterial catheter was placed surgically into the
carotid artery for continuous arterial pressure monitoring and
blood sampling. A central venous catheter was placed into
the external jugular vein for infusion of drugs and monitor-
ing of central venous pressure. The catheters were connected
to a pressure manometer (Datex, Clearwater, FL) zeroed at
the level of the heart base to give arterial and CVP pressure
data. An orogastric tube was placed for poison gavage and
the bladder catheterised by surgical cutdown.

OP insecticides

Pilot minipig studies of poisoning with commercial formula-
tions of WHO toxicity class II dimethoate and chlorpyrifos
insecticides showed that the latter did not cause clinical
effects or inhibition of AChE (unpublished observations), des-
pite the use of doses equivalent to those believed to cause
substantial human poisoning [8]. We, therefore, selected a
potent WHO Class I toxicity fat-soluble insecticide, methyl
parathion, for clinical studies alongside dimethoate, and
assessed OpdA’s pharmacodynamic effect on profenofos poi-
soning. Commercial formulations (including solvents and
other adjuvants) used for these studies were dimethoate
EC40 (emulsifiable concentrate [36] at 400 g/L of active ingre-
dient [AI]) (dose: 2.5mL/kg, 1000mg/kg of AI; BASF SE,
Ludwigshafen, Germany), methyl-parathion EC60 (dose:
2mL/kg, 1200mg/kg AI; Cheminova, Lemvig, Denmark), and
profenofos EC50 (dose: 3mL/kg, 1500mg/kg AI; Syngenta,
Basel, Switzerland). These AI doses markedly exceed the rat
oral LD50s of 150mg/kg, 14mg/kg, and 358mg/kg, respect-
ively, for each insecticide [29].

Experimental protocol

After arterial catheter insertion, 60min passed before poison-
ing during which time baseline observations were recorded.
Minipigs were then administered insecticide by oral gavage
followed by 60mL of water at room temperature.

In the initial control and dimethoate groups, OpdA was
administered intravenously (IV) as a single 0.8mg/kg dose
over 1 h, starting 1 h post poisoning. After noting that the
effect of OpdA appeared to be transient, it was subsequently
administered as a 0.4mg/kg IV loading dose over 1 h, start-
ing 1 h post poisoning, followed by 0.4mg/kg as an infusion
over 8 h for the methyl parathion and profenofos groups in
an attempt to improve its efficacy. Atropine (30mcg/kg) was
administered IV as required for muscarinic effects (increased

secretions); pralidoxime was not administered in this model.
Noradrenaline was administered IV to maintain a mean arter-
ial pressure (MAP) greater than 55mmHg, with a target MAP
of 65mmHg.

The study was ended by euthanasia using IV pentobar-
bital or anaesthetic overdose after 12 h, or when the MAP
fell below 45mmHg and could not be restored with fluids or
vasopressor.

Measurements

Cardiovascular data were collected 30 and 10min before poi-
soning and 15min intervals thereafter using a Datex monitor.
Arterial blood samples were taken at �40, �10, and 30min,
and then every hour, and lactate analysed using an i-STAT
(Abbott, Princeton, NJ). Analyses for plasma BuChE and red
cell AChE activity were performed as previously described
[8,37]. Organophosphorus insecticides were detected by LC-
ESI-MS/MS and FI-ESIMS/MS-based on the methods of Salm
and colleagues [38] using a PE 200 series for chromatog-
raphy (Perkin Elmer, Rodgau-J€ugesheim, Germany) online
coupled to 4000 QTrap triple quadrupole MS (AB Sciex,
Darmstadt, Germany) [39].

Statistical analysis

Primary data analysis was conducted in Prism 7.0 (GraphPad,
San Diego, CA). All animals were included in the analysis. Pig
weights and clinical/biochemical outcomes were summarised
with mean and SD or SE; means were compared using the
t-test.

Results

In vitro studies of OpdA in human serum

We first assessed the ability of OpdA to hydrolyse diverse
WHO toxicity class II OP insecticides in human serum. OpdA
was able to hydrolyse all the insecticides, although at
markedly different rates and at lower rates than in buffer
(Figure 1, Table 1).

The diethyl OP quinalphos was most rapidly hydrolysed
with a rate of 856 moles of substrate hydrolysed/mole of
enzyme/sec (kcat); the dimethyl OPs phenthoate and
dimethoate were least well hydrolysed with rates of 0.1 and
0.2 kcat, respectively. Overall, satisfactory activity was shown
for the three diethyl OP pesticides. Profenofos, an S-alkyl OP,
was hydrolysed with intermediate efficiency while the four
dimethyl OP pesticides were least efficiently hydrolysed
(Table 1).

In vivo studies of OpdA in dimethoate EC
poisoned minipigs

We have established a Gottingen minipig model of oral poi-
soning with 2.5mL/kg of the 40% agricultural dimethoate
emulsifiable concentrate formulation (EC40) which causes
early respiratory failure, distributive shock, lethal
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cardiovascular collapse, and severe AChE inhibition [6]. These
features are similar to human self-poisoning with comparable
doses of dimethoate EC40 [8,40].

We first tested OpdA in this model of dimethoate poison-
ing. Animals received 2.5mL/kg dimethoate EC40 by oral

gavage followed by (or not) OpdA at 1 h post-poisoning
(0.8mg/kg infused IV over 1 h). Pigs that received OpdA
required less noradrenaline to maintain their MAP over
the 12 h (mean 0.149 [SD 0.10] lg/kg/h vs. 1.07 [SD 0.77]
lg/kg/h, p< .0001; Figure 2).

Despite relatively poor hydrolysis of dimethyl OPs
(Table 1), OpdA hydrolysed both dimethoate and its active
metabolite omethoate, causing a reduction in their concen-
tration after 1 h (Figure 3). The effect was sustained for ome-
thoate out to 12 h (mean AUC without OpdA 1480 [SE 68.8]
lmol/L�h vs. 682.1 [78.4] lmol/L�h with OpdA; p< .001). In
contrast, the effect on the higher concentrations of dimetho-
ate was not sustained (mean AUC without OpdA 11,691 [SE
471] lmol/L�h vs. 9495 [852] lmol/L�h with OpdA;
p¼ .0649). There was a small reduction in AChE inhibition
after OpdA treatment but minimal effect on BuChE inhibition
at 2 h (Figure 3).

In vivo studies of OpdA in a minipig model of methyl
parathion EC poisoning

We then tested OpdA against the highly toxic fat-soluble
dimethyl OP, methyl parathion. To increase the possibility of
sustained OpdA effect, we used a revised IV dosing regimen
that involved giving half the dose in the first hour, starting
1 h post poisoning, and the second half over the subsequent
8 h (0.4mg/kg over 1 h, followed by 0.4mg/kg over the fol-
lowing 8 h).

Unlike dimethoate poisoning, methyl parathion poisoning
in the pig under terminal anaesthesia did not cause major
clinical effects (Figure 2) which was surprising in light of
human cases in which substantial poisoning develops within
minutes to hours [41,42]. Inhibition of both AChE and BuChE
occurred slowly. OpdA treatment resulted in a reduced nor-
adrenaline requirement to sustain predetermined blood pres-
sure values (mean 0.077 [SD 0.08] lg/kg/h vs. 0.707 [SD 0.49]
lg/kg/h, p< .0001; Figure 2).

OpdA was highly active against methyl parathion, causing
rapid and complete hydrolysis of the compound in the circula-
tion (mean AUC without OpdA 20.3 [SE 1.8] lmol/L�h vs. 0.79
[0.06] lmol/L�h with OpdA; p< .01). Reactivation of both red
cell AChE (mean AUC over 12h of AChE normalised against
baseline: 1080 [SE 25.2] vs. 267 [SE 26.6], p< .01) and plasma
BuChE (mean AUC over 12h of BuChE normalised against
baseline: 1084 [SE 19.7] vs. 503 [SE 13], p< .01) occurred,
which was sustained until the end of the infusion (Figure 3).

Pharmacodynamic effect of OpdA in a minipig model of
profenofos EC poisoning

We also tested the effect of OpdA in a minipig model of oral
profenofos EC40 self-poisoning. Unexpectedly, despite clear
inhibition of both AChE and BuChE, profenofos poisoning
did not cause apparent clinical toxicity in the minipigs.

We, therefore, assessed the pharmacodynamic effect of
OpdA when given one hour after oral gavage of profenofos
(Figure 4). An IV loading dose of OpdA followed by an 8 h
infusion resulted in a substantially lower blood profenofos

Figure 1. In vitro determination of enzyme kinetics in human serum.
Determination of the rate of OP insecticide hydrolysis by 2 nM to 2 lM OpdA
for eight OP insecticides.

Table 1. Activity of OpdA enzyme in human serum and in buffer against
WHO Class II OP insecticides.

Pesticide Chemistry

Activity in
human serum
(mol/sec/

mol enzyme)

Activity in
buffer

(mol/sec/
mol enzyme)

Quinalphos Diethyl 856 ± 44 190,000
Diazinon Diethyl 465 ± 34 150,000
Chlorpyrifos Diethyl 58.3 ± 1.5 18,000
Profenofos S-alkyl 15.3 ± 1.3 ND
Malathion Dimethyl 0.833 ± 0.049 48
Fenthion Dimethyl 0.406 ± 0.027 ND
Dimethoate Dimethyl 0.161 ± 0.025 9.0
Phenthoate Dimethyl 0.107 ± 0.010 ND

The buffer activity data are unpublished from CSIRO Entomology; the buffer
was 50mM Tris-HCl (pH 8.0). ND: not done. Human serum data are
mean ± SD, n¼ 3.
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concentration over the 12 h (mean AUC without OpdA 0.496
[SE 0.12] lmol/L�h vs. 0.119 [0.03] lmol/L�h with OpdA;
p¼ .023). This was associated with slower AChE inhibition
(mean AUC over 12 h of AChE normalised against baseline:
850 [SE 27.9] vs. 497 [SE 20.7], p< .0001) but a minimal dif-
ference in BuChE activity (mean AUC over 12 h of BuChE nor-
malised against baseline: 204 [SE 18.1] vs. 176 [SE 20.7],
p¼ .373) (Figure 4).

Discussion

This study has shown that OpdA can hydrolyse a variety
of OP pesticides in human serum and that its IV administra-
tion at a clinically relevant time point in a large animal
model is able to reduce plasma insecticide concentrations,
retard AChE inhibition, and for two OP insecticides
(dimethoate and methyl parathion) offer clinical benefit
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as shown by reduced requirements for vasopres-
sor support.

These results indicate that OpdA may have a clinical role
in treating patients with OP insecticide poisoning and may
improve the efficacy of other therapies, such as oximes.
Treatment as early as 1 h post-ingestion is feasible since a
substantial proportion of patients in Asia (where most
patients occur and where this antidote is most required) pre-
sent to primary rural hospitals within this time frame. If the
antidote can be made affordable to Asian health care sys-
tems, and its use shown to be associated with few significant
adverse reactions, then it could be used immediately as a
matter of routine in all patients presenting to primary rural
hospitals. OpdA administration before the onset of clinical
signs would offer the best opportunity of breaking down the
OPs before they cause severe illness.

Technically, it may become feasible to rapidly identify the OP
insecticide to which a patient has been exposed (determining
whether the OP is a good substrate for OpdA) before deciding
to give the antidote. However, such approaches are probably
many years away from routine clinical use, and even modest
hydrolysis may be sufficient to offer clinical benefit to patients.

The highly efficient production of OpdA in bacteria sug-
gests that it will be possible to produce it affordably (akin

to streptokinase) although its immunogenicity and subse-
quent risk of adverse reactions would limit its subsequent
use in patients over the following 12months (again akin to
streptokinase) [43]. Human safety, tolerance, and immuno-
genicity testing will be required prior to clinical effi-
cacy studies.

Activities of tens to hundreds of OP molecules hydrolysed
per second are excellent in vivo activities for enzymes in
human serum (for example, streptokinase has a kcat of 22),
although there was variation between insecticides as
expected due to steric complementarity between the sub-
strate and substrate-binding pocket [44]. Despite the activity
in human serum being good, it was markedly (2–3 logs) less
active than found in buffer.

A number of factors are well known to influence enzyme
activity including pH, temperature, and the ionic strength of
the buffer [45]. Human serum is a complex mixture of pro-
teins, lipids, metabolites, and salts and all of these elements
may interact with both the enzyme and substrate. Such
interactions may inhibit enzyme activity through competitive
binding at active site or changing protein structure. Similarly,
serum components such as albumin may interact with the
substrate and decrease the available concentration, reducing
enzyme activity [46].
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However, this activity was sufficient for effect, showing
reduced plasma OP insecticide concentrations in all treated
animals, but especially against methyl parathion which
showed remarkably rapid hydrolysis and consequently reacti-
vation of inhibited AChE due to reduced inhibitor and spon-
taneous reactivation. The high activity was expected from
previous findings of a relatively high kcat in vitro [19] and
highly effective hydrolysis of methyl parathion in agricultural
run-off water [21]. Of note, the rates of inhibition of both
AChE and BuChE by methyl parathion were slow, as has
been noted in a human poisoning case [47], possibly due to
slow in vivo conversion from methyl parathion to
methyl paraoxon.

Treatment of dimethoate poisoned pigs showed clinical
benefit (reduced requirements for noradrenaline) associated
with lower plasma concentrations of the active metabolite
omethoate. However, this was associated with no reduced
inhibition of BuChE and very little change in inhibition of
AChE. This raises again questions about the utility of using
red cell AChE and plasma BuChE to assess the severity of
acute OP insecticide poisoning [48].

Limitations

The study was designed to assess proof of principle and did
not test OpdA against hard endpoints such as survival. This
would have required much larger studies than planned here
but can be considered for the next stage. The dosing of
OpdA varied between the control/dimethoate studies and
methyl parathion/profenofos studies, increasing the duration
of effective therapy in the latter. As a result, the dimethoate
and methyl parathion/profenofos studies cannot be directly
compared, although both show pharmacokinetic and phar-
macodynamic effect.

The clinical benefit of OpdA remains unclear: although
the enzyme reduced vasopressor requirements after
dimethoate poisoning in minipigs, there was no major effect
on arterial lactate concentration, a marker of tissue hypoxia
and overall toxicity. Furthermore, poisoning with methyl
parathion and profenofos was markedly less severe in pigs
than humans, with the pigs remaining well despite marked
AChE inhibition and doses well in excess of the rat oral
LD50. These findings limit the usefulness of minipig models
for determining the likely efficacy of OpdA in humans. A fur-
ther limitation is the use of isoflurane anaesthesia in the pigs
during the study since this is quite different from the situ-
ation with poisoned humans. However, we chose isoflurane
as this agent has a well-described, consistent and modest
effect on cholinesterase activity [35]. There is also no indica-
tion that isoflurane will have affected OpdA action. The toxi-
cokinetics should be an objective and robust readout
of effect.

It will be important to assess whether OpdA hydrolyses
the active oxon metabolites of thion OP insecticides such as
parathion. However, in this study, we did not measure the
breakdown of the oxons either in vitro or in vivo. Further
studies are required to assess this point.

We did not perform in vitro studies of methyl parathion in
human plasma and so could not compare activity in vivo in
the pig with in vitro activity. We also did not perform in vitro
studies with minipig plasma that might have been inform-
ative about the expected in vivo human activity. These can
be considered for future studies if the enzyme moves into
clinical development; their absence should not hinder this
decision making.

In conclusion, we have shown that OpdA breaks down OP
insecticides in human serum and in poisoned pigs and that
this offers clinical and pharmacodynamic benefits. The rat,
pig and primate studies now support the idea of progressing
OpdA through a program of safety and efficacy trials with
the objective of gaining regulatory approval for its use as an
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Figure 4. Pharmacodynamic effect of OpdA on profenofos poisoning. Plasma
profenofos concentration, red cell AChE activity, and plasma BuChE activity in
pigs (n¼ 8) after poisoning with profenofos EC50, with or without OpdA. OpdA
was started 1 h after oral gavage and administered as half dose of 1 h and half
dose over 8 h. Due to the lack of clinical effect of profenofos in anaesthetised
pigs, noradrenaline was not required as a vasopressor. Symbols as for Figure 2.
Values are group means ± SD.
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antidote. It is possible that it may become an effective add-
ition to the pharmacological armamentarium for this import-
ant cause of poisoning and suicide worldwide.
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