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Abstract: Multi-level thresholding is one of the effective segmentation methods that have been
applied in many applications. Traditional methods face challenges in determining the suitable
threshold values; therefore, metaheuristic (MH) methods have been adopted to solve these challenges.
In general, MH methods had been proposed by simulating natural behaviors of swarm ecosystems,
such as birds, animals, and others. The current study proposes an alternative multi-level thresholding
method based on a new MH method, a modified spherical search optimizer (SSO). This was performed
by using the operators of the sine cosine algorithm (SCA) to enhance the exploitation ability of the
SSO. Moreover, Fuzzy entropy is applied as the main fitness function to evaluate the quality of each
solution inside the population of the proposed SSOSCA since Fuzzy entropy has established its
performance in literature. Several images from the well-known Berkeley dataset were used to test
and evaluate the proposed method. The evaluation outcomes approved that SSOSCA showed better
performance than several existing methods according to different image segmentation measures.

Keywords: image segmentation; multi-level thresholding; spherical search optimizer (SSO); sine
cosine algorithm (SCA); fuzzy entropy; metaheuristics

1. Introduction

Image segmentation is a critical process in image processing technology which has been applied
in various fields and applications, for example, in remote sensing [1], medical image [2], and
others [3,4]. Image segmentation splits a given image into several classes that have similar properties,
including color, brightness, gray level, contrast, and texture. There are different types of image
segmentation techniques, including region extraction [5], clustering algorithms [6], edge detection [7],
and thresholding [8]. Thresholding is an efficient segmentation method that asserts its efficiency in
many applications. It is of two kinds, called bi-level (BLT) and multi-level thresholding (MLT). The BLT
divides the objects of an image into two classes; therefore, if a given image has more classes, bi-level
thresholding is not appropriate. MLT can solve this problem because it can divide the tested image
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into more classes. Previously, many multi-level thresholding methods had been applied using image
histograms to get the best threshold values by maximizing or minimizing fitness functions (i.e., Otsu,
and entropy).

However, traditional models face some limitations, such as computational time. Recently,
metaheuristic (MH) methods have been widely applied to solve various optimization problems,
including image segmentation. For example, Qi [8] presented a multi-level thresholding method
based on particle swarm optimization (PSO) and maximum entropy. Different images, including
remote sensing images, were utilized to test the improved PSO performance. In Reference [9], the
authors proposed a segmentation method using multi-level thresholding. The galaxy-based search
algorithm (GbSA) is applied to search for the optimal thresholding value, which is determined by
maximizing Otsu’s criterion. The GbSA showed good performance in determining the optimal
thresholding value. Mostafa et al. [10] used the whale optimization algorithm (WOA) to segment MRI
images. WOA had been evaluated with various MRI images and asserts its efficiency in segmentation
accuracy. In Reference [11], the authors presented a multi-level thresholding method based on
moth-flame optimization (MFO). Both Otsu’s and Kapur’s entropy were used as the fitness function
to evaluate the proposed method. Compared to PSO and bacterial foraging optimization (BFO),
the MFO showed better performance. Social group optimization (SGO) [12] was applied for skin
melanoma image segmentation. The firefly algorithm (FA) was applied for multi-level thresholding
in Reference [13]. It applied Otsu as the objective function; also, the evolution results showed that
FA had better performance compared to several existing methods. The FA also had been adopted
in several multi-level thresholding [14–16]. Moreover, in Reference [17], both MFO and WOA were
applied for multi-level thresholding. The evaluation experiments showed that MFO outperformed
WOA. In Reference [18], the cuckoo search (CS) was applied for multi-level thresholding for gray-scale
images. Also, in Reference [19], CS was applied for color images multi-level thresholding. Satapathy
et al. [20] presented a multi-level thresholding approach based on the chaotic bat algorithm (CBA) and
Otsu as a fitness function. CBA showed good performance compared to several methods. Also, Ant
colony optimizer (ACO) was used for document image segmentation [21].

However, individual MH algorithms may be stuck at the local optima or may show slow
convergence because some MH algorithms show good exploitation ability and some of them show
good exploration ability [22]. To overcome these limitations, several hybrid metaheuristics have been
proposed. For example, in Reference [23], a multi-level threshold method based on a hybrid of social
spider optimization (SSO) and FA is presented. The developed FASSO method uses the power of both
FA and SSO to avoid individual MH limitations. Mudhsh et al. [24] presented a hybrid of artificial
bee colony (ABC) and FA to select the optimal threshold value by maximizing the Otsu function. This
method was applied to enhance document image binarization and showed good performance. A
hybrid approach of PSO and bacterial foraging optimization (BFO) for multi-level segmentation is
presented in Reference [25]. This approach had been evaluated with eight images and reached good
segmentation accuracy for both multi-level and bi-level thresholding. Another hybrid approach for
multi-level thresholding is proposed by Reference [26] using the entropy function. The hybrid method
is based on the gravitational search algorithm and genetic algorithm. In Reference [27], a hybrid
multi-level thresholding method is proposed based on an improved salp swarm optimizer and Fuzzy
entropy. The MFO is used to overcome the limitation of the salp swarm algorithm.

However, in such hybrid methods, one MH algorithm is needed to improve the local search for
the other MH algorithm, such as, in Reference [27], the MFO is used as a local search for SSA. These
hybrid MH methods can solve optimization problems efficiently. In the same context, we improved
a new MH algorithm, called spherical search optimizer (SSO) [28], using the sine cosine algorithm
(SCA), and applied the modified version, called SSOSCA, as an MLT image segmentation technique.
In general, the SSO is based on the spherical search style, which is in contrast to the basic search style
of previous MH algorithms. The SSO uses a combination of search styles to avoid the limitation of
previous MH algorithms [28]. However, the exploitation ability of the SSO is less than its exploration
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ability. Therefore, we use the SCA to enhance it, since the SCA has the ability to exploit the search
space and it has established its performance in different fields. The SCA is an efficient MH algorithm
proposed by Reference [29]. In recent years, SCA has been applied in various optimization problems,
such as in Reference [30], the SCA is employed to improve the adaptive neuro-fuzzy system (ANFIS)
to forecast oil consumption in several countries. The SCA is employed to optimize the parameters of
the ANFIS. In Reference [31], the authors applied SCA to enhance simulated annealing (SA) algorithm
to build an efficient model for scheduling jobs in unrelated parallel machines that can be employed in
manufacturing scheduling applications. In Reference [32], the SCA is applied to enhance the artificial
bee colony (ABC) that applied for image segmentation. It is used to update individual solutions to find
the optimal solution. In Reference [33], an improved SCA is proposed to solve global optimization
problems. The improved SCA was evaluated using two popular benchmarks (CEC 2014 and CEC
2017) for various engineering problems, and it showed good performance. Also, in Reference [34], an
improved SCA is proposed for solving global optimization problems. The opposition-based learning
(OBL) is considered as a mechanism that improves the exploration of the search space to generate
accurate solutions. A hybrid of SCA and genetic algorithm (GA) was proposed by Reference [35]
for feature selection. Eight UCI datasets were used to evaluate the hybrid SCA and showed good
performance. In Reference [36], a hybrid of atom search optimization and SCA is proposed for
automatic data clustering. The SCA is employed as a local search method to enhance the performance
of the atom search optimization.

In general, the proposed SSOSCA starts by setting the initial value for a set of agents depending
on the computed histogram of the image of interest. Then, the Fuzzy entropy is employed to compute
the quality of each agent since the Fuzzy entropy has a set of variant characteristics that made it
suitable for the image segmentation problem. The next step is to search the agent which has the best
fitness value, followed by updating the agents using the operators of SSO or SCA according to the
probability of each solution that was computed depending on the fitness value of each agent. The
process of searching for a suitable threshold is performed until the stopping conditions are met, and
the best agent is considered as the output of the proposed SSOSCA.

Our main contributions are listed as follows:

1. We present an alternative multilevel thresholding technique based on modified MH algorithm,
called spherical search optimizer (SSO). To the best of the authors’ knowledge, this is the first
study that adopted SSO for image processing.

2. We enhance the exploitation ability of the SSO using the SCA’s operators.
3. We evaluate the performance of the SSOSCA using different images.
4. We compare the proposed SSOSCA with several existing methods.

The organization of this study is as follows: Section 2 presents the preliminaries of the problem
definition, SSO and SCA. Section 3 presents a description of the proposed method. The evaluation and
comparison experiment are presented in Section 4. We conclude this paper in Section 5.

2. Methodology

2.1. Problem Definition

The problem formulation of MLT is presented in this section. Assume we have a gray-scale
image I which has K + 1 classes. To divide a given image I into classes, the values of k thresholds
{tk, k = 1, 2, K} are needed, which can be defined as follows:

C0 = {Iij | 0 ≤ Iij ≤ t1 − 1},
C1 = {Iij | t1 ≤ Iij ≤ t2 − 1},

. . .

CK = {Iij | tK ≤ Iij ≤ L− 1}

(1)
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where L represents the maximum gray levels, CK is the kth class of the image, tk is the kth threshold,
and Iij represents gray levels at the (i, j)th pixel and where the problem of the MLT can be defined as a
maximization problem which is applied to find an optimal threshold value as follows:

t∗1 , t∗2 , ..., t∗K = arg max
t1,...,tK

Fit(t1, ..., tK) (2)

where Fit is the objective function. Here, the Fuzzy entropy [37] is applied as an objective function.
Fuzzy entropy is a popular technology [38–40], which has been applied in many multi-level threshold
segmentation applications, such as color images [41], brain tumor images [42], MRI images [43], and
others [44,45]. It can be defined as follows:

Fit(t1, ..., tK) =
K

∑
k=1

Hi (3)

Hk = −
L−1

∑
i=0

pi × µk(i)
Pk

× ln(
pi × µk(i)

Pk
), (4)

Pk =
L−1

∑
i=0

pi × µk(i) (5)

µ1(l) =


1 l ≤ a1
l−c1

a1−c1
a1 ≤ l ≤ c1

0 l > c1

(6)

µK(l) =


1 l ≤ aK−1

l−aK
cK−aK

aK−1 < l ≤ cK−1

0 l > cK−1

(7)

a1, c1, ...., ak−1, ck−1 are the Fuzzy parameters, where 0 ≤ a1 ≤ c1 ≤ ... ≤ aK−1 ≤ cK−1. Then
t1 = a1+c1

2 , t2 = a2+c2
2 , ..., tK−1 = aK−1+cK−1

2 .

2.2. Spherical Search Optimizer

In this section, the primary operators of the spherical search optimizer (SSO) are defined [28].
Two solutions X and Y are selected from the population X by the tournament selection method. Then,
spherical search operators are used to update X using the following equations:

Xnew
i = F× ||Xp −Yp||2 × cos(θ) (8)

Xnew
j = F× ||Xp −Yp||2 × cos(θ)sin(ω) (9)

Xnew
k = F× ||Xp −Yp||2 × sin(θ)cos(ω) (10)

Xnew
i = F× ||Xp −Yp||2 × sin(θ) (11)

where i, j, and k are random selected integers representing the dimensions. p represents a set of integers
(i.e., p = i, j, k). ||.||2 refers to the l2 norm (i.e., Euclidean distance). F ∈ [0, 1] represents a scaling factor,
and θ ∈ [0, π] is the angle between X and Z-axis. ω ∈ [0, 2π] represents the angle in x˘y plane.

2.3. Sine Cosine Algorithm

Mirjalili [29] proposed the SCA as a population-based MH algorithm which uses sine and cosine
functions to search for optimal solutions. The SCA begins by producing a group of N solutions
represented as Xi, i = 1, . . . , N in the following expression:

Xi = li + rand× (ui − li) (12)
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where li and ui are the lower and upper boundarues of the search domain, respectively. Thereafter,
SCA computes its fitness function to evaluate each solution Xi ∈ X. The SCA updates the solution
using one of its two main functions (sine or cosine) depending on the r1 ∈ [0, 1] probability random
variable, as follows:

Xt+1
i =

{
Xt

i + r2 × sin(r3)× |r4Xt
b − Xt

i |, r1 > 0.5
Xt

i + r2 × cos(r3)× |r4Xt
b − Xt

i |, Otherwise
(13)

In Equation (13), Xb refers to the best solution, where rl ∈ [0, 1], l = 2, 3, 4 refers to a
random number.

The goal of r2 is to find the optimal area for updating X, which may be in the region between Xi
and Xb or outside. Moreover, it is applied to balance exploitation and exploration by enhancing its
values as follows [29]:

r2 = a− t
a

tmax
(14)

where a is a constant value, t is the current iteration, and tmax is the maximum number of iterations.
Furthermore, the goal of r3 is to detect if Xi moves to best solution Xb direction or outwardly, where the
goal of r4 is to provide Xb with a random weight to stochastically assert (r4 > 1) or to stochastically
de-assert (r4 < 1) the effect of desalination in defining the distance.

3. Proposed Image Segmentation Method

The steps of the proposed SSOSCA multilevel image segmentation technique are given in Figure 1.
SSOSCA is an enhancement version of the traditional SSO algorithm based on the operators of
SCA. This achieved by applying the SCA as a local search method for the SSO to improve its
exploitation ability.

The steps of SSOSCA begin by setting the initial value randomly for a set of agents X, and this is
performed using Equation (15).

Xi,j = Imin + r1 × (Imax − Imin), j = 1, 2, ..., K, i = 1, 2, ..., N (15)

where Imax and Imin represent the largest and smallest gray values of the histogram of I, respectively.
After that, SSOSCA assesses the quality of each agent based on its fitness value as defined in
Equation (3), followed by allocating the best agent (Xb), which has a higher fitness value (Fitb).
The next step is to compute the probability Pri for each agent depending on its fitness value Fiti
as follows:

Pri =
Fiti

∑N
i=1 Fiti

(16)

The operators of SSO are used to update the current agent Xi (as defined in Equations (8)–(11))
in the case of Pri < rs; otherwise, the two functions of SCA are used (i.e., sine and cosine) as defined
in Equations (13) and (14). In this study, the value of rs is updated during the optimization process
as follows:

rs = min(Pri) + rand× (max(Pri)−min(Pri)), rand ∈ [0, 1] (17)

This strategy avoids the problem of determining the suitable value of rs to switch between the
operators of SCA and SSO. The previous steps are performed again in case of the terminal conditions
not being satisfied; otherwise, the best solution is returned, and this represents the best threshold value
at a given threshold level. The quality of the segmented image is computed using suitable measures.

Complexity of SSOSCA

The complexity of SSOSCA depends on the complexity of SSO and SCA. In general, the SSO has
complexity O(tmax × N × (4Dim)) while the SCA has complexity O(tmax × N × (Dim)). Therefore,
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the complexity of SSOSCA is O(tmax × NSSO × (4Dim)) + O(tmax × NSCA × (Dim)), where NSSO and
NSCA are the number of solutions which updated using SSO and SCA, respectively.

Figure 1. Steps of the SSOSCA method.

4. Experiments and Results

To investigate the quality of the threshold obtained by the SSOSCA, ten images are used. These
images have variant properties that can be observed from their histogram, as given in Figure 2.
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(a) I1 (b) Histogram of I1 (c) I2 (d) Histogram of I2

(e) I3 (f) Histogram of I3 (g) I4 (h) Histogram of I4

(i) I5 (j) Histogram of I5 (k) I6 (l) Histogram of I6

(m) I7 (n) Histogram of I7 (o) I8 (p) Histogram of I8

(q) I9 (r) Histogram of I9 (s) I10 (t) Histogram of I10

Figure 2. Histograms and original images.

4.1. Performance Measures

In order to assess the quality of the segmented image, a set of performance metric are used which
includes Peak Signal-to-Noise Ratio (PSNR) [46,47] and the Structural Similarity Index (SSIM) [48].
PSNR and SSIM can be defined as follows:

PSNR = 20log10(
255

RMSE
), RMSE =

√
∑Nr

i=1 ∑Nc
j=1(Ii,j − ISi, j)2

Nr × Nc
(18)

where the RMSE is the root mean-squared error.

SSIM(I, IS) =
(2µIµIS + c1)(2σI,IS + c2)

(µ2
I + µ2

IS
+ c1)(σ

2
I + σ2

IS
+ c2)

(19)
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µI(σI) and µIS (σIS ) refer to the images’ mean intensity (standard deviation) of I and IS, respectively.
σI,IS is the covariance of I and IS, and c1 = 6.5025 and c2 = 58.52252. Furthermore, we use the fitness
value to evaluate the quality of threshold values; also, we use the CPU time for each algorithm.

4.2. Algorithms Comparison and Parameters Setting

In this section, the proposed SSOSCA is compared with other six approaches, including
cuckoo search (CS) [49], grey wolf optimization (GWO) [50], whale optimization (WOA) [51], salp
swarm algorithm (SSA) [52], grasshopper optimization algorithm (GOA) [53], and spherical search
optimization (SSO). During fair comparisons, we set the size of the population and the number of
the iterations to 20 and 100, respectively. The parameters of each approach are set to the original
implementation of each approach. In addition, the parameters of SCA used in the proposed method
are set according to the try and error method. However, we found that the parameters used on the
original SCA references are more suitable and stable.

4.3. Results and Discussion

We compare the SSOSCA approach to other approaches at different levels of the threshold,
including 6, 8, 15, 17, 19, and 25. These values are considered higher with respect to other works, and
they are used to assess the ability of the algorithms to determine the threshold values at these high
levels. Since this is more suitable in real-world image processing applications, for example, remote
sensing, medical images, and other cell images that have many objects. Tables 1–3 and Figures 3–6
show the results of each approach at different threshold levels.

Table 1 illustrates the average of the PSNR at different threshold levels and among the ten tested
images. From these results, we can see that the SSOSCA has a high ability to obtain the best threshold
values that improve the segmentation of the given images. This is clear from the results where the
SSOSCA has high PSNR values in forty-seven cases (as given in boldface) from the total sixty cases
(ten image × six threshold levels). Followed by the SSA algorithm with eleven cases, while the WOA
allocates the third rank with only two cases. Moreover, to study the performance of the algorithms
at each threshold level, Figure 3 depicts the average of PSNR at each threshold level overall the ten
images. From these average results, it can be noticed that SSA allocates the first rank at the two low
threshold levels 6 and 8, followed by the proposed SSOSCA. Whereas at the higher threshold levels
(i.e., 15, 17, 19, and 25) the proposed SSOSCA provides the best average, followed by SSA at levels 15,
17, and 19. At level 25, the WOA allocates the second rank. Moreover, Figure 4 shows the average of
PSNR for each algorithm overall tested images and threshold levels, and we can see that the SSOSCA
has the highest average of PSNR followed by SSA, while GOA, in this study, provides the worst
PSNR value.

Figure 3. Results at each threshold in terms of Peak Signal-to-Noise Ratio (PSNR).
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Figure 4. Average overall images in terms of PSNR.

By analyzing the results of SSIM for each algorithm as given in Table 2, it can be observed that the
segmented images using the obtained threshold values from the proposed SSOSCA are most similar to
the original images. Therefore, the proposed SSOSCA has the highest SSIM at nearly forty-nine cases
followed by WOA, SSA, and SSO in second, third, and fourth, respectively, with eight, two, and one
case. The average of each algorithm at each threshold level is represented in Figure 5, and it can be
seen that the SSOSCA provides the best average at all the tested threshold values. The WOA is the
second best according to average of SSIM. Moreover, Figure 6 depicts the average overall the tested
threshold and images; from this figure, we can conclude that the higher average of SSIM is achieved
by the proposed SSOSCA followed by the WOA.

According to the fitness value obtained by each algorithm, as shown in Table 3, it can be seen that
the proposed SSOSCA has higher Fuzzy entropy value in thirty-three cases, nearly 55% from the total
cases. Where the GOA allocates the second rank in terms of the fitness value with twenty-seven cases
(45% from the total cases). From Figure 7, we can notice the high performance of the SSOSCA reaches
the high fitness value at each tested threshold level, while, from Figure 8, it can be seen that most of
the algorithms are competitive according to the average of the fitness values overall tested images and
threshold values; however, the proposed SSOSCA takes the first rank with nearly 28.94, followed by
CS with 28.235.

Table 1. PSNR value for each algorithm.

Threshold Image CS GWO WOA SSA GOA SSO SSOSCA

6

I1 14.25352 14.12297 14.88168 16.01488 13.56229 14.59849 15.35288
I2 15.88149 15.6123 15.89529 17.46374 15.45477 15.96416 17.77297
I3 12.88066 12.60541 14.19501 13.69511 11.33032 13.48346 12.0036
I4 16.2105 16.33116 15.78365 15.97745 16.0247 16.00978 16.54122
I5 11.66614 11.90346 13.19066 13.95902 10.88047 12.56342 15.03747
I6 11.92436 12.18304 13.55097 14.59268 11.50657 12.6031 15.59027
I7 11.98298 11.82166 12.42468 14.40488 11.68666 12.33368 14.12488
I8 14.48941 14.01864 14.505 16.09438 13.39676 14.17169 16.27027
I9 10.15137 10.59881 12.06923 13.1789 9.386318 10.1912 13.56904

I10 14.21204 14.42384 15.83079 16.71505 13.07327 14.70213 13.16674
I1 18.15116 17.7062 17.5918 18.70303 17.05116 18.16227 19.61937
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Table 1. Cont.

Threshold Image CS GWO WOA SSA GOA SSO SSOSCA

8

I2 16.89435 16.53922 17.96233 19.31846 15.64257 17.0666 20.6029
I3 15.71986 15.96362 16.47572 17.82194 14.90901 16.56062 14.58805
I4 17.6977 17.06365 17.20601 18.29229 16.77651 17.73637 19.28856
I5 16.01255 16.15725 16.13152 16.78673 15.74769 15.72343 18.64564
I6 15.18368 15.58474 18.37308 17.5583 14.06642 15.74106 18.67142
I7 15.99579 15.54389 16.327 17.19466 15.13876 16.23942 17.56659
I8 15.15281 16.89891 15.8369 17.48643 14.70882 15.0617 19.15575
I9 15.50424 15.42388 16.43235 17.59215 14.23721 15.66292 16.33489

I10 19.10778 19.31603 18.55335 19.48182 18.18214 18.33839 15.40225

15

I1 23.01316 21.50909 22.73873 23.22639 20.8354 22.86816 24.97524

I2 22.437 22.18701 23.0264 23.2635 20.03461 22.45718 25.21844
I3 21.52816 19.66725 22.92297 24.01053 19.29856 21.92662 23.73693
I4 21.66735 21.68472 21.90825 23.11787 19.88215 22.5474 23.98321
I5 21.16473 21.29523 21.9837 22.38433 18.60897 21.14932 22.93739
I6 21.15053 20.50991 24.06414 23.81693 17.75073 21.95067 24.95809
I7 21.32372 20.22902 20.9587 21.88487 18.4218 21.54657 22.95848
I8 21.82251 21.29881 22.92123 22.66514 18.72172 21.60129 24.01843
I9 20.96946 18.09634 20.8369 22.03847 17.77476 19.94986 23.02196

I10 21.45881 21.4665 23.31075 22.62927 19.49201 21.41612 23.42886

17

I1 24.52948 23.07464 23.75871 24.65909 22.31508 24.23343 25.13423

I2 24.1457 24.04834 24.31117 25.09358 20.85469 23.83807 26.31966
I3 23.32701 20.65772 23.63131 24.59668 20.90329 23.35633 24.11021
I4 22.89425 22.4866 23.87289 24.09969 20.98464 22.88265 25.7949
I5 22.68493 22.86791 23.9018 23.85361 20.36532 22.29915 25.20473
I6 22.21259 22.15515 24.99201 25.30651 19.23068 23.94462 25.48218
I7 22.61354 21.41383 23.11234 24.06132 20.14508 22.1639 24.02152
I8 22.68091 22.88689 22.79818 23.96688 19.94347 23.2374 25.50871
I9 22.70389 19.35604 21.51394 23.23482 18.91577 21.63497 24.52887

I10 23.15474 21.93014 24.80971 24.07668 20.54155 23.02558 25.79065

19

I1 25.2359 24.25102 25.54807 26.02841 23.0769 25.15132 26.94933

I2 25.34997 24.97083 25.29321 26.31069 22.27348 24.5691 27.99376
I3 24.74301 21.78626 24.6957 25.62842 21.58324 25.12392 24.97041
I4 23.70948 23.91325 24.82184 24.29209 21.43777 23.34199 26.71273
I5 24.15407 23.85685 24.83173 24.74708 21.7525 23.17846 25.83682
I6 24.85081 23.62329 26.72128 26.55937 20.32694 24.04066 26.80809
I7 24.53167 22.66648 23.76105 25.38036 21.27379 24.2728 25.64757
I8 24.15169 23.87885 25.67028 24.90725 20.46545 24.15516 26.19456
I9 22.5229 20.86362 23.67687 24.83083 19.78754 22.46845 25.02367

I10 24.3168 22.75553 25.62639 24.85346 21.45175 24.12566 26.93412

25

I1 27.40083 26.73225 28.64372 28.48424 25.75885 27.4094 29.72896

I2 28.22663 28.05796 28.57791 28.03914 26.21398 27.74724 29.91905
I3 26.80269 23.93037 27.84109 28.51179 23.90788 27.44644 28.11514
I4 26.75175 26.25728 27.00518 27.60792 24.95505 26.3363 28.89368
I5 27.39457 26.90591 27.70828 27.55847 24.82644 26.32981 28.65418
I6 26.74458 27.18045 28.94175 27.89996 23.77629 28.31972 28.8074
I7 27.40609 25.97136 27.90512 27.36805 24.73083 26.79239 28.66661
I8 27.20324 26.70906 27.15343 27.59151 24.63982 26.66865 28.26119
I9 26.56469 24.43546 26.67952 26.70103 23.30677 25.72955 27.32815

I10 27.66373 25.95623 29.52852 28.73986 24.66129 27.60036 29.75223
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Figure 5. Results at each threshold level in terms of Structural Similarity Index (SSIM).

Figure 6. Average overall images in terms of SSIM.

Table 2. SSIM values for each algorithm.

Threshold Image CS GWO WOA SSA GOA SSO SSOSCA

6

I1 0.523524 0.510253 0.568109 0.399377 0.489723 0.539125 0.58022
I2 0.403976 0.402327 0.433124 0.528733 0.38488 0.408874 0.51094
I3 0.61624 0.607159 0.643984 0.64755 0.612524 0.636622 0.663075
I4 0.544795 0.551253 0.540463 0.525506 0.538583 0.535062 0.57173
I5 0.299427 0.315309 0.401861 0.398346 0.246893 0.355741 0.527396
I6 0.341501 0.361743 0.450753 0.390932 0.308731 0.384479 0.538101
I7 0.419056 0.418795 0.450687 0.545244 0.395713 0.429664 0.540805
I8 0.592113 0.572653 0.601576 0.645725 0.541014 0.579019 0.675978
I9 0.577961 0.702382 0.718898 0.715349 0.564422 0.543722 0.752861

I10 0.660338 0.661385 0.693721 0.779561 0.627041 0.683116 0.806935
I1 0.714586 0.704407 0.700598 0.541409 0.680522 0.705873 0.754957
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Table 2. Cont.

Threshold Image CS GWO WOA SSA GOA SSO SSOSCA

8

I2 0.45404 0.456672 0.531249 0.527609 0.403733 0.46437 0.621204
I3 0.761106 0.752791 0.77375 0.658078 0.752033 0.776424 0.738899
I4 0.600493 0.588868 0.59971 0.554734 0.573118 0.604819 0.677128
I5 0.552234 0.565267 0.572991 0.52105 0.536587 0.533724 0.695516
I6 0.511395 0.534196 0.654048 0.411087 0.446013 0.532338 0.661291
I7 0.58497 0.568515 0.604636 0.587207 0.53671 0.589613 0.678039
I8 0.647964 0.707133 0.66791 0.640183 0.636385 0.633611 0.7744
I9 0.805569 0.804642 0.818699 0.743371 0.780551 0.805714 0.817822

I10 0.777081 0.763212 0.765877 0.791986 0.738364 0.769774 0.851697

15

I1 0.837799 0.812807 0.835306 0.604298 0.795047 0.835716 0.881628

I2 0.674244 0.703638 0.719994 0.588246 0.586459 0.664095 0.762476
I3 0.854126 0.849842 0.868446 0.706102 0.826521 0.846497 0.851063
I4 0.739509 0.748458 0.751812 0.584378 0.680759 0.760315 0.806796
I5 0.762745 0.784467 0.796817 0.551934 0.672894 0.762572 0.826962
I6 0.740847 0.72203 0.811659 0.433524 0.617372 0.755845 0.825394
I7 0.767595 0.792932 0.762501 0.615011 0.646078 0.764162 0.816658
I8 0.824795 0.835391 0.853562 0.68349 0.766416 0.825854 0.878662
I9 0.848937 0.854201 0.860095 0.801097 0.824811 0.832077 0.891477

I10 0.861982 0.846166 0.876463 0.819268 0.823452 0.845177 0.91741

17

I1 0.871644 0.843402 0.858143 0.590451 0.830581 0.864172 0.882139

I2 0.734521 0.756154 0.745148 0.548721 0.615545 0.720611 0.792555
I3 0.868686 0.866569 0.875785 0.720558 0.850289 0.87188 0.865206
I4 0.773643 0.772249 0.800772 0.565424 0.72636 0.772247 0.844171
I5 0.810143 0.827478 0.849047 0.606009 0.744826 0.801139 0.876399
I6 0.777343 0.774738 0.838431 0.479682 0.676669 0.804816 0.844831
I7 0.787594 0.819339 0.823494 0.622385 0.728787 0.781202 0.821508
I8 0.841373 0.863496 0.852164 0.681778 0.792231 0.851523 0.896992
I9 0.859167 0.854882 0.863581 0.811802 0.830793 0.855018 0.896333

I10 0.884967 0.854984 0.89511 0.832219 0.853291 0.878345 0.920322

19

I1 0.883 0.865282 0.889028 0.598864 0.847429 0.880617 0.911516

I2 0.764397 0.788061 0.772149 0.592437 0.668417 0.741729 0.831151
I3 0.876207 0.874083 0.897662 0.699627 0.857745 0.879965 0.864455
I4 0.792783 0.801929 0.824222 0.556423 0.734317 0.78558 0.864702
I5 0.850908 0.852494 0.867394 0.576856 0.787629 0.824477 0.891493
I6 0.836104 0.809292 0.863873 0.492018 0.714946 0.814909 0.862724
I7 0.83388 0.840049 0.823023 0.646931 0.761484 0.82062 0.862201
I8 0.876644 0.880924 0.891312 0.72755 0.806464 0.869286 0.903824
I9 0.87026 0.871134 0.881606 0.811531 0.837176 0.869857 0.899958

I10 0.905005 0.886993 0.904834 0.829729 0.870284 0.878774 0.914785

25

I1 0.915084 0.905819 0.934535 0.641548 0.895104 0.91449 0.942844

I2 0.837243 0.864696 0.849402 0.637007 0.792308 0.819998 0.875724
I3 0.904065 0.90137 0.916284 0.719599 0.883033 0.898039 0.897269
I4 0.860557 0.854364 0.869306 0.608607 0.822635 0.851806 0.900192
I5 0.912592 0.911123 0.918719 0.605743 0.866388 0.893672 0.931443
I6 0.874735 0.886428 0.904776 0.576811 0.822266 0.891801 0.894003
I7 0.879834 0.877669 0.897166 0.668648 0.843863 0.870174 0.903471
I8 0.911805 0.914548 0.912151 0.75603 0.883773 0.903593 0.935702
I9 0.903479 0.893403 0.905438 0.81819 0.874026 0.893238 0.920015

I10 0.924179 0.922264 0.93366 0.843104 0.9025 0.926239 0.934209
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Table 3. Fitness value for each algorithm.

Threshold Image CS GWO WOA SSA GOA SSO SSOSCA

6

I1 17.51627 17.52452 17.50563 14.55501 17.53978 17.45458 17.33092
I2 17.29183 17.28936 17.24797 15.56939 17.3161 17.27256 17.28515
I3 17.08744 17.08179 17.01854 13.96991 17.10156 17.06157 17.31998
I4 17.55223 17.5704 17.5493 15.39157 17.58961 17.52835 17.28721
I5 15.59818 15.59255 15.53775 12.72764 15.6182 15.63955 17.3201
I6 15.07032 15.08058 15.02587 11.5213 15.12722 15.01716 17.28756
I7 17.62055 17.62355 17.60271 15.13502 17.31648 17.4764 17.64178
I8 17.57384 17.5903 17.50949 15.48919 17.60093 17.54151 17.26228
I9 17.47719 17.50937 17.3717 14.95461 17.53705 17.47222 17.33736

I10 16.76789 16.77492 16.68104 14.05739 16.79876 16.76765 17.31798

8

I1 20.77239 20.81951 20.79091 15.6432 20.83927 20.68942 20.36499
I2 20.77715 20.81823 20.64625 16.20068 20.914 20.69229 20.40957
I3 20.44303 20.4538 20.41782 14.46727 20.5345 20.38249 20.4722
I4 20.91361 20.95094 20.88245 16.30784 21.00918 20.85257 20.45572
I5 18.26216 18.32197 18.24171 14.13618 18.3769 18.26113 20.38147
I6 17.38663 17.42614 17.20956 11.56811 17.50213 17.28073 20.43823
I7 20.87007 20.91007 20.85901 15.3929 20.94932 20.82676 20.38342
I8 20.87381 20.83527 20.83046 15.30596 20.98815 20.85887 20.41978
I9 20.98318 21.03984 20.81272 15.67114 21.05458 20.98732 20.36542

I10 19.97626 20.01734 19.86859 14.78115 20.06006 19.91779 20.477

15

I1 29.39068 29.46837 29.37888 16.21008 29.80082 29.27839 28.49456
I2 29.68226 29.75557 29.54176 16.07059 28.55657 29.68748 30.15125
I3 29.26056 29.26241 29.05608 14.08843 28.54654 29.13099 29.78387
I4 29.53076 29.63429 29.35599 15.90209 30.01778 29.55382 28.53975
I5 25.20403 25.2145 24.91564 13.76618 25.7182 25.2165 28.49094
I6 23.63031 23.61669 22.53367 11.62479 24.23131 23.18178 28.52712
I7 29.4742 29.59732 29.58911 14.90863 28.61348 29.41551 30.03443
I8 30.06616 30.13922 29.64109 15.51657 28.64436 30.03488 30.5571
I9 29.74802 30.00956 29.58872 15.29011 28.52038 29.90233 30.4636

I10 28.86841 28.94542 28.53648 14.78096 29.28097 28.86354 28.53572

17

I1 31.95775 31.94438 31.99469 16.04241 31.07617 31.84159 32.47225
I2 32.3915 32.43306 32.39763 15.71142 33.00691 32.41968 30.99624
I3 31.78612 31.7911 31.61119 15.02817 32.42836 31.69459 31.00468
I4 32.13392 32.13961 31.87661 16.45778 32.75535 32.17488 30.8959
I5 27.16318 27.21435 26.99812 13.17875 27.73732 27.22226 31.0181
I6 25.28239 25.28696 24.30813 11.52589 26.12225 24.6364 30.95348
I7 32.10722 32.19439 32.10384 15.06927 32.62854 32.09904 31.07726
I8 32.67831 32.70998 32.45816 15.26126 33.33993 32.65714 31.04546
I9 32.44411 32.53263 32.15043 14.957 30.99357 32.46321 33.17218

I10 31.46008 31.58081 31.07522 14.68681 31.0726 31.50329 32.03533

19

I1 34.36383 34.2342 34.21043 16.34169 33.28233 34.21749 34.99164
I2 34.97506 34.97331 34.90153 16.38087 33.30956 35.0698 35.71332
I3 34.21961 34.14 33.91049 14.96975 35.06493 34.09816 33.37397
I4 34.66706 34.64812 34.41234 15.79635 35.3929 34.68254 33.23854
I5 28.9961 29.03604 28.6912 13.67946 29.68399 29.14927 33.31114
I6 26.75121 26.54048 25.45928 11.52925 27.53597 25.98213 33.27359
I7 34.63642 34.73002 34.61115 15.36037 35.32157 34.55686 33.24501
I8 35.20329 35.22804 34.99536 15.48853 35.9805 35.26575 33.35999
I9 34.96186 35.02181 34.32166 15.99765 33.31905 35.06191 35.77686

I10 33.9221 34.01549 33.57158 15.1945 33.31914 34.01515 34.71253

25

I1 41.07035 40.64346 40.86762 17.18634 39.56373 40.95834 41.88894
I2 42.1871 41.86861 41.8537 16.67131 42.9219 42.13362 39.57032
I3 40.60734 40.24792 40.15664 15.22677 41.68104 40.41704 39.63348
I4 41.55509 41.22411 41.15408 17.3623 42.46069 41.68751 39.56037
I5 33.83683 33.72248 33.42687 14.79988 34.74606 33.99238 39.72255
I6 30.47008 29.62294 29.12014 12.21516 32.05033 29.29351 39.7571
I7 41.59242 41.48565 41.40234 16.04463 39.54619 41.55445 42.40039
I8 42.34127 42.11024 42.07119 16.37498 39.72544 42.35157 43.03618
I9 41.8899 41.9941 41.43598 16.2916 39.55762 42.13391 42.82789

I10 40.81655 40.49642 40.21611 15.92253 39.76649 40.77342 41.79107
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Figure 7. Results of at each threshold in terms of fitness value.

Figure 8. Average overall images in terms of fitness value.

To analyze the performance of the CPU time(s) according to the CPU time(s) as given in Table 4,
one can observe that the proposed SSOSCA has the smallest CPU time(s) in twenty-one cases from the
sixty cases, followed by GWO and WOA, which take the second and third ranks, while the SSO that
achieves the fourth rank.

Table 4. CPU time(s) for each algorithm.

CS GWO WOA SCA GOA SSO SSOSCA

6

I1 0.5769 0.4637 0.4547 1.2575 0.4899 0.4677 0.4986
I2 0.5830 0.4646 0.4650 1.2781 0.4976 0.4663 0.4630
I3 0.5520 0.4413 0.4503 1.2531 0.4836 0.4508 0.4545
I4 0.5442 0.4377 0.4361 1.2255 0.4583 0.4582 0.4672
I5 0.5487 0.4484 0.4384 1.2456 0.4676 0.4514 0.4359
I6 0.5610 0.4517 0.4590 1.2526 0.4760 0.4537 0.4697
I7 0.5492 0.4414 0.4403 1.2423 0.4717 0.4496 0.4462
I8 0.4562 0.3472 0.3480 1.1384 0.3697 0.3520 0.3556
I9 0.4509 0.3398 0.3369 1.1356 0.3699 0.3456 0.3550

I10 0.4950 0.3888 0.3923 1.2307 0.4109 0.3818 0.3639
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Table 4. Cont.

CS GWO WOA SCA GOA SSO SSOSCA

8

I1 0.6297 0.4993 0.5033 1.4758 0.5261 0.4984 0.5273
I2 0.6217 0.4843 0.4804 1.4581 0.5072 0.4881 0.5020
I3 0.6104 0.4760 0.4756 1.4386 0.5060 0.4924 0.4726
I4 0.5965 0.4619 0.4626 1.4034 0.4848 0.4825 0.4981
I5 0.6224 0.4824 0.4817 1.4562 0.5081 0.4889 0.5264
I6 0.6308 0.5039 0.4977 1.5069 0.5177 0.5024 0.4816
I7 0.6162 0.4811 0.4815 1.4593 0.5103 0.4850 0.4735
I8 0.5147 0.3862 0.3840 1.3623 0.4118 0.3866 0.3931
I9 0.5427 0.3921 0.3829 1.3938 0.4190 0.3963 0.4011

I10 0.5427 0.3926 0.3816 1.3639 0.4145 0.3929 0.4045

15

I1 0.8410 0.5954 0.6013 2.1359 0.6334 0.6105 0.6953
I2 0.8407 0.5974 0.6035 2.1409 0.6253 0.5939 0.6062
I3 0.8273 0.5764 0.5800 2.0536 0.6082 0.5898 0.5986
I4 0.8236 0.5854 0.5931 2.0602 0.6066 0.5980 0.5725
I5 0.8387 0.5844 0.5987 2.0817 0.6214 0.5934 0.5796
I6 0.8608 0.6066 0.5993 2.1608 0.6387 0.6112 0.5906
I7 0.8155 0.5842 0.5966 2.0720 0.6144 0.5966 0.5824
I8 0.7050 0.4737 0.4785 1.9618 0.5040 0.4805 0.4695
I9 0.7102 0.4692 0.4799 1.9408 0.5039 0.4755 0.5786

I10 0.7054 0.4848 0.4752 1.9741 0.5205 0.4794 0.4751

17

I1 0.8932 0.6258 0.6424 2.2970 0.6659 0.6305 0.6867
I2 0.8849 0.6256 0.6247 2.2696 0.6485 0.6246 0.6364
I3 0.8801 0.6176 0.6221 2.2763 0.6354 0.6262 0.6345
I4 0.9005 0.6386 0.6259 2.2988 0.6611 0.6344 0.6155
I5 0.8855 0.6263 0.6200 2.3080 0.6494 0.6258 0.6144
I6 0.8777 0.6186 0.6142 2.2895 0.6346 0.6333 0.6114
I7 0.8972 0.6245 0.6272 2.3090 0.6566 0.6366 0.6593
I8 0.7798 0.5273 0.5233 2.1741 0.5577 0.5190 0.5444
I9 0.7724 0.5175 0.5151 2.1660 0.5490 0.5186 0.5117

I10 0.7727 0.5025 0.5101 2.1519 0.5376 0.5081 0.5645

19

I1 0.9539 0.6580 0.6629 2.4952 0.6923 0.6638 0.6723
I2 0.9572 0.6575 0.6536 2.5105 0.6873 0.6706 0.6640
I3 0.9444 0.6430 0.6396 2.4728 0.6696 0.6571 0.6268
I4 0.9495 0.6456 0.6495 2.4701 0.6757 0.6538 0.6691
I5 0.9589 0.6650 0.6623 2.5054 0.6985 0.6663 0.6824
I6 0.9650 0.6843 0.6793 2.5953 0.7130 0.6748 0.6860
I7 0.9601 0.6559 0.6601 2.4579 0.6781 0.6586 0.7493
I8 0.8373 0.5410 0.5469 2.3879 0.5734 0.5607 0.5375
I9 0.9081 0.5836 0.6010 2.5097 0.6124 0.5679 0.6085

I10 0.8162 0.5307 0.5421 2.3427 0.5647 0.5379 0.5942

25

I1 1.1320 0.7448 0.7553 3.1039 0.7806 0.7577 0.8425
I2 1.1306 0.7578 0.7513 3.1007 0.7702 0.7643 0.7696
I3 1.1387 0.7417 0.7554 3.1092 0.7717 0.7522 0.8364
I4 1.1279 0.7467 0.7393 3.0678 0.7774 0.7442 0.7600
I5 1.1876 0.7839 0.7739 3.1912 0.8088 0.7713 0.8026
I6 1.1602 0.7610 0.7665 3.1010 0.7918 0.7794 0.8071
I7 1.1364 0.8219 0.7543 3.0817 0.7810 0.7615 0.7534
I8 1.0198 0.7015 0.6434 3.0088 0.6793 0.6451 0.6404
I9 1.1658 0.7380 0.7069 3.2423 0.7622 0.7224 0.6870

I10 1.0496 0.6523 0.6466 3.0418 0.6764 0.6624 0.7263

Figure 9 depicts the diversity of the proposed SSOSCA image segmentation approach at tested
threshold levels for image I1. From this figure, it can be noticed that the SSOSCA maintains its diversity
during the optimization while the diversity of other methods decreases with increasing iterations.
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(a) Threshold 6 (b) Threshold 8 (c) Threshold 15

(d) Threshold 17 (e) Threshold 19 (f) Threshold 25

Figure 9. Diversity of the algorithms for image I1 at the tested threshold levels.

Figures 10 and 11 show segmented images and their histogram of threshold values at threshold
level 16. From the resulting images, we can see that, by using the threshold value obtained by the
proposed SSOSCA, we can get high-quality segmented images.
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(a) CS (b) CS (c) CS

(d) GWO (e) GWO (f) GWO

(g) WOA (h) WOA (i) WOA

(j) SSA (k) SSA (l) SSA

(m) GOA (n) GOA (o) GOA

(p) SSO (q) SSO (r) SSO

(s) SSOSCA (t) SSOSCA (u) SSOSCA

Figure 10. Segmented images at threshold value 19 for images I7–I9.
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(a) I7 (b) I8 (c) I9

(d) I7 (e) I8 (f) I9

(g) I7 (h) I8 (i) I9

(j) I7 (k) I8 (l) I9

(m) I7 (n) I8 (o) I9

(p) I7 (q) I8 (r) I9

(s) I7 (t) I8 (u) I9

Figure 11. Threshold values obtained by each algorithm over the histogram of images I7–I9.
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4.4. Statistical Analysis using Friedman’s Test

In this section, we used the nonparameterize test, called Friedman test (FD), to study the
robustness of the algorithms at the tested cases. The FD gives a statistical value that indicates the
rank of the algorithm over all the tested algorithms, where a high rank refers to the best algorithm.
The results of the obtained mean rank using FD is given in Table 5. It can be noticed that, in terms of
PSNR, the SSOSCA has the highest mean rank among the three measures (i.e., fitness value, PSNR,
and SSIM) while the SSA, CS, and GOA have the second best mean ranks in terms of PSNR, SSIM, and
fitness value, respectively. Therefore, the threshold values obtained by SSOSSA is better than other
algorithms, which enhances image segmentation.

Table 5. Results of the Friedman test.

CS GWO WOA SSA GOA SSO SSOSCA

PSNR 3.5833 2.7166 4.85 5.76666 1.11666 3.516 6.45

SSIM 4.2166 4.0166 5.6 1.9 1.88333 3.8 6.583

Fitness 4.65 5.05 3.0333 1 5.23333 4.183 4.85
CPU time(s) 6 2.1667 2.1083 7 4.7000 2.8417 3.1833

To sum up, the comparison results showed that the SSOSCA has a high ability to find the threshold
value that will lead to improving the quality of the segmented images. This can be observed from
the values of fitness value, PSNR, and SSIM of the proposed SSOSCA. The main reason for this high
quality is that the SSOSCA combines the operators of SSO to exploration the search space as well
as the operators of SCA, which have high exploitation ability. This can be shown from the diversity
of the proposed SSOSCA. However, the proposed SSOSCA still needs some improvements since its
computational time is larger than some other methods since the original SSO has high complexity.

5. Conclusions

This study proposes an alternative multi-level thresholding segmentation method using a new
metaheuristic called spherical search optimizer (SSO) and Fuzzy entropy. The proposed method,
called SSOSCA, depends on a modified SSO algorithm using the sine cosine algorithm (SCA). To
test the performance of the SSO method, we implement two experiments. We used ten images from
the Brekely benchmark. The evaluation outcomes assess the efficiency of the proposed SSOSCA
for image segmentation. Moreover, we compared the proposed method to several metaheuristics,
such as CS, GWO, WOA, SSA, GOA, and SSO. Overall, the results showed that the proposed SSO
outperforms other methods in terms of fitness value, PSNR, and SSIM. Furthermore, by concluding
the high performance of the SSO, in future work, it may be applied in several optimization problems,
such as time series forecasting, cloud computing, feature selection, and others. However, the proposed
SSOSCA has some shortcomings that result from the traditional SSO algorithm. For example, the CPU
time(s) needs to be improved, and this can be improved by replacing some operators. Moreover, the
diversity of the proposed SSOSCA at some images degrades when the algorithm approaches the end
of the iterations. These limitations open new directions to improve the performance of the SSOSCA,
and this can be achieved by using disrupt operators, which established its ability to balance between
exploration and exploitation in search space. After fixing these shortcomings, the proposed model can
be developed as a multi-objective method and can be applied to other applications.
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