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Abstract: The ability of monoclonal antibodies to specifically bind a target antigen and neutralize or
stimulate its activity is the basis for the rapid growth and development of the therapeutic antibody
field. In recent years, traditional immunoglobulin antibodies have been further engineered for
better efficacy and safety, and technological developments in the field enabled the design and
production of engineered antibodies capable of mediating therapeutic functions hitherto unattainable
by conventional antibody formats. Representative of this newer generation of therapeutic antibody
formats are bispecific antibodies and antibody–drug conjugates, each with several approved drugs
and dozens more in the clinical development phase. In this review, the technological principles and
challenges of bispecific antibodies and antibody–drug conjugates are discussed, with emphasis on
clinically validated formats but also including recent developments in the fields, many of which are
expected to significantly augment the current therapeutic arsenal against cancer and other diseases
with unmet medical needs.
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1. Introduction

Therapeutic antibodies exert their effects by binding to and neutralizing extracellular target
molecules. The advantages of therapeutic antibodies include strong and specific binding to the target
antigen, thus maximizing efficacy and safety, and the ability to block protein–protein interaction,
which, in general, is not attainable with small-molecule drugs. However, like most other therapeutic
modalities, blocking a single disease-causing molecule by an antibody rarely cures complex diseases
such as cancers. Few diseases are totally dependent upon one target and its signaling pathways,
and the downregulation of the target molecule and/or the development of compensatory pathways by
diseased cells often leads to drug resistance. For example, it has been suggested that the activation of
ErbB3 or c-Met signaling contributes to the resistance of cancer cells to EGFR-targeting cetuximab [1,2].

In order to overcome the limitations of therapeutic antibodies and enhance their efficacy, various
engineering and modification approaches have been devised and applied to the conventional
immunoglobulin molecular format. Arguably the most prominent of these approaches are the
bispecific antibody (bsAb) and antibody–drug conjugate (ADC) formats. The basic ideas behind
these formats are quite straightforward: For bsAb, simultaneous engagement of two different targets
by a single antibody-like molecule may have synergistic or emergent therapeutic effects, and for
ADC, the cancer-selective delivery of potent cytotoxic payloads may eradicate target-expressing
cancer cells while sparing normal healthy tissues. However, the implementation and clinical
application of these novel formats require a considerable amount of molecular engineering efforts.
Antibody physicochemical properties such as solubility, propensity for oligomerization/aggregation,
and thermal and chemical stability, as well as their pharmacological characteristics in vivo, are all
affected by combining two antibodies or their fragments, or by attaching cytotoxic payloads through
chemical linkers.

Biomolecules 2020, 10, 360; doi:10.3390/biom10030360 www.mdpi.com/journal/biomolecules

http://www.mdpi.com/journal/biomolecules
http://www.mdpi.com
http://dx.doi.org/10.3390/biom10030360
http://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/2218-273X/10/3/360?type=check_update&version=3


Biomolecules 2020, 10, 360 2 of 31

In this review, the current state of the art of bsAb and ADC in cancer treatment is discussed.
Various different formats of bispecific antibodies have been developed, including those with IgG-like
configurations such as heterodimeric IgG, IgG-scFv, and DVD-Ig, as well as fragment-based designs like
tandem scFv and diabody, all of which have different sets of development and production challenges.
For ADC, issues such as conjugation site specificity, linker chemistry, cleavage strategy, and the potency
of the payload need to be optimized to maximize therapeutic efficacy while minimizing adverse events.
Despite all the challenges, a number of bsAbs and ADCs have been approved for cancer treatment and
many promising candidates are currently in the late stages of clinical trials, as summarized in Table 1.

Table 1. Approved and clinical stage bispecific antibodies and antibody–drug conjugates discussed in
this review *.

Bispecific Antibodies

Tradename INN/Codename Technology Targets Indication Status

Blincyto Blinatumomab BiTE CD19/CD3 B-cell ALL Approved
Removab Catumaxomab Quadroma EpCAM/CD3 Malignant ascites Withdrawn (2017)
Hemlibra Emicizumab Common LC FIXa/FX Hemophilia A Approved

AFM11 TandAb CD19/CD3 NHL, ALL Terminated
Duvortuxizumab DART CD19/CD3 B cell malignancies Terminated

ABT-165 DVD-Ig DLL4/VEGF Solid tumors Phase 2
Vanucizumab CrossMab Ang-2/VEGF mCRC Terminated

Faricimab CrossMab Ang-2/VEGF AMD Phase 3
JNJ63709178 DuoBody CD123/CD3 AML Phase 1
JNJ61186372 DuoBody EGFR/cMET NSCLC Phase 1

Antibody–Drug Conjugates

Tradename INN Linker-Payload Conjugation Target Indication Status

Mylotarg Gemtuzumab ozogamicin hydrazone-calicheamicin Lysine CD33 AML Approved
Kadcyla Trastuzumab emtansine SMCC-DM1 Lysine HER2 Breast cancer Approved
Adcetris Brentuximab vedotin vc-MMAE Cysteine CD30 HL, ALCL Approved
Besponsa Inotuzumab ozogamicin hydrazone-calicheamicin Lysine CD22 ALL Approved

Polivy Polatuzumab vedotin vc-MMAE Cysteine CD79b DMBLC Approved
Padcev Enfortumab vedotin vc-MMAE Cysteine Nectin-4 mUC Approved
Enhertu Trastuzumab deruxtecan ggfg-MMAE Cysteine HER2 Breast cancer Approved

Anetumab ravtansine SPDB-DM4 Cysteine Mesothelin Mesothelioma Phase 2
Depatuxizumab mafodotin mc-MMAF Cysteine EGFR Solid tumors Phase 3
Mirvetuximab soravtansine SulfoSPDB-DM4 Cysteine FOLRα Ovarian cancer Phase 3
Rovalpituzumab Tesirine va-SG3199 Cysteine DLL3 Solid tumors Terminated

* Molecules only briefly mentioned in the main text are not included in this table. INN, international
non-proprietary name; BiTE, bispecific T-cell engager; ALL, acute lymphoblastic leukemia; TandAb, tandem diabody;
NHL, non-Hodgkin lymphoma; DART, dual affinity retargeting; DVD-Ig, dual variable domain-immunoglobulin;
mCRC, metastatic colorectal cancer; AMD, age-related macular degeneration; AML, acute myeloid leukemia; NSCLC,
non-small cell lung cancer; SMCC, succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate; DM, derivative
of maytansine; HL, Hodgkin lymphoma; ALCL, anaplastic large cell lymphoma; vc, Valine-Citrulline linker;
MMAE/F, monomethyl auristatin E/F; DLBCL, diffuse large B cell lymphoma; mUC, metastatic urothelial cancer;
ggfg, Gly-Gly-Phe-Gly linker; SPDB, N-succinimidyl-4-(2-pyridyldithio)butanoate; va, Valine-Alanine linker.

2. Bispecific Antibodies

More than 100 different bsAb formats have been reported according to a recent review [3].
While their molecular architectures are different, virtually all of them can be grouped into one of the
two large categories: fragment-based bsAbs and Fc-based bsAbs. Fragment-based bsAbs consist of two
or more antibody fragments (usually scFv (Figure 1a), but also Fab or single-domain Ab (sdAb)) held
together by a peptide linker, disulfide bonds, and/or noncovalent inter-domain interactions. Fc-based
bsAbs have homo- or heterodimeric Fc domains (and less frequently CH3 domains only) to which Fab,
scFv or sdAb are attached through a peptide linker. Additional antigen-binding moieties may also
be present at either N- or C-terminus of any of the polypeptide chains comprising the bsAb, greatly
increasing the structural diversity of bsAb design. Some of the bsAb formats discussed in this review
are shown in Figure 1.
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Figure 1. Schematic representations of bispecific antibody (bsAb) formats discussed in this article.
(a) Single chain Fv (scFv), (b) tandem scFv format of bispecific T cell engager (BiTE), (c) disulfide-linked
diabody format of dual affinity retargeting (DART) bsAb, (d) tandam diabody (TandAb), (e) conventional
immunoglobulin G (IgG), (f) IgGs with additional binding units such as scFv, (g) dual variable domain
immunoglobulin (DVD-Ig), (h) quadromab bsAb, (i) knobs-into-holes (KiH) bsAb with a common light
chain, (j) KiH-CrossMabCH1-CL, and (k) bsAb by controlled Fab arm exchange (cFAE).

2.1. BsAb Formats

2.1.1. Fragment-Based bsAbs

Fragment-based bsAbs, consisting exclusively of antibody variable domains, are a major class
of bsAb formats. They are in general smaller in size than Fc-based bsAbs (see below) and hence,
shows faster clearance and better tissue penetration in vivo, which significantly influence their
pharmacological properties. Although these molecules are vaguely similar to one another in their
structures with two or more antibody fragments connected by flexible peptide linkers, each of them
has a unique molecular configuration, which results in differences in aspects such as physicochemical
properties, biological activity, and production methods. While there are a variety of different
fragment-based bsAb formats, three of them have been more extensively investigated in preclinical
and clinical studies: tandem scFvs, dual affinity retargeting (DART) proteins, and tandem diabodies
(TandAbs).

Tandem scFvs are one of the most well-studied bsAb formats, partly because of the first approved
fragment-based bsAb blinatumomab (Blincyto™). Blinatumomab is a bispecific T-cell engager (BiTE)
with VLCD19-(GGGGS)3-VHCD19-(GGGGS)-VHCD3-(GGGGS)3-VLCD3 configuration (Figure 1b) [4]
and binds simultaneously to CD3ε on T-cells and CD19 on lymphocytes of B-cell lineage. By ligating
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T-cells with target cells and activating T-cells through CD3, blinatumomab can induce the killing of
CD19-expressing B-cells including malignant B-cell leukemia and lymphoma [4]. The order of variable
domains is critical for the production of functional BiTE [5], while the length of the inter-scFv linker
may either be short (GGGGS) or long ((GGGGS)3) without significantly affecting its tumor-killing
activity [6]. Of course, it is unlikely that there exists a single optimal molecular configuration for all
tandem scFvs, because the effect of variable domain order on the functionality of scFv differs among
antibodies, and close proximity of two scFvs connected by a short linker may interfere with the antigen
binding activity of certain antibodies. Unlike more traditional antibody fragment formats, such as
Fabs or scFvs that are produced from E. coli, BiTEs are usually produced from mammalian cells [4,6],
presumably because of their rather complex tertiary structure and multiple disulfide bonds. Their small
size (~60 kDa) and the lack of Fc domain make them rapidly cleared in vivo (t1/2 = 1.25 ± 0.63 h [7]) and
necessitate administration by continuous infusion [8], which may be overcome by, e.g., fusion to the Fc
domain [9–11]. On the other hand, the compact size of BiTEs seems to keep the distance between target
and effector cells optimal for tumor cell killing by T-cells, at least in the case of blinatumomab [12].
Stability is another factor to consider in the development of BiTEs. While some BiTEs can be kept
refrigerated for months in PBS without significantly losing binding activity [13], in clinical application,
blinatumomab is stable for only up to 48 h at room temperature [14], possibly due to its scFv-based
architecture. Despite the technical issues, BiTEs have a superb therapeutic efficacy, as proven by the
success of blinatumomab, and more than 10 BiTE molecules are currently in the early stages of clinical
evaluation for various hematological and solid cancers [15].

Dual Affinity Re-Targeting (DART) is another fragment-based bsAb design, distinct from the
tandem scFv format of BiTEs. DART is a disulfide-linked diabody; i.e., two polypeptide chains in
VH-linker-VL configuration form a heterodimer, with two cysteines at the opposing C-termini linked
to each other by a disulfide bond (Figure 1c). Typically, to generate a DART, two polypeptide chains
in, e.g., VLA-linker-VHB-tail and VLB-linker-VHA-tail configurations are co-expressed in a host cell.
The use of a short linker (e.g., GGGGS) prevents the formation of monomeric scFv, and the tail sequence
contains a cysteine residue for disulfide linkage. In theory, the co-expression of two such polypeptides
could result in the formation of both heterodimer and nonfunctional homodimer. The introduction of
heterodimerization sequences to the C-terminus of each chain can facilitate the formation of correctly
paired DARTs, and affinity chromatographic purification using antigen-immobilized resin followed
by size exclusion chromatography yields active heterodimeric proteins with high purity [16,17].
Unlike ordinary diabodies, which are held together by relatively weak non-covalent inter-variable
domain interactions, the two polypeptide chains of DART are covalently linked. As a result, DARTs are
highly stable, fully retaining their binding activity for up to 31 months at 4 ◦C in PBS and 8 weeks at
37 ◦C in human serum without a significant increase in aggregation [17]. Because Fv units of DART
are maintained by noncovalent interdomain interactions between VH and VL without a peptide linker,
they more closely resemble those of IgGs than scFv units of BiTE do. Moreover, the sequence and
flexibility of the linkers as well as the relative orientation of two monospecific units differ between
DART and BiTE [16]. Phase 1 clinical trial of duvortuxizumab (MGD011, a CD19×CD3 DART with
Fc domain for longer serum half-life) has been terminated reportedly due to neurotoxicity and the
competition from other CD19-targeting therapies [18]; however, there are a number of DART molecules
currently undergoing clinical evaluation for indications such as colorectal cancer [19] and acute myeloid
leukemia [20].

Tandem diabodies (TandAbs) are head-to-tail homodimers of two identical polypeptide chains in,
e.g., VHA-VLB-VHB-VLA configuration (Figure 1d). Unlike BiTEs and DARTs that are monovalent to
each of their targets, TandAbs are bivalent to both antigens and thus, expected to have higher apparent
affinity through the avidity effect. Kipriyanov et al. reported the construction and characterization
of CD19×CD3 TandAbs in VHCD3-(9 a.a. linker)-VLCD19-(12 or 27 a.a. linker)-VHCD19-(9 a.a.
linker)-VLCD3 configuration produced in E. coli [21]. The short 9–12 a.a. linker on both sides
was employed to prevent the unwanted intrachain interactions of variable domains. For the middle



Biomolecules 2020, 10, 360 5 of 31

linker position, the long 27 a.a. linker was designed to allow the structural flexibility required for the
folding of TandAb and the antigen binding by the middle (second and third) Fvs, whereas the short
12 a.a. linker was expected to minimize the intrachain paring of variable domains while providing
enough flexibility for folding and antigen binding. The construct with the 12 a.a. middle linker was
solubly expressed in dimeric (i.e., TandAb) form; however, the 27 a.a. middle linker construct was
produced predominantly as monomeric single-chain diabody in normal 2×YT medium due to the
flexibility of the long linker. In another study, a CD19×CD3 TandAb with a short GGSGGS linker in
all three positions was produced from mammalian cells [22]. The TandAb, AFM11, was reasonably
stable and ~90% of the molecules remained unaggregated after seven days at 37 ◦C. At ~105 kDa,
the molecular weight of TandAb homodimer is significantly higher than that of albumin (67 kDa) and
the renal clearance rate of TandAb is expected to be much slower than those of smaller fragment-based
bsAbs such as BiTEs or DARTs (~55 kDa). Indeed, AFM11’s serum half-life in phase I clinical trial
was reported to be ~8 h [23], compared with ~2 h for blinatumomab [8]. For a fragment-based bsAb
format TandAbs are stable and highly potent (see below in Section 2.2.2), and while AFM11 has
been put on clinical hold after a fatal neurological adverse event was reported in phase 1 clinical
trial, other TandAbs, including AFM13 (NK-cell engaging CD30×CD16A, phase 2, NCT02321592) and
AFM24 (EGFRxCD16A, phase 1, NCT04259450) are being evaluated in clinical studies.

2.1.2. Symmetric Fc-Based bsAbs

The fragment crystallizable (Fc) region is responsible for the antibody effector functions by binding
to FcγRs and C1q, and also for the prolonged half-life of immunoglobulins through pH-dependent
binding to FcRn [24]. Therefore, it is generally desirable for therapeutic antibodies to have an Fc
region unless large size and longer half-life need to be avoided, and various engineering approaches
have been applied to the Fc region for improved biological and physicochemical properties [25],
including engineering for bispecificity [26]. Fc-based bsAbs can be categorized into two large groups:
symmetric and asymmetric. Symmetric Fc-based bsAbs typically have additional Fv or scFv moieties
at the N- and/or C-termini of the polypeptide chains, making them larger than conventional IgG
antibodies (Figure 1e). On the other hand, asymmetric Fc-based bsAbs are produced by the preferential
heterodimerization of two engineered Fcs, making them identical in size and shape to conventional
IgG and each of the two arms of the bsAb recognizing a different antigen.

In symmetric Fc-based bsAbs, additional Fvs with second antigen specificity can be fused to either
N- or C-termini of heavy or light chains of IgG, typically in the form of scFv (Figure 1f) [27] but also in
linkerless Fv forms as in dual variable domain-IgG (DVD-IgG) (Figure 1g) [28]. Other antigen binding
moieties, such as domain antibodies or alternative binding scaffold molecules, can also be utilized
in place of scFv [29–32]. Attaching additional binding moieties to conventional IgGs is conceptually
simple and straightforward, however, it may alter the physicochemical properties of the molecule
significantly, depending on the properties of the added Fvs and the site of attachment. Therefore,
such aspects of bsAb design as the fusion site (N- or C-termini, heavy or light chains), linker length
and sequence, and the choice of the Fv as either main (IgG Fv) or appended (scFv) may need to be
optimized for the practical implementation of this type of bsAbs [3,32–34].

The first study of IgG-scFv, using anti-dextran IgG with anti-dansyl scFv fused to the C-termini of
CH3s through a GGGS linker [27], reported that the molecule retained the binding activity to FcγR
and C1q as well as showing a longer serum half-life than F(ab’)2-scFv, although these Fc-mediated
functions were significantly weaker than the IgG antibody without attached scFv. The anti-dextran
and anti-dansyl affinities both decreased ~10-fold by the scFv fusion, and notably, the IgG-scFv could
not mediate complement-dependent cytotoxicity toward dansyl-BSA-coated sheep RBC, possibly due
to the altered orientation and flexible linker of the attached scFv that may interfere with C1q binding
and/or the recruitment of the complement system. The apparent limitations of this initial IgG-scFv
construct suggested that elaborate engineering of bsAb design was necessary in order to optimize their
binding and effector functions.



Biomolecules 2020, 10, 360 6 of 31

In an effort to optimize the efficacy and physicochemical properties of IgG-scFv bsAbs, biparatopic
anti-CCR5 IgG-scFv molecules with different sites of scFv attachment and/or varying lengths of the
scFv linker were constructed, with and without an interdomain disulfide bond in the scFv moieties [34].
With conventional scFvs with a (G4S)3 linker and without an interdomain disulfide bond, a significant
amount of aggregates (up to 50%) was observed at high concentration (≥1.0 mg/mL) and/or upon
prolonged storage, which is a well-known, recurring problem for many scFv fusion proteins [35].
Introduction of a disulfide bond between VH44 and VL100 or a longer linker [(G4S)4–6] greatly improved
the stability and monomer content of IgG-scFv, with some constructs showing properties comparable
to conventional IgG molecules. In another study, Miller et al. observed that the disulfide-bond
stabilization strategy may not be universally applicable, and the introduction of the interdomain
disulfide bond resulted in lower expression and degradation of some scFvs [35]. In order to develop a
more general approach to scFv stabilization, they constructed small (10~100 mutants) focused libraries
of an anti-LTβR scFv, and screened them for target binding following thermal challenge. Stabilizing
mutations were identified and combined to generate stabilized scFvs; IgG-scFv generated using the
stability-engineered scFv showed a remarkable improvement in monomer content (~40% soluble
aggregates for wild-type bsAb vs. ~7% for the stability-engineered IgG-scFv), demonstrating that the
stability of the scFv moiety is a critical factor for the physicochemical properties of IgG-scFv bsAbs.

Instead of attaching scFvs, VH and VL can each be introduced to separate termini of different
chains of IgG to form an additional Fv. A prominent example is DVD-Ig, in which a VH and a VL
are attached to the N-termini of the heavy and light chains, respectively, resulting in a bsAb with
two consecutive Fvs in each arm [28]. In this format, the presence of the distal Fv at N-terminus may
interfere with the antigen binding by the proximal Fv [36], which can be partially relieved by linker
engineering (see below). While glycine-rich flexible linkers are most commonly used to construct
other types bsAbs, linker sequences that correspond to the N-terminus of CH1 or CL (and variations
thereof) are frequently employed for the construction of DVD-Ig [28,37], presumably to facilitate the
VH/VL heterodimerization by mimicking the variable/constant domain interfaces of natural antibodies.
The crystal structure of IL12×IL18 DVD-Ig with such linkers (ASTKGP for VH1-VH2 and TVVAP for
VL1-VL2) revealed that the distal Fv is positioned approximately 85◦ relative to the proximal Fv when
the latter is occupied by the antigen (IL18), allowing efficient binding of both antigens by DVD-Ig [37].
In other DVD-Ig constructs, however, the presence of distal Fv may interfere with and compromise the
antigen binding by proximal Fv; while this problem may be overcome by linker optimization or other
engineering, an interesting approach took advantage of it by introducing an endopeptidase-susceptible
sequence to one of the two linkers of DVD-Ig [36]. Selective cleavage of one linker provides increased
flexibility of the distal Fv and stronger binding by the proximal Fv; it is plausible that such DVD-Ig can
be engineered to be selectively activated by a cancer-specific endopeptidase in a prodrug-like manner.

Symmetric Fc-based bsAbs have relatively straightforward design principles, and tetravalency
(bivalent to both targets) provide them with stronger binding to targets by the avidity effect; however,
the presence of the appended binding units poses engineering challenges to develop therapeutic-quality
molecules. A number of symmetric Fc-based bsAbs for cancer therapy have been tested or are currently
in clinical trials: LY3164530 (cMET×EGFR IgG-scFv, phase I, NCT012221882) has completed phase I
trial but further development was stopped due to significant toxicities and lack of a potential predictive
biomarker [38], and ABT-165 (DLL4×VEGF DVD-Ig, phase 2, NCT03368859) [39] is being developed
for metastatic colorectal cancer.

2.1.3. Asymmetric Fc-Based bsAbs

IgG molecules are heterotetramers with C2 symmetry, consisting of two identical heavy and
light chains each. The two identical heavy chains are held together by disulfide bonds at the hinge
region and noncovalent interactions between CH3 domains, and each heavy chain is paired with a
light chain by a disulfide bond between C-termini of CH1 and CL, as well as noncovalent interdomain
interactions. Because the two Fab arms of conventional IgG are identical to each other, IgG is bivalent
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but monospecific. Asymmetric IgG-like bsAbs have essentially the same molecular architecture as
conventional IgGs, but their Fab arms are different due to the heterodimerization of Fc domains,
resulting in bispecificity.

The earliest approach to the production of asymmetric IgG-like bsAb was to generate quadromas
by the fusion of two hybridomas (Figure 1h) [40]. Because two each of different heavy and light chains
are produced in quadroma cells, their random assembly results in 10 unique combinations (16 possible
combinations with six identical pairs) of which only one would have the desired bispecificity. Assuming
unbiased random assembly of heavy and light chains, only 12.5% of the produced IgG molecules
would be bispecific, which needs to be separated from the rest of monospecific or non-functional IgGs.
Catumaxomab (Removab®) is an EpCAM×CD3 bsAb produced by quadroma technology and was
approved by European Medicines Agency (EMA) in 2009 for the treatment of malignant ascites but
was withdrawn from the market in 2017. It is a mouse/rat hybrid IgG, with mouse anti-EpCAM IgG2aκ
and rat anti-CD3ε IgG2bλ half-antibodies [41]. Because of the preferential pairing between the heavy
and light chains of the same species, the amount of functional bsAb is higher than what is expected
from random heavy/light chain assembly, and it can be purified by protein A and cation exchange
chromatographic steps. Catumaxomab is a trifunctional antibody and binds to EpCAM and CD3 on
cancer cells and T cells, respectively, as well as recruiting other immune cells such as macrophages
and NK cells through the interaction between Fc and FcγRs. Although neither catumaxomab nor the
quadroma technology is currently in active use, they validated the concept of asymmetric bsAb and
facilitated the development of a next generation of bsAb formats as discussed below.

The problem of the random pairing of heavy and light chains during the assembly of asymmetric
IgG-like bsAbs can be overcome by modifications in CH3 domain, light chain, and/or Fd region.
CH3 domains of IgG form strong homodimers, and in the case of human IgG1, the dissociation
constant is estimated to be in the sub-picomolar range [42]. Through the engineering of the interdomain
interface of CH3, preferential formation of Fc heterodimer (and, hence, asymmetric IgG) can be achieved.
Various interdomain interface pairs complementary in shape, contour, charge, hydrophobicity, hydrogen
bonding, and/or disulfide bond formation have been reported [43]. Initially, two engineered CH3
pairs with steric complementarity (knobs-into-holes, or KiH) were shown to favor heterodimerization
(Figure 1i,j) [44]. Mutations of Thr366 in one CH3 domain to bulkier Tyr (T366Y) and Tyr407
in the other CH3 domain to smaller Thr (Y407T) resulted in the heterodimer formation of up to
92%, and similar heterodimer yield was observed from T366W/Y407A pair. In a subsequent study,
Thr366 in one CH3 domain was mutated to Trp, and Thr366, Leu368, and Tyr407 in the other CH3
domain were mutated to Ser, Ala, and Val, respectively [45], while the heterodimeric yield of these
constructs was comparable to the T366W/Y407A pair of the earlier study, the stability of the CH3
heterodimer improved significantly, probably owing to the enhanced hydrophobic interaction between
the domains. Other heterodimerization strategies, mostly relying on steric complementarity and
hydrophobic interactions [46–48] but also on charge [49], hydrogen bonding complementarities [50],
or an interdomain disulfide bond [51,52], have been shown to yield high levels (typically >90%) of
stable heterodimers.

Even with the formation of heavy chain heterodimer, mispairing of light chains can result in
non-functional Fabs and reduce the yield of functional bsAb. Attaching scFv or scFab to the N-termini
of the heterodimeric Fc domains is one way to prevent the noncognate pairing of heavy and light
chains [49,53,54]; however, these formats are different from true IgG due to the presence of linkers
and/or the lack of CH1/CL domains in case of scFv. The mispairing problem can also be addressed by a
common light chain approach, in which an identical light chain is employed in both Fab arms (Figure 1i).
Of the two chains that comprise an antibody, the heavy chain generally makes a greater contribution to
antigen binding, and it is often possible to change the whole light chain while maintaining the binding
activity of the antibody [55], or to isolate target-specific antibodies from a common light chain antibody
library [56]. However, the common light chain approach is not always easily applicable because for
many antibodies the light chain also contributes significantly to the antigen binding and finding a light
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chain that can functionally pair with two different heavy chains is a difficult task. Recently approved
hemophilia A drug Hemlibra™ (emicizumab) is an asymmetric IgG-like bsAb employing a common
light chain [55].

An elegant solution to the light chain mispairing problem in asymmetric IgG is the CrossMab
format. In this method, instead of Fd-LC pairing to produce Fab regions, CH1 and CL in one of
the Fab arms of the asymmetric IgG are swapped for each other (CrossMabCH1-CL) (Figure 1j) [57].
CrossMabs can be produced in other configurations, such as Fd/LC swap (CrossMabFab) or VH/VL
swap (CrossMabVH-VL); however, they are prone to side product formation such as nonfunctional
monovalent heavy chain heterodimer and Fab in case of CrossMabFab, or IgG-like nonfunctional
molecule produced by Bence-Jones VL dimer formation in case of CrossMabVH-VL. An Ang-2×VEGF
CrossMabCH1-CL based on anti-VEGF bevacizumab and anti-Ang-2 LC06 was produced with 82%
yield, along with 4%~7% of various side products lacking one or more of the four chains comprising
the complete CrossMab. The affinity of each Fab arm was essentially the same as that of the parental
antibody, and the thermal stability was also similar to that of conventional IgG. The bsAb, vanucizumab,
in combination with mFOLFOX-6 failed improve the progression-free survival of metastatic colorectal
cancer (mCRC) patients relative to the bevacizumab-treated group [58]. A different Ang-2×VEGF
CrossMab, faricimab, is being evaluated in a number of phase 3 clinical trials for the treatment of
neovascular age-related macular degeneration (nAMD) (NCT03823287 and NCT03823300) and diabetic
macular edema (NCT03622580 and NCT03622593). Another sophisticated approach to minimizing
LC mispairing is the designed orthogonal Fab interfaces [59,60], which enable >90% correct HC-LC
pairing. Electrostatic and steric complementarities in variable (VH:VL) and constant (CH1:CL) domain
interfaces, introduced by the mutation of key interface residues, facilitate the cognate Fab pairing;
however, the differences in variable domain sequences among antibodies may make it difficult for
this approach to be universally applied. Extensive engineering of the CH1:CL domain interface was
reported to make the mutant light chains to correctly pair with their cognate mutant heavy chains
(up to >99% functional bsAb) without having to introduce mutations to variable domains and thus
making the orthogonal Fab interface approach more generally applicable [61].

Instead of introducing all four genes (two for heavy and two for light chains) into host cells as
in CrossMab production, asymmetric IgG-like bsAbs can also be produced by controlled Fab arm
exchange (cFAE) (Figure 1k) [62,63]. In this method, two monospecific IgGs each with different
antigen specificity and harboring a mutually complementary, homodimer-destabilizing mutation in
the CH3 domain (e.g., F409L in one IgG and K409R in the other) are produced and purified separately.
The two mutant IgGs are mixed in reducing condition (for disulfide bond cleavage) to form asymmetric
bsAb via preferential heterodimerization of the mutant CH3s. The method is highly efficient with
≥95% yield of functional bsAb as determined by cation exchange chromatography, hydrophobic
interaction chromatography, and mass spectrometry [63]. Two cFAE bsAbs are currently in clinical
evaluation: JNJ63709178, a CD123×CD3 bsAb produced by cFAE between F409L/K409R mutant
IgGs (“DuoBody”), is in a phase 1 clinical trial for relapsed or refractory acute myeloid leukemia
(NCT02715011), while JNJ61186372 (an EGFR×cMet DuoBody) is in a phase I clinical trial for advanced
non-small cell lung cancer (NCT04077463 and NCT02609776).

2.2. Affinity of bsAbs

As with conventional antibody therapeutics, the affinity of bsAbs is one of the critical determinants
of their pharmacological properties. High-affinity binding is usually desirable, although some bsAbs
with low to moderate affinities were shown to have exceptionally high potency and efficacy (see below).
At the same time, the affinity itself can also be influenced, usually negatively, by the architecture of
the bsAb; elaborate engineering is often necessary to restore the decreased affinity. In the following
subsections, the influence of bsAb design on its affinities and the engineering approaches to optimize
them, as well as the relationship between bsAb affinity and its potency and efficacy are discussed,
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with various examples of bsAb molecules, their affinities and optimization, and comparison of biological
activities provided.

2.2.1. Affinity and bsAb Formats

Apart from the intrinsic dissociation constant of the parental monospecific antibodies, the affinity
of each target-binding unit of a bsAb is also affected by its format and structure. For example, an
scFv and an Fv with identical variable domains may have different affinities, possibly due to the
presence of a peptide linker in scFv and the conformational constraint it imposes: a CD19×CD3
DART (two Fv units) with the identical monospecific units to blinatumomab showed ~two-fold
higher affinities to both antigens and stronger cytotoxicity toward CD19+ cell lines than the BiTE
molecule (two scFv units) [16]. For multivalent bsAb formats, avidity effect can also enhance the
apparent affinity significantly: AFM11, a CD19×CD3 TandAb, exhibited ~eight-fold higher affinities to
both targets than the BiTE molecule consisting of identical variable domains [21]. In case of BiTEs,
the order of variable domains also had some influence on the binding activity among domain-order
variants of blinatumomab. Weaker binding to CD3 was observed for BiTEs with anti-CD3 scFv in
VL-linker-VH configuration, especially when it is located on the C-terminal side of the molecule (i.e.,
VLCD19-VHCD19-VLCD3-VHCD3), whereas anti-CD19 scFv showed a strong binding to target cells
regardless of the location or domain order [64]. Similar effects of molecular architecture on the affinity
are likely to be observed in other fragment-based or appended IgG bsAbs, although the preferred
configurations would vary widely among different formats and monospecific units.

Steric hindrance caused by the attachment of additional binding units is also a factor influencing the
affinity of bsAbs. A study on the construction and characterization of various formats of CEA×DOTA
IgG-scFvs as well as DVD-Ig [65] showed that the affinity of anti-CEA Fv on IgG portion of the molecule
was largely unaffected by the fusion to scFv, regardless of the format, whereas the affinity of the attached
anti-DOTA scFv could vary >10-folds depending on the site of attachment. The anti-DOTA affinity was
highest when the scFv was fused to the C-termini of the light chains (13 nM), and lowest in DVD-Ig
format (213 nM, anti-DOTA Fv in proximal position). These characteristics cannot be generalized
though; for example, the affinities of various anti-EGFR/anti-IGF-1R IgG-scFv bsAb constructs toward
both antigens were all comparable to one another and to the parental antibodies regardless of the
site of attachment [40]. Linker flexibility, size and structure of the target antigen, epitope location,
and the orientation of binding interaction are all likely to contribute to the binding characteristics
of the appended or inserted binding units of a bsAb. A systematic study of DVD-Igs with linkers
of various sizes and sequences revealed that (1) the affinity of the proximal Fv tended to be higher
with longer linkers, (2) linkers based on CH1-CH2 hinge sequence of human IgG1 performed better
than those based on natural V-C junction sequences or polyglycine, and (3) partial or full cleavage of
the distal Fv largely restored the binding activity of the proximal Fv [36]. In a later study, a series of
DVD-Ig proteins with an identical anti-VEGF proximal Fv, several different distal Fvs against another
target, and V-C junction-based linkers of different lengths connecting them were constructed and their
binding kinetics were measured [37]. A > 20-fold reduction in affinity was observed for the anti-VEGF
proximal Fv when short linkers (5–6 amino acids) were used instead of long ones (12–13 amino acids).
Moreover, the affinity of the proximal Fv was 2.5–5 times higher when a short and a long linker were
used for heavy and light chains, respectively (short/long), than the other (i.e., long/short) configuration.
Moreover, the binding affinity of the proximal Fv varied by >three-fold when different distal Fvs were
employed in otherwise identical DVD-Ig proteins. These results suggest that simultaneous engineering
of multiple components is needed in optimizing these types of bsAbs and the optimal bsAb design,
even within a same format, varies widely among different specificities.

The affinities of the parental antibodies are not likely to change significantly in the asymmetric
Fc-based bsAbs, which have an essentially identical structure to those of native IgGs. One possible
exception is the CrossMab format, which has unnatural VH-CL and VL-CH1 linkages not found in
conventional immunoglobulins. The effect of the domain swapping on the affinity of CrossMabCH1-CL,
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as in the cases of other bsAb formats, varies among different variable domains: While the affinity of
the CH1-CL-crossed anti-VEGF Fab arm of vanucizumab (an Ang-2×VEGF CrossMab) is essentially
identical to that of its parent bevacizumab with KD < 0.1 nM [57], the affinity of faricimab (another
Ang-2×VEGF CrossMab with a crossed anti-Ang-2 Fab arm) toward Ang-2 was ~five-fold lower than
that of the parental anti-Ang-2 mAb LC10 (22 nM and 4.1 nM, respectively) [66]. The differing effects
of the CrossMab domain crossover on their affinities once again highlight the technical difficulties
associated with optimizing the affinities of bsAbs, and the necessity to further develop more advanced
technological platforms in the field of bsAb engineering in order to efficiently generate therapeutic
candidates of desired qualities.

2.2.2. Effects of Affinity on the Biological Activity of bsAbs

The effects of bsAb affinity on their biological activities can be best assessed by comparing the
biological activities of different bsAbs targeting a same pair of antigens. CD19 and CD3 are an ideal pair
for such analyses: companies and researchers have developed and reported many CD19×CD3 bsAbs
of different formats and affinities, and their biological activities were studied in great detail, often in a
comparative fashion. At least three of them (blinatumomab, AFM11, and duvortuxizumab) have been
tested in clinical studies; they are of different formats and based on different parental antibodies with
different affinities, thus providing a suitable set of data for analyzing the effect of bsAb format and
affinity on their functions.

The anti-CD19 moiety of AFM11 is a humanized affinity-matured version of the clone HD37 [22],
the parental antibody used for the construction of blinatumomab [64], while duvortuxizumab
(a DART-Fc) has humanized anti-CD19 mAb BU12 as its targeting moiety [67]. The affinities of
blinatumomab, AFM11, and duvortuxizumab for human CD19 are 2.1, 0.37, and 2.0 nM, respectively.
The anti-CD3 Fv of blinatumomab is from the clone TR66, while humanized-affinity matured
mAb UCHT and humanized mAb XR32 were used for AFM11 and duvortuxizumab, respectively.
Unlike anti-CD19 Fvs whose affinities differ from one another by less than an order of magnitude,
the anti-CD3 affinities of these bsAbs vary more widely, with dissociation constants of 120 nM, 2.1 nM,
and 21 nM for blinatumomab, AFM11, and duvortuxizumab, respectively. Therefore, it is of interest to
analyze whether the difference in anti-CD3 affinities translates into differences in the biological activities
of these bsAbs. Several head-to-head in vitro and in vivo studies comparing blinatumomab, a clinically
approved bsAb, with other CD19×CD3 bsAbs have been reported. Because of the differences in study
details, including cell lines used, incubation condition, and protein preparation, direct comparison
of the results from different studies is difficult; nonetheless, they provide valuable insights into the
mechanism of action of these highly potent anticancer drugs.

AFM11 is much more potent than blinatumomab in vitro, with sub-picomolar EC50 when targeting
CD19 + MEC-1 cells or NALM6 cells in the presence of primary human T cells. At effector: target ratio
(E/T) of 25, AFM11 exhibited sub-picomolar EC50 after 1 h incubation, whereas blinatumomab showed
EC50 > 20 pM under the same condition. Upon 23 h incubation the two bsAbs showed comparable
potency (EC50) at E/T = 5 against NALM6 cell line, however AFM11 maintained high levels of potency
and efficacy at lower E/T. Even at E/T ratio of 0.2 AFM11 induced 60% lysis of target cells versus
20% lysis for blinatumomab, indicative of the robust serial killing activity with which the TandAb
functions catalytically and a single AFM11 molecule can participate successively in the killing of
multiple target cells. The efficacies (maximal % lysis) of AFM11 and blinatumomab were comparable
at E/T > 2; however, a higher concentration was required for the latter to achieve the maximal lysis.
Duvortuxizumab was also shown to be more potent than blinatumomab, and EC50 against Raji/GF
cell line using human T lymphocytes at E:T ratio of 10:1 was 0.17 pM (0.019 ng/mL), compared with
7 pM (0.38 ng/mL) for blinatumomab after 24 h incubation [67]. While the potency of these bsAbs
varies rather widely, it should be noted that the affinity is not likely to be the only contributor to these
differences in potency; differences in the structures and epitopes of these bsAbs may play roles by, e.g.,
forming tighter immune synapse [16].
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It is noteworthy that the affinity of blinatumomab for CD3 is fairly low with KD ≈ 100 nM [68],
but its EC50 toward CD19-expressing cancer cells are in the picomolar range [12,68]. Because of the
high affinity for CD19 (KD = 2.1 nM), multiple molecules of blinatumomab are bound to the target cell
surface, through which robust immune synapses between the target and effector cells can be formed by
the avidity effect despite the low affinity of blinatumomab for CD3. On the other hand, a CD19×CD3
TandAb with sub-nanomolar affinity for CD3 was reported to have EC50 in the nanomolar range toward
the same cancer cell lines [12]. It has initially been suggested that the low affinity of blinatumomab
for CD3 enables efficient detachment of T cells from target cells after cell death, allowing them to
serially kill other target cells and effectively lowering EC50 [69]: at E/T = 0.1, 50% of NALM6 cells were
lysed after 24 h incubation in the presence of 1 ng/mL blinatumomab. This explanation needs to be
interpreted with caution, though, firstly because high potency (low EC50) and serial killing activity (low
E/T) are not necessarily correlated, and secondly because CD19×CD3 bsAbs with a higher affinity for
CD3 such as AFM11 could still induce serial killing of target cells, and actually shows greater potency
than blinatumomab (see above). In addition, when a high-affinity (low nanomolar KD value) anti-CD3
scFv was employed in making an anti-BCMA BiTE, cytotoxic activity with subpicomolar to picomolar
EC50 values could still be observed against human multiple myeloma cell lines [70]. In contrast to the
initial TandAb construct based on the anti-CD3 clone OKT3 [21], the subsequently developed T-cell
engaging bsAbs utilized different anti-CD3 moieties with presumably different epitopes on CD3ε and
repeated proof of picomolar potency as a part of T-cell engaging bsAbs [71], which may better explain
the differences in potency of these molecules than the anti-CD3 affinity alone does.

3. Antibody–Drug Conjugates

Antibody–drug conjugates (ADCs) are another class of highly potent antibody-based therapeutics.
ADCs consist of three integral components: (1) an antibody targeting cancer cell-specific antigen,
(2) a cytotoxic payload, and (3) a chemical linker that connects the drug and the antibody. Following
the binding to cancer cell-surface antigen, ADC is internalized by receptor-mediated endocytosis,
and the payload is released by the degradation of the linker or the antibody in the endolysosomal
compartment. In developing ADCs, therefore, factors such as target antigen biology, specificity of the
antibody, cytotoxicity and mechanism of action of the payload drug, the stability and cleavage of the
linker, and the sites of linker attachment all need to be carefully considered.

3.1. Target Antigens

Ideally, the target antigen for ADC needs to be overexpressed on cancer cell surfaces with no
or negligible expression on normal healthy tissues. Because the main role of the antibody in ADC is
to deliver the cytotoxic payload to cancer cells, the biological functions of the target antigen or their
inhibition by the antibody are considered less important than for conventional therapeutic antibodies
(but see below). Instead, the antigen needs to be endocytosed upon antibody binding, in order to
deliver the payload into cancer cells. The level of surface expression is also crucial for ADC target
antigen since the number of target molecules per cell, which ranges from less than a thousand to over a
million, is an important determinant of the payload delivery efficiency. A number of cancer targets
meet these criteria, and ADCs targeting these molecules have been approved or are in various stages
of clinical development. Many of the anti-cancer ADCs target hematological cancers; these cancers
are better accessible than solid tumors by large molecules, and normal as well as cancerous cells
of a specific immune cell subset can be targeted and depleted without excessive toxicity. However,
solid tumors constitute ~90% of all cancer incidences [72], and there are also considerable efforts to
develop ADCs against solid tumor targets.

Hematological cancer targets for approved ADCs include CD33, CD30, CD22, and CD79b.
These antigens typically are restricted to a specific immune cell lineage, and on-target toxicities to
normal tissues and organs can be minimized. CD33 is one of the earlier ADC markers targeted
by gemtuzumab ozogamicin (Mylotarg™) for the treatment of acute myeloid leukemia (AML).



Biomolecules 2020, 10, 360 12 of 31

Its expression is restricted to the cells of myeloid lineage, with 90% of AML cases expressing the
antigen on >20% of the leukemic blasts [73]. CD33 is internalized following antibody binding [74],
making possible the development of ADC targeting this antigen. However, the expression of CD33
on normal myeloid cells, as well as hepatic sinusoidal endothelial cells [75] and Kupffer cells [76]
which can be derived from bone marrow progenitors, causes target-dependent adverse events such as
myelosuppression and hepatic toxicity [77]. Partly due to the toxicity, Mylotarg was withdrawn from the
U.S. market in 2010 and re-approved by the FDA in 2017 for the treatment of CD33+ AML with a lower
recommended dose and a revised treatment schedule [78]. Another ADC approved for hematological
cancers, brentuximab vedotin (Adcetris™) targets CD30, a member of tumor necrosis factor receptor
superfamily (TNFRSF) expressed on activated B cells, T cells, and NK cells, as well as a number
of T- and B-cell malignancies, including Hodgkin lymphoma and anaplastic large cell lymphoma.
While its role in lymphocyte proliferation and differentiation is inconclusive or contradictory [79],
CD30 is a suitable target for ADC development thanks to the restrict expression pattern and rapid
internalization upon antibody binding, and adverse events are usually low-grade and manageable for
Adcetris™ [80]. The examples of CD33 and CD30 suggest that the lineage-specific expression profile
and the efficient internalization are two of the key factors determining the successful ADC targets for
hematological cancers.

CD22 and CD79b are markers of B-cell lineage and are targeted by inotuzumab ozogamicin
(Besponsa™) and polatuzumab vedotin (Polivy™), respectively. Both are restricted to lymphocytes of
B-cell lineage: CD22 is most prominently expressed on mature B cells while CD79b (a B cell receptor
complex component) is a pan B-cell marker and expressed in virtually all immature and mature B
cells [81]. Because the loss of B-cell targets such as CD19 is a major mechanism of treatment resistance,
these novel targets are expected to provide new therapeutic options for, e.g., anti-CD19-refractory
B-cell malignancies [82]. Moreover, the inherent biological function of CD79b as a component of
B-cell receptor (BCR) complex enables the efficient internalization and delivery of the bound ADC to
the lysosomes, resulting in highly potent cancer cell killing [83,84]. On the other hand, while CD19
is a prototypical target of B-cell cancers for T cell engaging bsAbs (see above) or CAR-T cells [85]
and coltuximab ravtansine (SAR3419, an anti-CD19 ADC) has also been evaluated in clinical trials
(NCT01472887) [86], the antigen was found to internalize only in CD21-negative cells [87], exemplifying
a technical hurdle of antigen internalization associated with the target selection for ADC.

Most cell-surface targets of solid tumors are also expressed on normal tissues, albeit in lower
abundance, which makes it more difficult to simultaneously achieve efficacy and safety of ADCs for
these malignancies. HER2 is the most successful ADC target for solid tumors to date, and two ADC
drugs targeting it have been approved: trastuzumab emtansine (T-DM1, Kadcyla™) and trastuzumab
deruxtecan (DS8201a, Enhertu™). About 15% of breast cancers were found to be HER2+ [88] along with
other solid tumors such as gastric cancer [89], and targeted therapy against HER2 proved efficacious
using kinase inhibitors, monoclonal antibodies, and ADCs [90]. HER2 expression level in breast cancers
overall are only <2-fold higher than in normal breast tissues and the normal expression level of HER2
is higher than the expression levels on cancer cells of some of other ADC targets [83], which would
make HER2 an unattractive target for ADC development. However, HER2 is highly overexpressed in
a subset of breast cancers (>106 molecules/cell) [91], and ADCs with optimal combination of targeting
antibody, linker, and payload can selectively kill HER2-overexpressing cancer cells while minimizing
overt toxicity [92]. In addition, HER2 is an oncogenic driver for many HER2+ cancers, which makes
it less likely for these cancer cells to become refractory to anti-HER2 ADCs by downregulating the
antigen [83], a major mechanism of resistance to ADCs targeting antigens with no apparent biological
functions for cancer cell survival. The success of anti-HER2 ADCs demonstrates that an antigen with
broad normal tissue distribution may be targeted by ADCs through proper understanding of target
biology, patient stratification, and optimized design and a combination of ADC components.

Another solid tumor target, nectin-4 is a calcium-independent cell adhesion molecule
overexpressed in bladder and other cancers, and the target for the recently approved enfortumab
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vedotin (AGS-22M6E, Padcev™) [93]. It is hypothesized that nectin-4 plays an important role in
the formation and maintenance of adherens junctions and in the establishment of apico-basal cell
polarity [94]. Nectin-4 is also broadly expressed in many normal epithelial tissues in low-to-moderate
levels; however, its expression levels in cancers are much higher [93], resulting in an acceptable safety
profile and therapeutic window for enfortumab vedotin [95]. Although nectin-4 forms homo- and
heterodimers with other nectins and the parent antibody for AGS-22M6E (enfortumab) can inhibit the
interaction between nectin-4 and nectin-1 by binding to the V domain of nectin-4, the unconjugated
antibody did not show any effect on cell viability [93]. On the other hand, the vcMMAE-conjugated
antibody potently induced cancer cell death with IC50 of 0.25 nM (37.8 ng/mL) for T47D cells, implying
efficient internalization of the ADC upon the binding to nectin-4.

ADCs targeting other solid tumor markers such as mesothelin and EGFR are also under clinical
development (see below in the cytotoxic drug subsection for the additional information about these
ADCs) [96]. Mesothelin is highly expressed in mesothelioma and adenocarcinomas of ovary, pancreas,
and lung, with low, limited normal tissue distribution, and internalizes efficiently upon antibody
binding [97]. Anetumab ravtansine, an anti-mesothelin ADC, is under phase 2 clinical development.
Depatuxizumab mafodotin is an anti-EGFR ADC targeting a tumor-selective cryptic epitope on the
CR1 domain of EGFR [98]. Probably as a result of the tumor selectivity, depatuxizumab mafodotin did
not cause dose-limiting dermatological adverse events or diarrhea characteristic of other anti-EGFR
therapies, even though EGFR is broadly expressed in normal tissues [99]. Similar to the cases of
the anti-HER2 ADCs, the development of the anti-EGFR ADC suggests that the technical hurdles
associated with ADC targets may be overcome by taking advantage of the target biology in the context
of cancer cells.

3.2. Cytotoxic Drugs

The cytotoxic drugs for ADC need to be highly potent, considering the limited amount of payload
molecules per cell that can be delivered by ADC to induce cancer cell death [100]. Tubulin inhibitors
such as auristatins and maytansinoids are commonly used as ADC payloads. These molecules are too
toxic to be used by themselves as therapeutic drugs; however, when conjugated to cancer-targeting
antibodies, they can effectively kill cancer cells at a very low concentration. For example, auristatin
E shows an average IC50 of 3.2 ± 0.51 nM against a panel of 39 human cancer cell lines upon 1 h
exposure [101], compared with an average IC50 of 166 nM for vinblastine (another tubulin inhibitor)
or 631 nM for doxorubicin. Another class of ADC payload is molecules that target DNA, including
duocarmycin (DNA alkylation), calicheamicin (DNA double strand cleavage), camptothecin analogues
(topoisomerase inhibitor) such as SN-38 and exatecan, or pyrrolobenzodiazepine (PBD) dimers (DNA
strand crosslinking) [102]. A majority of the ADC candidates currently under clinical evaluation employ
one of the three major classes of cytotoxic drugs, namely maytansinoids, auristatins, and PBD dimers
(Figure 2) [96], but other classes of payloads, such as calicheamicin (for gemtuzumab ozogamicin and
inotuzumab ozogamicin), duocarmycin, SN-38 [102], or exatecan [103] are also used.

Maytansine is a macrolide natural product isolated from the Maytenus species of plants [104] and
inhibits the longitudinal tubulin interactions in microtubules by binding to the rhizoxin binding site
on tubulin [105]. Upon 72 h of exposure, maytansine derivatives S-methyl-DM1 and S-methyl-DM4
induced the killing of KB cells (identical to HeLa cervical adenocarcinoma cell line) with IC50 values
of 22 and 26 pM, respectively [106]. Maytansinoids share the identical macrolide ring structure of
maytansine, and differ from one another in the substituent at C3 (Figure 2a) [107]. The total synthesis of
maytansine has been reported [108], but commercially maytansinoids are prepared semi-synthetically
from ansamitocin P-3 which can be produced by microbial fermentation [109,110]. Ansamitocin
P-3 shares the same maytansine macrolide ring structure and after a reduction of C3 ester and
re-esterification, can be converted to other maytansinoids, including maytansine and derivatives
of maytansine known as DM0-DM4 [111]. DM compounds retain the potent cytotoxic activity of
maytansine and have a thiol group for the conjugation to antibodies via a linker. As well as trastuzumab
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emtansine, which uses DM1 as its cytotoxic payload and has been approved for the treatment of
HER2-positive breast cancer, a number of maytansinoid-conjugated ADCs are under clinical evaluation,
including naratuximab emtansine (Debio 1562, an anti-CD37 ADC with DM1, phase 2; NCT02564744),
mirvetuximab soravtansine (an anti-FOLR1 ADC with DM4, phase 3; NCT02631876), and anetumab
ravtansine (an anti-mesothelin ADC with DM4, phase 2; NCT03455556, NCT03126630, NCT03926143,
NCT03023722, NCT03587311).
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Figure 2. Structures of commonly used antibody–drug conjugate (ADC) payloads. (a) Structures
of maytansinoids and their semisynthetic precursor, ansamitocin P-3. (b) Structures of auristatin.
“Monomethyl” (“MM” of MMAE and MMAF) refers to the methylation status of the N-terminal amino
group, which is dimethylated in the natural compound dolastatin 10. (c) Structures of PBD monomer
and a dimer (SG3199). (d) Structures of camptothecin and its derivatives exatecan and SN-38.

Auristatins are another class of tubulin inhibitors that bind to the vinca site on tubulin and
induce curvature and longitudinal polymerization of tubulin dimers [112,113]. They also inhibit the
nucleotide exchange of tubulin [114] and have been suggested to interfere with microtubule formation
by stabilizing extended M-loop conformation [113]. Auristatins are synthetic derivatives of dolastatin
10, a peptide natural compound from the sea hare Dolabella auricularia [115]. The most commonly
employed auristatins in ADC are monomethyl auristatin E and F (MMAE and MMAF), which differ
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from dolastatin 10 by N-terminal methylation (N-dimethyl for dolastatin 10 and N-monomethyl for
MMAE and MMAF) and the residue at the C-terminus (norepinephrine for MMAE and phenylalanine
for MMAF) (Figure 2b). Due to the presence of a negative charge at the C-terminus, MMAF is less
membrane-permeable than MMAE. As a result, MMAF has a higher IC50 value in vitro and is less
capable of mediating the bystander killing effect [100]. However, the additional negative charge
of the carboxy-terminus of MMAF interacts with Arg278 of tubulin, which is probably the reason
for the higher affinity of MMAF for tubulin [113]. Brentuximab vedotin (Adcetris™), polatuzumab
vedotin (Polivy™), and enfortumab vedotin (Padcev™) are approved ADCs with MMAE as a payload.
Several other ADCs with MMAE or MMAF payloads are in clinical trials; these include depatuxizumab
mafodotin (an anti-EGFR ADC with MMAF, phase 3; NCT03419403, NCT02573324) and AGS-16C3F
(anti-CD203c ADC with MMAF, phase 2; NCT02639182).

PBDs are a class of antitumor/antibiotic natural compounds produced by actinomycetes [116] and
capable of selectively binding to the minor groove of the DNA double helix at a 5′-(A/G)G(A/G)-3′

sequence to form a covalent bond to the amino group of guanine base [117]. Synthetically produced
PBD dimers exhibit potent cytotoxicity by crosslinking DNA strands, and a PBD dimer, SG3199
(Figure 2c), could inhibit the growth of various human cancer cell lines with subnanomolar GI50

(drug concentration at 50% growth inhibition) [118]. The cytotoxicity of PBD dimer depends on the
structure of PBD core and exocyclic substituents, as well as the structure and length of the dimerization
linker [119]. Rovalpituzumab tesirine (Rova-T; an anti-DLL3 ADC) is an example of an ADC with PBD
dimer payload; once internalized, the linker of its tesirine payload is cleaved and the cytotoxic drug
SG3199 is released into the cytosol [118]. Although Rova-T was withdrawn from phase 3 trials due to
the lack of survival benefit, many PBD dimer-conjugated ADCs are in earlier phases of clinical trials to
exploit the exceptionally potent cytotoxicity of this class of payload molecules [119].

The recently approved trastuzumab deruxtecan (Enhertu™) employs exatecan, a synthetic
derivative of the topoisomerase I inhibitor camptothecin [103], as a payload (Figure 2d).
Another camptothecin derivative, SN-38, is an active metabolite of anticancer drug irinotecan and used
in e.g., sacituzumab govitecan [120]. Camptothecin is an alkaloid isolated from the plant Camptotheca
acuminate and potently inhibits the growth of cancer cells with nanomolar IC50 [121]. Exatecan was
synthesized by adding a six-membered ring between the rings A and B of camptothecin, and a fluorine
to the ring A, to make it more soluble in water. It is on average 6–7 times more potent than camptothecin
or SN-38 with sub-nanomolar GI50 for a majority of cancer cell lines tested and inhibits topoisomerase I
with IC50 = 0.975 µg/mL compared with 2.71 µg/mL for SN-38 and 23.5 µg/mL for camptothecin [121].

PBD dimers are the most potent class of cytotoxic drugs among commonly used ADC payloads,
followed by maytansinoids, auristatins, and calicheamicin showing comparable potency to one
another [122]. However, cytotoxicity is not the only criterion for the selection of the payload for ADC
construction, as exemplified by the clinical success of trastuzumab deruxtecan whose exatecan payload
arguably has a weaker cytotoxicity than maytansinoids but which as an ADC is more potent than
trastuzumab emtansine [122], or the employment of MMAF in some auristatin-based ADCs despite its
lower in vitro potency than MMAE (see above). Along with other ADC components, including the
conjugation chemistry and the linker structure, the chemical and biological properties of the payload
may also influence the clinical outcome of ADC therapies. For example, the bystander killing effect,
mediated by the drugs released from a dying target cell entering adjacent cells, varies among the
payload molecules with different charges and/or hydrophobicity, and can have a significant effect on
the potency of an ADC [123]. The hydrophobicity, in turn, may also affect the drug-antibody ratio
(DAR) and the solubility of the ADC. Therefore the ideal payload for an ADC should be determined by
considering its compatibility with other ADC components as well as the biology of the targeted cancer:
For example, bystander killing may be more important for a cancer with heterogeneous expression of
the target antigen in which target-overexpressing cells are surrounded by target-negative cells [123].

Resistance to the ADC treatment is another factor that is related to the payload selection.
Cancer cells may acquire the overexpression of ABC transporters for the efflux of chemotherapeutic
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drugs, most notably P-glycoprotein 1 (Pgp, also known as ABCB1, MDR1 or multidrug resistance 1),
and many ADC payload molecules are substrates for these transporters that have a broad substrate
specificity for hydrophobic molecules [124]. For example, the acquired resistance of HL-60 cells
chronically exposed to gemtuzumab ozogamicin was attributed the induction of overexpression
of MDR1 [125]. Other common ADC payloads such as MMAE [126] and maytansinoids [107] are
also substrates for MDR1 and induce upregulation of drug transporters in cancer cells upon ADC
treatment. In contrast, PBD dimers [118] and exatecan [127] are not efficiently pumped out by this
mechanism, which may in part explain the sensitivity of T-DM1-resistant cancer cells to trastuzumab
deruxtecan [128] and the increased interest in these classes of ADC payloads.

3.3. Linkers

Linkers for ADCs can be classified into cleavable and non-cleavable ones. Non-cleavable linkers,
e.g., the one in trastuzumab emtansine (Figure 3a), remain attached to the cytotoxic drug after proteolytic
degradation of the antibody in the lysosome. The drug, with an attached linker and an amino acid
or short proteolytic peptide to which the linker is conjugated, is released to the cytosol and exerts its
cytotoxic activity [129,130]. Cleavable linkers, on the other hand, are cleaved by lysosomal enzymes,
or by low pH or a reducing environment inside endosomes; the drug-attached fragment after cleavage is
typically removed by self-immolative reaction, releasing the free cytotoxic payload [131]. Brentuximab
vedotin, for example, has a cathepsin-cleavable linker (valine-citrulline linker), and MMAE is released
by the self-immolative reaction of the remaining linker fragment [101].

Regardless of the type, the linker for ADC has to be highly stable in blood in order to minimize the
release of highly cytotoxic free drugs into circulation and to maintain maximum amount of intact ADC
molecules targeting cancer cells. Gemtuzumab ozogamicin (Mylotarg™) and inotuzumab ozogamicin
(Besponsa™), for example, both have an acid-labile hydrazone linker, which is relatively stable at
pH 7.4 but hydrolyzed with high efficiency in the acidic environment of lysosome [74]. However,
the acid-labile hydrazone linker can be considerably less stable than some of the other types of cleavable
linkers, which may contribute to the narrow therapeutic window and high toxicity of gemtuzumab
ozogamicin [132]. Another type of non-enzymatic cleavable linker is the disulfide linker, which is stable
in bloodstream but reduced to free thiols by a high intracellular concentration of reduced glutathione.
Upon internalization, the drug-linker is released to cytosol after antibody degradation or linker cleavage
in lysosome, and the disulfide bond in the linker is reduced by cytosolic glutathione. Anetumab
ravtansine [97] and mirvetuximab soravtansine [133] (see above) are examples of ADCs with disulfide
linkers, as well as gemtuzumab ozogamicin and inotuzumab ozogamicin whose linker contains not
only the hydrazone moiety but also a disulfide linkage (Figure 3b) [134]. The serum stability of
disulfide linkers depends on the substitution on the α-carbon atoms of the disulfide linkage [130].
Linkers with an unsubstituted disulfide bond were readily cleaved in circulation, and ADCs with
such linkers showed a higher toxicity and a lower efficacy. On the other hand, ADCs with highly
substituted disulfide linkers (e.g., Tmab-SSNPP-DM4 in [130]) had comparable stability to the ADC
with a non-cleavable linker, with up to ~80% of the ADC retaining its conjugated drugs in vivo after
seven days.

Enzymatically cleavable linkers are cleaved by lysosomal enzymes, most notably cathepsin
B, which is overexpressed in many cancers [135]. Cathepsin B is a lysosomal cysteine protease
with carboxydipeptidase and endopeptidase activities at acidic and neutral pH, respectively; as a
carboxydipeptidase, it cleaves the penultimate peptide bond, preferentially after a basic amino acid
preceded by an aliphatic or aromatic amino acid (e.g., Phe-Arg) [136]. Chemical linkers with a suitable
dipeptide motif are also cleavable by the carboxydipeptidase activity of cathepsin B, among which
the valine-citrulline (Val-Cit) motif is most commonly used (Figure 3c) [137]. Brentuximab vedotin,
polatuzumab vedotin, enfortumab vedotin, and glembatumumab vedotin (an anti-gpNMB ADC,
phase 3; NCT01997333) are some of the ADCs that use the Val-Cit linker to conjugate MMAE to
the antibodies. Another dipeptidyl motif valine-alanine is employed in, e.g., vadastuximab talirine
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(an anti-CD33 ADC with PBD dimer payload) and rovalpituzumab tesirine. The Val-Ala linker is less
hydrophobic than Val-Cit and can achieve a higher drug-to-antibody ratio (DAR) without inducing
aggregation [138]. Other than linkers with a dipeptide motif, cathepsin-cleavable Gly-Gly-Phe-Gly
(GGFG) tetrapeptide motif has been employed in trastuzumab deruxtecan [139]. The GGFG linker is
conjugated to the hydroxyl group of exatecan payload (a topoisomerase I inhibitor) via self-immolative
aminomethylene linker. The ADC with a less hydrophobic GGFG linker was stable at a high DAR of 8,
resulting in a better antitumor efficacy than trastuzumab emtansine (DAR ~3.5).

Biomolecules 2020, 10, 360 17 of 31 

dipeptide motif are also cleavable by the carboxydipeptidase activity of cathepsin B, among which 

the valine-citrulline (Val-Cit) motif is most commonly used (Figure 3c) [137]. Brentuximab vedotin, 

polatuzumab vedotin, enfortumab vedotin, and glembatumumab vedotin (an anti-gpNMB ADC, 

phase 3; NCT01997333) are some of the ADCs that use the Val-Cit linker to conjugate MMAE to the 

antibodies. Another dipeptidyl motif valine-alanine is employed in, e.g., vadastuximab talirine (an 

anti-CD33 ADC with PBD dimer payload) and rovalpituzumab tesirine. The Val-Ala linker is less 

hydrophobic than Val-Cit and can achieve a higher drug-to-antibody ratio (DAR) without inducing 

aggregation [138]. Other than linkers with a dipeptide motif, cathepsin-cleavable Gly-Gly-Phe-Gly 

(GGFG) tetrapeptide motif has been employed in trastuzumab deruxtecan [139]. The GGFG linker is 

conjugated to the hydroxyl group of exatecan payload (a topoisomerase I inhibitor) via self-

immolative aminomethylene linker. The ADC with a less hydrophobic GGFG linker was stable at a 

high DAR of 8, resulting in a better antitumor efficacy than trastuzumab emtansine (DAR ~3.5). 

 

Figure 3. Representative structures of different types of ADC linkers. (a) Non-cleavable thioether 

linker of trastuzumab emtansine. (b) Acid-labile hydrazone linker of gemtuzumab ozogamicin and 

inotuzumab ozogamicin, with an additional disulfide linkage. (c) Enzyme-cleavable linker of 

brentuximab vedotin with Val-Cit motif. 

While it has been generally believed that cathepsin B is primarily involved in the cleavage of 

Val-Cit or other dipeptide linkers, recent publications have suggested that other lysosomal enzymes, 

such as cathepsins S, X, L, or D may also be responsible for the release of the payload [137,140,141]. 

Moreover, while the Val-Cit linker is highly stable in human plasma, it is much less stable in mouse 

plasma [101], which makes it difficult to perform and analyze nonclinical PK/PD studies in rodent 

Figure 3. Representative structures of different types of ADC linkers. (a) Non-cleavable thioether
linker of trastuzumab emtansine. (b) Acid-labile hydrazone linker of gemtuzumab ozogamicin
and inotuzumab ozogamicin, with an additional disulfide linkage. (c) Enzyme-cleavable linker of
brentuximab vedotin with Val-Cit motif.

While it has been generally believed that cathepsin B is primarily involved in the cleavage of
Val-Cit or other dipeptide linkers, recent publications have suggested that other lysosomal enzymes,
such as cathepsins S, X, L, or D may also be responsible for the release of the payload [137,140,141].
Moreover, while the Val-Cit linker is highly stable in human plasma, it is much less stable in mouse
plasma [101], which makes it difficult to perform and analyze nonclinical PK/PD studies in rodent
models. It was later elucidated that mouse carboxylesterase 1C is responsible for the cleavage of
the Val-Cit linker in mouse plasma [142]. Efforts to modify the Val-Cit linker to suppress these
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non-cathepsin B-catalyzed cleavages have resulted in optimized linker designs that potentially have
an enhanced stability and a better tumor specificity [141–143].

Linkers that are cleaved by non-proteolytic enzymes, including glycosidases [144–146] and
phosphatases [147,148], are generally in earlier stages of development. Lysosomal glycosidases such
as β-glucuronidase and β-galactosidase are often overexpressed in cancers and cleave the glycosidic
linkages of β-glucuronide and β-galactoside, respectively. Because these carbohydrates are highly
polar and hydrophilic, higher DAR could be achieved with glycosidase-cleavable linkers without
significant aggregation of ADC [144], which, in turn, resulted in improved pharmacokinetics and
therapeutic index [149]. Lysosomal acid phosphatase and acid pyrophosphatase can cleave linkers
with phosphomonoester and phosphoanhydride bonds, respectively [131,148]. Linkers with phosphate
or pyrophosphate groups are highly hydrophilic due to the negative charges on the phosphate,
helping ADCs remain soluble and monomeric (not aggregated) with hydrophobic payload molecules.
Pyrophosphate linkers remained stable in human plasma for seven days, demonstrating their utility in
the development of ADCs [148].

3.4. Conjugation of Linker-Payload to Antibody

In most cases, linker-payload moieties are conjugated to antibodies at lysine or cysteine
residues, exposed on the surface either as a part of the native antibody sequence or
by point mutations introduced at empirically determined positions. Linker-payloads can
be attached to the primary amine of lysine side chain using well-established chemical
reagents such as succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) [150]
or N-hydroxysuccinimide (NHS)/1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide(EDC) [151].
In trastuzumab emtansine, for example, the semi-stable N-hydroxysuccinimide (NHS) ester of
SMCC reacts with the antibody’s primary amine to produce an amide bond, while the maleimide
moiety reacts with the sulfhydryl group of DM1 to form a stable, non-cleavable thioether linkage
(Figure 3a). Typical IgG molecules have on average about 90 lysine residues, among which ~30 have
been suggested to be able to participate in conjugation reaction [152]. This may be an underestimation,
though, since it has been reported that 70 of 92 primary amines (88 lysine residues and four N-termini)
were modified by linker-payload conjugation in trastuzumab emtansine [153]. The large number
of modifiable lysines results in a high level of heterogeneity in lysine-conjugated ADCs, both in
the number of drug molecules attached per antibody and in the site of linker-payload attachment
(Figure 4a). The conjugation site heterogeneity can negatively influence the in vivo stability, efficacy,
and pharmacokinetics of ADC [154,155], and recently developed ADCs tend to avoid payload
conjugation to lysine residues.

Immunoglobulins have multiple interchain disulfide bonds that can be reduced to free sulfhydryls
for conjugation to linker-payload. Unlike lysines, there is no free cysteine residue in constant domains
and the framework regions of variable domains of human IgG molecules, and the occurrence of
cysteines in complementarity determining regions (CDRs) is relatively uncommon [156]. As a result,
cysteine-conjugated ADCs of IgG1 or IgG4 subclass can have maximum DAR of 8 (although for most
of them DAR is limited to ~4 for optimal physicochemical properties of the ADC), and are much
less heterogeneous than lysine-conjugated ADCs (Figure 4b,c). Brentuximab vedotin, trastuzumab
deruxtecan, polatuzumab vedotin, rovalpituzumab tesirine, and many other ADCs are conjugated
to drugs via cysteine residues. The linker-payloads are, in most cases, conjugated by maleimide
chemistry, although the reaction is highly efficient and cysteine-specific, the thiosuccinimide linkage
is somewhat unstable in plasma and undergoes maleimide exchange with free thiols of albumin,
cysteine, and glutathione [157], which react with the maleimide liberated from ADC by a retro-Michael
reaction [158,159]. Introducing a primary amino group near the thiosuccinimide ring has been
reported to alleviate this problem by intramolecularly catalyzed hydrolysis of the ring [160]. The local
environment of the conjugation site is also an important factor for the stability of the linkage; a less
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solvent-exposed, more basic environment promoted the ring-opening hydrolysis of thiosuccinimide,
making it resistant to maleimide exchange [157].
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Figure 4. Graphics of representative ADCs with different conjugation methods. (a) Random conjugation
to primary amines, with hypothetical drug-to-antibody ratio (DAR) = 4. (b) Cysteine conjugation
after the reduction of interchain disulfide bonds, with hypothetical DAR = 4. (c) Complete cysteine
conjugation with DAR = 8 (e.g., trastuzumab deruxtecan). (d) Site-specific conjugation by the
introduction of e.g., cysteines or non-natural amino acids, DAR = 2. (e) Site-specific enzymatic
conjugation to the introduced substrate sequence, DAR = 2.

The utilization of native lysines or cysteines inevitably results in high levels of ADC heterogeneity,
as described above. The introduction of non-native cysteine residues (or other reactive, unnatural
amino acids) at solvent-accessible positions for payload conjugation has been pursued to produce
highly homogeneous ADCs with more predictable and reproducible DAR (Figure 4d). Thiomab™
technology, for example, enables site-specific payload conjugation with highly homogeneous DAR
distribution. In order to identify optimal positions for the introduction of a reactive thiol, every Ser,
Ala, or Val residue in the constant domains of trastuzumab Fab had been individually mutated to
cysteine [155,161]. Among the mutants (Thiomabs), the A114C mutant of trastuzumab heavy chain
(HC-A114C) was found to be a suitable one for ADC production in terms of conjugation efficiency,
low aggregation, and greater stability of the payload in vivo. In later studies, residues near the hinge
region [162], in silico-selected solvent-accessible residues [163], and all non-cysteine amino acids
of trastuzumab heavy and light chains [164] were individually mutated to cysteine, and the ADC
characteristics such as DAR, aggregation, and/or plasma stability were evaluated. From the extensive
screening of these mutants, it has been suggested that the reactivity of the engineered thiols and the
stability of the linkage are influenced by factors including the conjugation chemistry (e.g., maleimide
or disulfide), the position of the introduced cysteines, hydrophobicity of the ADC (which is, in part,
correlated with linker exposure to solvent), and the presence of basic amino acids in the vicinity
(see above).

Unnatural amino acids can be introduced to recombinant proteins by a number of methods,
most notably amber codon suppression by the introduction of an orthogonal pair of tRNA/aminoacyl
tRNA synthetase to host cells [165]. Cytotoxic payloads can be conjugated to antibodies site-specifically
by the incorporation of unnatural amino acids capable of bio-orthogonal chemical reactions.



Biomolecules 2020, 10, 360 20 of 31

The unnatural amino acid p-acetylphenylalanine, for example, can form an oxime linkage with a linker
containing a hydroxylamine group [166]. An ADC with oxime linkage showed a higher serum stability,
lower toxicity, and antitumor efficacy in vivo comparable to the maleimide-conjugated ADC [154].
Click reactions, highly specific, one-pot chemical reactions between two bio-orthogonal moieties
in aqueous phase [167], are also useful for conjugating linker-payloads to antibodies incorporating
unnatural amino acids. N6-((2-azidoethoxy)carbonyl)-L-lysine, for example, can form a highly stable
triazole linkage with alkyne-containing linkers [168]. These reactions are highly efficient with >95%
coupling yield, which translates into DAR ~1.9 assuming one unnatural amino acid introduced
per half-antibody.

Selenocysteine (Sec), a natural non-canonical amino acid, can be incorporated to recombinant
antibodies and conjugated to linker-payloads [169,170]. Selenocysteine remains nucleophilic at weakly
acidic pH (pKa = 5.2), while cysteine does not (pKa = 8.3), making feasible the site-specific conjugation
of cytotoxic payloads to antibodies. In selenoproteins, Sec is incorporated near the C-terminus of the
protein and encoded by opal (UGA) stop codon. The incorporation of Sec instead of the termination
of translation requires a selenocysteine insertion sequence (SECIS) element in the 3′-UTR; however,
even with the presence of SECIS, competition between Sec insertion and termination results in a
mixture of Sec-incorporated and prematurely terminated polypeptides. This results in predominantly
heterodimeric IgG or Fab with selenocysteine inserted in only one of the polypeptide chains (maximum
DAR = 1). Despite the limitations of lower production yield than conventional antibodies and low
DAR, selenoantibodies offer some interesting possibilities in ADC development. For example, because
of the wide difference in pKa values between selenocysteine and cysteine, a selenoantibody with
additionally engineered cysteine residues can be sequentially conjugated to two different types of
linker-payloads [171].

Linker-payload moieties can also be attached to the antibody by enzymatic reactions
(Figure 4e). Formylglycine generating enzyme, transglutaminase, sortase, glycosyltransferases,
and farnesyltransferase are examples of enzymes used for the conjugation. Formylglycine generating
enzyme converts the cysteine in substrate sequences such as CXPXR motif to formylglycine [172].
The resulting aldehyde group is compatible with a number of bio-orthogonal coupling reactions such
as coupling with aminooxy or hydrazide functional groups [172], or hydrazine-iso-Pictet-Spengler
ligation [173,174]. Transglutaminases couple the glutamine residue in substrate sequences with primary
amine; linker-payloads are conjugated to the glutamine side chain through amide bonds [175–177].
Sortase catalyzes the ligation of LPXTG tag at the C-terminus of a polypeptide with the N-terminal
oligoglycine of another [178]. The C-terminal glycine is removed by the enzyme to form acyl-enzyme
intermediate, which then reacts with N-terminal primary amine of the oligoglycine substrate.
Glycotransferases can be engineered to transfer modified monosaccharide units to the N-glycan
of IgG, which are subsequently coupled bio-orthogonally to linker-payloads [179]. Unlike most other
site-specific conjugation methods, the glycotransferase method does not require antibody sequence
modification, although the N-glycan functions may be disrupted by the conjugation. Farnesyltransferase
prenylates the cysteine residue in the C-terminal CAAX tag [180,181]. Functionalized prenyl
pyrophosphates can be attached to the CAAX tag for ADC production [182]; however, the introduction
of hydrophobic prenyl group may affect the solubility of the ADC. While some of these enzymes can
catalyze the coupling reaction with high efficiency and specificity, they tend to have a number of
drawbacks, including a long substrate sequence attached or inserted to the antibody, a long reaction
time, a low yield due to the reversible reaction, a large amount of the enzyme required, and/or byproduct
generation [183].

4. Concluding Remarks

After the clinical proof of monoclonal antibodies as a valid therapeutic modality in 1980s and
1990s, efforts to improve the efficacy and broaden the mode of action of therapeutic antibodies have
led to the successful development of gemtuzumab ozogamicin (approved by FDA in 2000) and
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catumaxomab (approved by EMA in 2009). These early examples of ADC and bsAb, respectively,
were later withdrawn from the market in part due to limited efficacy and/or excessive toxicity
(although gemtuzumab ozogamicin was reapproved in 2017; see above). However, advances in the
antibody engineering technologies allowed the generation of safer, more efficacious ADCs and bsAbs,
many of which are in commercial or late clinical development stages and discussed in this article.
In spite of the promises offered by these formats, they also pose unique technical challenges, many of
which can be addressed by optimizing the production process and the physicochemical properties.
However, some of these challenges are inherent to the core concepts of bsAbs or ADCs. These include
balancing affinities of individual arms of bsAbs to maximize their therapeutic window [184], achieving
synergism by bispecificity [185,186], and minimizing on-target, off-tumor toxicity of these highly potent
molecules [187,188]. Future developments in bsAb and ADC fields are expected to solve many of these
issues to provide safer, more efficacious therapies for serious diseases with unmet medical needs.

Finally, an interesting development in the field is the combination of bsAb and ADC technologies,
or bispecific antibody–drug conjugates (bsADC). For example, a recent study reported that
co-administration of HER2×PRLR bsAb with anti-HER2 ADC drastically enhanced the cytotoxic
activity of the ADC, and HER2×PRLR bsADC showed a ~100-fold decrease in EC50 against the
T47D/HER2 cell line relative to anti-HER2 ADC (0.4 nM vs. 40 nM, respectively) [189], due to the rapid
internalization and lysosomal trafficking of PRLR that leads to efficient degradation of the ADC and
release of the cytotoxic payload. The amalgamation of technological advancements in bsAb and ADC
fields, along with a better understanding of cancer and target biology, is expected to produce more
innovative cancer therapeutics that can benefit patients with currently intractable diseases.
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