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Engineering thermal conductance using
a two-dimensional phononic crystal
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Controlling thermal transport has become relevant in recent years. Traditionally, this control

has been achieved by tuning the scattering of phonons by including various types of

scattering centres in the material (nanoparticles, impurities, etc). Here we take another

approach and demonstrate that one can also use coherent band structure effects to control

phonon thermal conductance, with the help of periodically nanostructured phononic crystals.

We perform the experiments at low temperatures below 1 K, which not only leads to

negligible bulk phonon scattering, but also increases the wavelength of the dominant thermal

phonons by more than two orders of magnitude compared to room temperature. Thus,

phononic crystals with lattice constants Z1 mm are shown to strongly reduce the thermal

conduction. The observed effect is in quantitative agreement with the theoretical calculation

presented, which accurately determined the ballistic thermal conductance in a phononic

crystal device.
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C
ontrolling thermal transport has become more relevant in
recent years, in light of the strong push to develop novel
energy harvesting techniques based on thermoelectricity1,

the need to improve the heat dissipation out of semiconductor
devices, and the push to increase the sensitivity of bolometric
radiation detectors2. Traditionally, reduction of thermal
conductivity is achieved by means including impurities, nano-
particles, voids, etc., which increase the scattering of the relevant
energy carrying quanta, electrons and phonons. As the phonon
thermal transport component is present in all conducting
and insulating materials, a lot of research has lately focused
on lowering phonon thermal conductivity using nanoscale
structuring of materials3 to increase scattering, with good
results in improving thermoelectric materials4, for example. On
the other hand, much less attention has been given to controlling
phonon thermal conductance by engineering the phonon
dispersion relations, in other words the phonon ‘band
structure’. This could be achieved with the help of periodic
phononic crystal (PnC) structures.

Phononic crystals are the elastic analogues of the better known
photonic crystals5, and are attractive from the point of view of
manipulating the flow of vibrational energy, that is, sound and/or
heat. The main feature of PnCs is the appearance of complete
band gaps for certain frequencies in some cases, and a strong
modification of the phononic band structure due to Bragg’s
interference6,7. Early experimental studies on PnCs were
restricted to macroscopic systems with millimeter-scale periodic
structures, where sonic or ultrasonic waves in sub-MHz
frequency range play a major role, and applications were
typically limited to acoustic filtering, wave-guiding or focusing,
for example8,9. Recent progress in nanofabrication technologies,
however, enables us to create micro- and nano-scale periodic
structures as small as the characteristic wavelength of GHz-
frequency hypersonic waves10,11, allowing applications in RF
communication technologies12 and optomechanics13, as well.
More interestingly for the topic here, GHz-frequency acoustic
waves are nothing but a coherent collection of GHz phonons,
and at sub-Kelvin temperatures, GHz phonons are the dominant
thermal excitations. Thus, strong manipulation of thermal
properties, such as thermal conduction and heat capacity,
seems possible. Indeed, there are already a few reports of
successful reduction of the room temperature thermal
conductivity using periodic structures14–16, and some of the
observed reduction was tentatively ascribed to coherent band
stucture effects. However, in the room temperature studies, the
dominant thermal phonons are really in the THz frequency
range17,18, and no fully conclusive evidence on the coherent
effects has been shown up-to-date.

Here, we demonstrate both experimentally and theoretically
that one can use coherent band structure effects to control
phonon thermal conductance, with the help of periodically
nanostructured PnCs. We have perforated suspended silicon
nitride (SiN) membranes into square arrays of circular holes, to
obtain two-dimensional PnCs (Fig. 1). Two different lattice
constants were used: one designed to have a complete phononic
band gap at the characteristic energy of thermal dominant
phonons at 0.1 K, and the other with no band gap. The membrane
thickness and the hole-filling factor were the same for both
structures, thus, a bulk phonon scattering model would
predict identical thermal conductances. However, a large
difference was seen in the experiment, fully explained by
the difference in the band structures of the two samples.
Moreover, for both samples the observed reduction of thermal
conductance (as compared to an unperforated membrane) is in
quantitative agreement with our ballistic thermal conductance
calculation.

Results
Design of the PnC device. The square array was chosen for
simplicity, and the circular hole shape to reduce the possibility of
a mechanical weak point, such as a sharp corner, for cracking.
Suspended SiN membranes and beams are widely used for
micro- and nano-electromechanical devices19–22 owing to their
mechanical strength, stiffness and ease of processing. In addition,
they are also used for low-temperature bolometric radiation
detectors23,24 and tunnel junction coolers24–27 as a controllable,
well-defined thermal link to the heat bath. (A famous example of
this application is the Planck’s satellite high-frequency
instrument28 measuring the cosmic microwave background.)
However, due to the strong suppression of bulk scattering of
phonons in insulators at sub-K temperatures29,30, thermal
phonons travel ballistically for very long distances, with mean
free paths up to B10 cm in polished crystalline Si samples30.
In SiN at around 0.1 K, ballistic transport has also been observed
to be dominant in thin (o1 mm) membranes with smooth
surfaces up to distances B0.1–1 mm31–33, and in short (o10 mm)
1D beams34, as well. Thus, scattering is not expected to destroy
coherence in the length scale of the periodicity of our structures
(B1–2mm) if the sidewalls of the holes are smooth, and strong
phonon band structure modifications are thus likely to be
experimentally observable in thermal transport.

The proper geometric design of the PnC, shown in Fig. 1, was
obtained with the help of numerical calculations of the phonon
band structure, by solving the 3D elasticity equations for an
isotropic material35 using the finite element method (FEM).
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Figure 1 | The 2D membrane PnC device. (a) Schematic representation of

a perforated membrane PnC geometry with a square array of circular holes,

fabricated by e-beam lithography. The central region has a heater, which

emits thermal phonons into the PnC structure. (b) A false colour scanning

electron micrograph (s.e.m.) of the central region of the larger period

a¼ 2425 nm PnC sample. The blue (Al) and yellow (Cu) lines are the

metallic wiring which form the heater and thermometer elements at

the centre of the PnC. The shorter period sample has the same wiring

locations and dimensions. The full size of the perforated membrane is

100 mm� 100mm. (c) A scanning electron micrograph of a region of the

shorter period sample (black areas, empty space, grey areas SiN

membrane), showing the unit cell size 970 nm�970 nm and the width of

the narrowest region B60 nm. The sidewalls have a slight angle so that the

bottom end of the hole is slightly smaller. Scale bar has length 200 nm.

(d) A false colour s.e.m. of the heater/thermometer structure, consisting of

a Cu normal metal wire (yellow) sandwiched between two normal

metal-insulator-superconductor (NIS) tunnel junctions, connected to the

measurement circuit by superconducting Al leads (blue).
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Periodic Bloch-wave boundary conditions were used with 2D
wave-vectors k in the x–y plane (Methods). Figure 2a shows a
typical FEM mesh of the unit cell of a perforated square lattice
membrane used in the computations. The values of the 2D wave-
vector were varied within the irreducible octant of first Brillouin
zone (BZ) of a square lattice, shown in Fig. 2b, with a typical
number of k-points B6,400 (the band structure in the rest of the
BZs follow from symmetry arguments). Continuous elasticity
theory is known to give the correct phonon modes as long as the
phonon wavelengths in question are larger than the atomic
distances, a condition that is satisfied in the PnC problem from
the very outset due to the much reduced size of the BZ compared
to an atomic solid (a factor given by the ratio of the PnC period to
the atomic lattice period, B10,000 in our case). Our treatment
follows previous phonon band structure calculations in
plates36–38, but in contrast to earlier work, we had to calculate
the band structure to approximately an order of magnitude
higher frequencies, to accurately compute the thermal
conductance even at 0.1 K. This is because of the fairly
significant tail of the thermal phonon population at higher
frequencies. For example, to account for 99% of the total energy
content in the 2D Debye model at 0.1 K (0.4 K), phonons up to a
frequency B17 GHz (B68 GHz) must be taken into account (the
upper limits corresponding to dominant phonons at temperatures
0.5 and 2 K), meaning that several thousand energy eigenvalues
had to be computed for each k-vector point.

After fixing the lattice type and the shape of the hole, we still
have three free parameters: the lattice constant a, the thickness
of the membrane d, and the areal filling factor of holes f¼ pr2/a2,
where r is the radius of the hole. Previous numerical studies8,39

have shown that complete elastic band gaps are possible to
achieve for square lattice circular hole structures near the
close packed value f¼p/4¼ 0.785. The structural integrity of
course gives a limit about how close to close packing one can
approach; here, we have chosen the value f¼ 0.7 because it is
practically realizable for micron scale periodicity, and yet has
shown to produce complete band gaps in the previous numerical
studies8,39. To fix d and a, we calculated band structures as a
function of the ratio d/a using the known elasticity parameters
for SiN, and studied how the full phononic band gap evolved,
shown in Fig. 2c. Interestingly, the band gap has a non-
monotonous behaviour as a function of d/a as has been noted
before8, with a gap opening at d/a¼ 0.2–0.3 and then closing
around d/a¼ 0.8, but with a second higher frequency gap
opening at the same time and finally closing around d/a¼ 1.6.
Thus, neither very thin nor thick perforated membranes have
an absolute band gap. The largest relative band gaps Do/o
appear at around d/a¼ 0.4–0.5, and we choose to use the value
d/a¼ 0.5 for this reason as our design guide for the first
structure, with a gap centred at doE10,000 m s� 1. To have a
strong effect on the thermal transport, we then choose to set the
centre of the band gap to the frequency of thermally dominant
phonons at 0.1 K in the 2D Debye model, �hodom,2D¼ 1.594kBT,
giving the frequency v¼o/(2p)E3.3 GHz (the 2D Debye
model gives approximately the same dominant frequency as a
full calculation with the real Lamb-modes35 of the uncut
membrane). In terms of the dominant wavelength ldom,
3.3 GHz corresponds to ldom¼ 2pnave/odom¼ 1.8 mm with an
average speed of sound appropriate for SiN nave¼ 5800 m s� 1.
Therefore, the thickness of membrane d is set to 485 nm and
hence, the lattice constant should be a¼ 2d¼ 970 nm Eldom/2.
With a hole-filling factor f¼ 0.7, this translates into a hole
diameter of 916 nm, leaving bridges in between the holes with a
neck width of 54 nm. As shown in Fig. 1c, these dimensions were
quite accurately fabricated with the help of e-beam lithography
(see Methods). The second structure was then chosen to be in a
parameter region with a negligible gap and far from the first
design by choosing d/a¼ 0.2, but keeping d and f constant. This
leads to a design with a lattice constant a¼ 2425 nm and a neck
width of 136 nm. Classically40 (in scattering based models), the
two structures are then expected to have the same thermal
conductance.

Theoretical phonon band structure. In Fig. 3, we compare the
dispersion relations of a full, uncut SiN membrane of thickness of
d¼ 485 nm with the results for two square lattice PnCs of the
same thickness and with the chosen dimensions, shown in the
main symmetry directions G-X-M-G up to frequency v¼ 20 GHz
(or angular frequency o¼ 2pv¼ 120 rad s� 1). This range con-
tains essentially all (B99%) of the populated phonons at 0.1 K, so
that Fig. 3 gives a full picture of all the modes that affect thermal
transport at that temperature. For higher temperature results, we
calculated eigenvalues up to a frequency of 35 GHz (50 GHz) for
the long period (short period) PnC. The full membrane does not
have periodicity, and the calculations were performed using the
well-known analytical results of Lamb-mode theory35,41 up to
v¼ 160 GHz. We have nevertheless plotted the bands in the same
square lattice BZ to help with the comparison. In addition, we
have also calculated the full membrane dispersions using FEM
simulations, finding perfect agreement with the analytical results
(taking into account the effect of the folding in the first BZ), and
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Figure 2 | Band structure calculations using FEM. (a) A representative

unit cell used in the FEM calculations with hole-filling factor f¼0.7.

A typical mesh structure is also shown. (b) The first BZ of the square PnC

lattice in k-space (orange), with the irreducible zone (where calculations

are performed) inside the triangle with corners at points G, X and M. One

typical set of evenly divided k-points is also indicated. Other, uneven

divisions were used, as well. (c) The scaled width of the phononic band gap

in SiN (empty region in angular frequency o) as a function of the ratio of

the thickness of the membrane d and the lattice constant a. The red crosses

show the chosen design values.
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thus demonstrating the sufficient numerical precision of our
approach.

It is immediately evident that there are great differences
between the band structures: the PnC membrane has of course
the band gap at frequency 3.3 GHz with a width 0.7 GHz as
designed, but this width is still a small fraction of the whole range
of frequencies plotted. This implies that the band gap alone has
only a minor effect on thermal transport. However, the bands in
both PnC structures are also much flatter; this will affect both the
group velocities qo/qk and the density of states (DOS), and
because both factors influence thermal conductance, one cannot
immediately see whether there is a suppression or enhancement.
(The thermally transported power is proportional to the product
of the DOS and the average group velocity at each energy,
weighed by the Planck’s thermal distribution �ho/[exp(�ho/
kBT)� 1]). In Fig. 3d, we plot the DOS for both PnC membranes
and the full membrane, using the whole calculated dataset (that is,
all k-values) up to 19 GHz. The DOS comparison shows a couple
of interesting features: (a) In the low-frequency region below
B6 GHz, the full membrane follows the 2D Debye model
DOSBo, but then starts to grow faster approximately as Bo2 at
higher frequencies, roughly in agreement with the 3D Debye
model. Thus, 6 GHz is roughly the 2D–3D transition for SiN
membranes of thickness 485 nm, where the higher order ‘optical’
Lamb-modes (with finite frequency at k¼ 0) start to contribute.
(This transition frequency scales as 1/d). (b) On the other hand,
the DOS for both PnC membranes follows, on the average, the 2D

Debye model all the way up to 19 GHz so that it does not exhibit
such a transition, and the DOS above 6 GHz is therefore reduced
by an increasingly large factor, up to B3 at 19 GHz as compared
to the full membrane. (c) The fluctuations of the PnC DOS are
much larger than in the full membrane, and largest for the
smaller period PnC. This is because of the flatness of the bands,
leading to many more van Hove singularities. (d) The PnC DOS
is higher than the full membrane at frequencies below the band
gap at 3.3 GHz for the smaller period structure (below 1 GHz for
the larger period PnC), at certain frequencies by a factor of B2.
This will play an important role in the heat conduction, as will be
discussed below.

An example of the effect of the PnC on the group velocities, on
the other hand, is shown in Fig. 3e. Average group velocities are
much smaller in the PnC membranes, by a factor up to six at
frequencies above 15 GHz, and by a factor of B2 just below the
band gap at 3.3 GHz. In conclusion, based on the DOS and group
velocity changes, one definitely expects a suppression of thermal
conductance for both PnC structures at T40.1 K, and the strength
of the suppression is expected to grow as temperature increases. At
very low frequencies and thus temperatures, the effects of the group
velocity and DOS reductions are small so that the PnC thermal
conductance is expected to approach the full membrane result.

Thermal conductance experiment and comparison to theory.
The heat conduction experiments on both PnC devices were
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Figure 3 | Band structure DOS and group velocity. Dispersion relations (band structure) in the main symmetry directions of the BZ for the SiN (a) full

membrane (d¼485 nm), (b) square lattice PnC, with f¼0.7 and a¼970 nm, and (c) square lattice PnC, with f¼0.7 and a¼ 2425 nm. Complete band gap is

observable at 3.3 GHz for the PnC with a¼ 970 nm. (d) The corresponding densities of states (PnC a¼970 nm, red, PnC a¼ 2425 nm, blue, full membrane,

black) with 2D (pink dash) and 3D (grey dash) Debye models. (e) Average group velocity (averaged over the whole 2D BZ) for full (black) and the two PnC

membranes (PnC a¼970 nm, red, PnC a¼ 2425 nm, blue). The PnC DOS and group velocity curves have been smoothed for visual clarity.
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performed by applying a known power (up to a few nW)
electrically at the centre of the device, and by measuring the
resulting phonon temperature rise, as in refs 26,34,42. This was
achieved by employing Al-AlOx-Cu-AlOx-Al superconductor/
insulator/normal metal/insulator/superconductor (SINIS) tunnel
junction pairs (Fig. 1d) both as a thermometer24,26,43 and
a heater42,44 mounted at the centre of the PnC, with the bath
temperature kept below 0.1 K using a dilution refrigerator
(Methods). The main benefit of using tunnel junctions here is
that both the temperature measurement and the heat dissipation
are localized at the centre of the membrane, providing a fairly
idealized setting for two-dimensional non-directional heat flow.
In addition, the self-heating power in the thermometer is so small
(o0.2 pW in all experiments here) that sub-pW range phonon
emission power can be measured. For comparison, the
experiments were also repeated on uncut, full membrane
devices with otherwise exactly the same device fabrication details.

The dependence of the measured emitted power P versus
measured membrane temperature for both PnC samples and the
full membrane are shown in Fig. 4, up to about 1 K. One clearly
sees that the emitted power is much reduced for both PnC
membranes at all temperatures, compared to the full membrane
result. Unintuitively, the larger period PnC actually has a lower
thermal conductance than the smaller period structure, which has
the maximal band gap. Clearly, maximizing the band gap does
not necessarily lead to minimum thermal conductance. Interest-
ingly, the reduction factor is also strongly dependent on the
temperature: at the low-temperature end of the experiment
B0.2 K, the larger period (smaller period) PnC conducts about 14
(5) times less, but at the higher end TB0.5 K, this reduction has
grown to factors B30 (8). Clearly, the temperature dependence of
conductance is quite different in the full membrane and PnC
cases, with approximate dependencies PBT3.3 and PBT2.3 at low
T for the full and PnC membranes, respectively, whereas closer to
1 K both the full membrane and the short period PnC samples
have PBT4 and the long period PnC closer to PBT5.

This strong difference in the temperature dependence between
the full membrane and the two PnC samples rules out the

possibility that thermal conductance in our experiments would be
limited by diffusive scattering inside bulk SiN, because in that
case the temperature dependences of all the samples should be the
same with a constant reduction factor in thermal conductance
between the full membrane and both PnC samples, given simply
by the geometrical filling factor-dependent effect due to the
holes40. In addition, if diffusive surface scattering at the hole
edges dominated45, the longer period PnC sample should
produce a higher and not a lower thermal conductance, as
the neck dimensions are larger but the edge roughness the
same. In terms of thermal conductance defined as G¼P/DT,
where DT¼Tmeas�Tbath, GB6 pW K� 1, B30 pW K� 1, and
B80 pW K� 1 for the larger period PnC, smaller period PnC and
full membrane, respectively, at 0.1 K. Thus, PnC devices offer a
way to reduce thermal conduction by a significant factor, without
having to reduce the membrane thickness.

We can also understand the observations in a quantitative
manner. We have therefore calculated the ballistic phonon power
emitted from a convex heater surface g perpendicular to the
membrane surfaces (Fig. 1a), without taking into account the
acoustic mismatch between the PnC and the unmodified
membrane in the vicinity of the heater, or the mismatch at the
membrane-bulk edge. For an unmodified 2D membrane, this was
already discussed in refs 46,47 using the well-known Rayleigh-
Lamb modes of suspended membranes35,48. Here, we extend the
calculations to PnC membranes, for which the radiated power is
given by

P Tð Þ ¼ 1
2p2

X
j

I
g

dg
Z

K
dk �hojðkÞnðoj;TÞ

@ojðkÞ
@k

� n̂gY
@oj

@k
� n̂g

� �
;

ð1Þ

where oj(k) is the calculated PnC band structure in the first 2D
BZ K, n(oj,T) is Bose–Einstein distribution, and only positive
group velocities qoj/qk with respect to the heater boundary
surface normal n̂g contribute to the emitted power, taken into
account by the step function Y. Note that for a large, dense set of
eigensurfaces (here we calculated up to B2,400 2D oj(k)
surfaces), errors are generated in the group velocity calculations
around the surface intersections, if the eigensurfaces are simply
sorted by increasing o (as is usually the output of FEM solvers).
We have developed an algorithm49 (Methods), which sorts the
eigensurfaces according to their real mode structure, so that
correct group velocities and thus correct phonon emission power
can be calculated.

The theoretical calculations for P(T) are also shown in Fig. 4 as
solid and dashed lines, where the solid lines take into account
phonon back radiation from the substrate at the bath tempera-
ture, and dashed lines do not. Note that only one common scale
factor for P is used in fitting all three experimental curves. We
observe that the agreement with the measured temperature
dependences is very good, all the way up to the highest
temperatures calculated, which for the full membrane could be
extended all the way up to 1 K with the help of the analytical
dispersion relations, and for the PnC membranes up to B0.4 K,
limited by the computing resources available. The full membrane
data seems to follow the theory without back radiation better at
very low temperatures, a fact which we cannot currently explain.
As the heater dimensions were the same for all samples, the
theory also predicts how much in absolute terms the power
should be reduced between the ideal membrane and the PnC
samples. Clearly, the data agrees almost perfectly with the
predicted reduction, giving us further strong evidence that the
thermal conductance is governed solely by the coherent band
structure modifications and not by scattering, at least below 0.4 K.
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Finally, to gain some further physical understanding on why
the PnC thermal conductance is less suppressed at low
temperatures, we have calculated the emitted spectral powers
P(v), where P¼

R
P(v)dv, for both full and PnC membranes at two

example temperatures T¼ 0.1 K and T¼ 0.3 K, shown in Fig. 5.
As we see, the integrals for the PnC devices are smaller than that
for the full membrane, consistent with the reduction
of total power, and the full membrane results somewhat resemble
simple Debye model spectra. The PnC spectral powers are
clearly more suppressed at 0.3 K because both the reduced group
velocity and the reduced DOS above the band gap have large
weight. On the other hand, at 0.1 K more power is carried
at lower frequencies, where the DOS is actually enhanced for
the PnC, leading to a smaller suppression, as observed in the
experiment.

Discussion
In summary, we have measured the thermal conductance G of
two-dimensional PnCs at sub-Kelvin temperature range for the
first time. The results are consistent with the picture that phonon
transport in the PnC is strongly suppressed by the coherent
modification of the phonon band structure caused by the periodic
hole structure. The main influence to thermal conductance comes
not from the existence of a band gap directly, but from the
combination of the reduction of the group velocities and the
DOS, leading to a strong reduction of G by over an order of
magnitude. However, at the lowest frequencies, the PnC DOS can
actually be enhanced, leading to a smaller reduction at the lowest
temperatures measured B0.1 K. As the temperature dependence
and the magnitude of thermal conductance are both modified and
fully consistent with the theoretical band structure calculations,
we have evidence that the reduction of G is not a simple
geometrical effect on bulk or boundary scattering limited thermal
conductivity. Our results therefore imply that it is possible to
lower G significantly without having to sacrifice the mechanical
robustness of a thicker membrane or without having to resort to
the more delicate beam geometry, facts that might be useful
directly in some cryogenic detector devices. Our results also give a
model picture of what the theoretical limits are at higher
temperatures, if scattering effects were minimized and dimen-
sions properly scaled. In fact, as a large proportion of heat, even at
room temperature, is carried by phonons with relatively long
mean free paths 41 mm50–52, our results may have relevance to
room temperature thermal transport, as well. In the future, the
role of different lattice structures, shape of the holes and other
design factors should be investigated further.

Methods
Device fabrication. The samples were fabricated on single crystal (100) Si wafers
with double-sided 750 nm thick low-stress SiN films grown by low-pressure
chemical vapour deposition and purchased from the Microfabrication Laboratory
at UC Berkeley. To obtain membranes of thickness d¼ 485 nm, the chips were
etched from the top side by reactive ion etching (RIE) (Oxford Instruments
Plasmalab 80) in CHF3/O2 gas mixture (10:1) with a low power of 50 W, which was
effective to keep the surface roughness low at B0.3 nm (RMS). The obtained
thickness was measured using both an ellipsometer (Rudolph AutoEL III) and a
thickness profiler (KLA Tencor P-15). The RIE thinning etch was followed by a
photolithography step, where a B625 mm� 625 mm square was patterned and
etched through the bottom-side nitride, using again RIE in CHF3 gas. The
remaining backside SiN then served as an etch mask for a crystallographic
potassium hydroxide (KOH) wet etch through the whole Si wafer thickness
(300 mm), producing a 485 nm thick suspended SiN membrane of size
B200 mm� 200mm on the front side (bulk micromachining).

The tunnel junction heater and thermometer were fabricated next on the
membrane. The metal wire structures were deposited using electron-beam
lithography and two-angle shadow mask technique, where the the two metals
aluminium (Al) and copper (Cu) were electron-beam evaporated from different
angles in an UHV system with a base pressure 10� 8 mbar. The angle evaporation
was made possible by a two-layer resist (PMMA/MMA-MAA) that formed a large
undercut structure. Al was evaporated first to a thickness 16 nm (speed 0.2 nm s� 1)
from 60� angle with respect to the normal of the substrate, after which it was
thermally oxidised in situ in 100 mbar for 4 min, producing a thin AlOx barrier.
Then, Cu was evaporated to a thickness 40 nm with rate 0.15 nm s� 1 from 0�
angle, which produced the desired Al/AlOx/Cu/AlOx/Al SINIS tunnel junction
structures after the lift-off, as shown in Fig. 1d, with junction dimensions
400 nm� 440 nm and a normal metal island length 10 mm. The junctions with this
fabrication sequence typically had a tunnelling resistance RTB20–40 kO. For some
samples, a thin 10 nm layer of gold was evaporated on top of Cu to passivate the
surface.

Finally, to obtain the PnC membranes, a square array of periodic holes of either
diameter D¼ 916 nm and period a¼ 970 nm, or D¼ 2290 nm and a¼ 2425 nm
were patterned on the membrane by a second round of electron-beam lithography
and RIE in CHF3/O2 (10:1) (55 mTorr, 100 W, 26 min) through the membrane,
with a 0.9–1.5 mm thick PMMA as the etch mask. The whole perforated region was
100 mm� 100mm, which translates into 100 (40) periods in both x and y directions
for the smaller (larger) period sample. The hole-filling factor 0.7 thus demanded
that the narrowest neck widths are o60 (136) nm (Fig. 1c). The full membrane
fabrication was identical, except that the final perforation etching steps were
skipped.

Thermal transport measurement. All measurements were perfomed in a
3He–4He dilution refrigerator with a base temperature of B60 mK with several
stages of filtering in the wires, because of the extreme sensitivity of the tunnel
junction devices to unwanted spurious power loads. Care was taken to filter out
unwanted external RF noise from the experiment to o1 pW. The setup uses
shielded coax wiring from room temperature to 4 K flange, where a RC-filter stage
is located. From 4 K to 60 mK, the wires are Thermocoax cables of length B1.5 m,
with known good attenuation properties at high frequencies53. In addition, another
set of RC-filters are located at the 60 mK sample stage, inside a copper box
thermalized to Tbath.

In the experiment, the temperature of one SINIS tunnel junction thermometer
was measured as a function of the bias voltage across the second SINIS device, used
as a heater. The dissipated power in the heater was measured by measuring
simultaneously both the current with a current preamplifier (Ithaco 1211) and the
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voltage across the heater with a high input impedance differential voltage
preamplifier (Ithaco 1201). Note that all the leads are superconducting Al, thus all
dissipation takes place at the junctions in the middle of the membrane, and the
heat flow geometry is two-dimensional. The effect of the temperature drop between
the heater and the thermometer was kept constant in all experiments by keeping
the size of the heater and the thermometer and the distance between them
constant. The bias voltages on the heater are, on the other hand, high enough that
the superconducting gap does not influence the heat dissipation at the junctions,
and the junctions behave effectively as normal-insulator-normal junctions.

The second SINIS junction pair was used as a sensitive thermometer because
of their highly non-linear and temperature-dependent current–voltage (I–V)
characteristics at sub-Kelvin temperatures24,26,43. In practice, the measurement is
usually performed in a constant current bias mode by measuring the temperature-
dependent voltage response. When current biased, the SINIS thermometer voltage
is a sensitive function of temperature only, and this dependence is typically fully
understood by the single-particle tunnelling theory24,26,43 with all parameters
(tunnelling resistance of the junctions RT, the superconducting gap D and the
effective broadening of the superconducting DOS) determined self-consistently
from the current–voltage curves of the junctions (Fig. 6a). In practice, we always
performed a calibration measurement, where the measured SINIS voltage was
compared with the bath temperature given by a calibrated RuO thermometer while
the refrigerator temperature was varied, without the electrical heating of the heater
junctions (Fig. 6b). This way, any possible non-equilibrium effects (where electron
temperature of the devices differs from the lattice temperature) due to the junction
bias and external heat loads are self-consistently corrected for. The upper limit for a
SINIS thermometer is set by the critical temperature of the superconductor, which
means that for Al structures it can operate up to B1 K.

The thermometer junctions were current biased with a bias resistor R¼ 1–10 GO
to ensure proper current bias even in the subgap, where junction resistance was
typically B1–10 MO at low temperatures. In the experiment, two different constant
bias current values (IB10 pA) and (IB500 pA) were typically used, the low one for
low-temperature regime To0.4 K and higher one for high-temperature regime
T40.4 K. Two values were used because the SINIS temperature-to-voltage
responsivity dV/dT is a strong function of both I and T in such a way that the
low-bias (high-bias) value gives a better responsivity at To0.4 K (T40.4 K), see
Figure 6b. In addition, the lower bias value was always chosen higher than the
measured two-electron/life time-broadened excess subgap current (observable below
1 pA in Fig. 6a), to guarantee good response and no dependence on the details of the
excess current mechanisms. The thermometer voltage was measured with a high
input impedance differential voltage preamplifier (Ithaco 1201).

The I–V and V–T characteristics can be understood by a simple tunnelling
Hamiltonian theory24,54, which predicts for a pair of identical normal metal-
superconductor tunnel junctions connected in series (SINIS)

I Vð Þ ¼ 1
2eRT

Z1

�1

gS Eð Þ fN E� eV=2ð Þ� fN Eþ eV=2ð Þ½ �dE; ð2Þ

where RT is the tunnelling resistance of a single junction, fN(E) is the Fermi-
function of the normal metal in quasiequilibrium and gS(E) is the quasiparticle
DOS in the superconductor. Note that equation (2) contains only the temperature
of the normal metal and not that of the superconductor, and is valid as long as the
quasiparticle distribution in the superconductor is also in quasiequilibrium (but
not necessarily the same temperature). gS(E) can be determined from the Bardeen–
Cooper–Schrieffer theory, which predicts in the weak coupling limit that
gSðEÞ ¼ jE j=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 �D2
p

, when |E|4D and gS(E)¼ 0 when |E|oD (ref. 54).
However, in real materials there are processes that create quasiparticle states also
within the gap |E|oD. The easiest and most straightforward way to model these is
with the so called Dynes-parameter, which was initially realized to model life
time broadening due to inelastic scattering (electron–electron, electron–phonon)55.
This leads to a DOS of the form

gS Eð Þ ¼ Re
Eþ iGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eþ iGð Þ2 �D2
q

8<
:

9=
;

������
������; ð3Þ

where parameter G described originally the finite life time of quasiparticle states in
the superconductor. However, it was recently shown56 that exactly the same model
follows from the theory of environmentally photon-assisted tunnelling processes,
as well, and that therefore, the parameter G is not necessarily a materials parameter,
but depends on the degree of filtering out unwanted microwave photons. In our
devices, the Dynes model always fits the deep subgap I–V characteristics well
(current below B1 pA in Fig. 6a), and its value simply sets the minimum bias
current for thermometer operation, below which the temperature responsivity goes
to zero.

Details on finite element method simulations. The phonon frequency spectrum
oj(k) was numerically calculated by the FEM (Comsol Multiphysics v4.1 software)
from the elastic Lamé system for the 3D displacement vector u

� mDu� lþmð Þrdiv u ¼ ro2u inO

n̂ � s uð Þ ¼ 0 in @O n[m G�m
u exp i k � rð Þð Þ G�m ¼ u exp i k � rð Þð Þ

�� ��
Gþm

ð4Þ

in the unit cell O of the periodic membrane, which in our case, is a single circular
hole inside a square, see Fig. 2a. m, l and r are the material-dependent elastic
parameters and density, respectively. The boundary conditions in Equation 4
describe the stress free condition at the inside hole wall and the membrane top
and bottom surfaces, where s(u) is the stress tensor and n̂ the surface normal, and
also Bloch’s theorem conditions at the boundaries G�m connecting the unit cells.
Typical unit cell was divided into a mesh with up to B22,000 elements, with a
denser mesh around the narrower regions (Fig. 2a). m and l are connected with the
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experimentally measurable parameters Young’s modulus E and Poisson’s ratio v, by
the relations l¼ Ev/[(1þ v)(1� 2v)], m¼ E/[2(1þ v)]. In the simulations, we have
used the values E¼ 250 GPa, v¼ 0.23 and r¼ 3,100 kg m� 3 for amorphous SiN57.

Bloch’s theorem guarantees the existence of plane wave-type solutions
uj (x, y, z; k) with eigenfrequencies oj(k). The FEM eigenvalue algorithm organizes
the eigenfrequencies oj(k) to an increasing order for each k, defining conti-
nuous energy surfaces

ôjðkÞ :¼ min omðkÞ j j � m � Nf g ð5Þ

for j¼ 1,y, N. However, using the raw set of eigenfrequencies ôjðkÞ causes a
systematic error in the calculated group velocities near the intersections of the
surfaces, because these unsorted surfaces do not necessarily correspond ‘to the
same’ phonon mode for two distinct kiEkj near the intersection, see Fig. 7. This
gives rise to an error in the total radiated power, which increases at high
temperatures, as the number of branch intersections increases with the increasing
DOS. In Fig. 7c we show as an example the relative error in P(T) for various k-
space grid densities of a non-perforated (solid) membrane with d¼ 485 nm. For
this case, the group velocities can also be calculated analytically from the Rayleigh-
Lamb equations35, therefore, we know exactly what the error is. It can be seen that
the relative error can be sizeable at temperatures above 100 mK, and cannot be
controlled easily by just increasing the number of k-space grid points. Therefore,
we have developed an algorithm49, which correctly identifies how the eigensurfaces
continue across intersecting lines, as shown in Fig. 7b.

Even with sorted eigensurfaces, one can still have numerical error in the
computation owing simply to lack of higher energy eigensurfaces. We estimate that
at the highest temperatures calculated here for the PnC structures (0.4 K), the error
introduced by the upper bound in frequency range (35 GHz for the long period
PnC and 50 GHz for the short period PnC) is the dominant one, of the order of at
least several tens of per cent.
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