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DNA methylation under the major 
depression pathway predicts pediatric quality 
of life four‑month post‑pediatric mild traumatic 
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Abstract 

Background:  Major depression has been recognized as the most commonly diagnosed psychiatric complication 
of mild traumatic brain injury (mTBI). Moreover, major depression is associated with poor outcomes following mTBI; 
however, the underlying biological mechanisms of this are largely unknown. Recently, genomic and epigenetic fac-
tors have been increasingly implicated in the recovery following TBI.

Results:  This study leveraged DNA methylation within the major depression pathway, along with demographic and 
behavior measures (features used in the clinical model) to predict post-concussive symptom burden and quality of 
life four-month post-injury in a cohort of 110 pediatric mTBI patients and 87 age-matched healthy controls. The results 
demonstrated that including DNA methylation markers in the major depression pathway improved the prediction 
accuracy for quality of life but not persistent post-concussive symptom burden. Specifically, the prediction accu-
racy (i.e., the correlation between the predicted value and observed value) of quality of life was improved from 0.59 
(p = 1.20 × 10–3) (clinical model) to 0.71 (p = 3.89 × 10–5); the identified cytosine-phosphate-guanine sites were mainly 
in the open sea regions and the mapped genes were related to TBI in several molecular studies. Moreover, depres-
sion symptoms were a strong predictor (with large weights) for both post-concussive symptom burden and pediatric 
quality of life.

Conclusion:  This study emphasized that both molecular and behavioral manifestations of depression symptoms 
played a prominent role in predicting the recovery process following pediatric mTBI, suggesting the urgent need to 
further study TBI-caused depression symptoms for better recovery outcome.

Keywords:  Pediatric mild traumatic brain injury, Depression, DNA methylation, Post-concussion symptom burden, 
Pediatric quality of life
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Introduction
It is increasingly recognized that genomic factors may 
enhance prognostication for outcomes following trau-
matic brain injury (TBI) [1, 2]. Single-nucleotide poly-
morphisms (SNPs) associated with TBI outcomes 
[3–5] have underscored genes involved in neural repair 
and plasticity (e.g., brain-derived neurotrophic factor 
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[BDNF]), cognitive reserve/behavior (e.g., solute carrier 
family 6 member 3), neurotransmitters (e.g., COMT/
DRD2/ANKK1), and cytokines (IlIβ, IL1RN, IL6, IL1A 
TNFA). The results from research on polygenic effects 
are very promising [2, 6] but not conclusive. For instance, 
in a pediatric TBI cohort, a polygenic risk score derived 
from inflammatory genes (ACE, BDNF, IL-1RN, and 
NT5E) was associated with increased executive dysfunc-
tion and behavioral problems [2], while another study of 
military TBI cohort failed to show a relationship between 
polygenic risk scores for ten types of diseases and persis-
tent post-concussion symptom (PPCS) [6].

In contrast, very few studies have examined the rela-
tionship between epigenetic changes and outcomes 
following TBI in clinical samples [7]. Most existing 
knowledge about epigenetic changes following TBI has 
been gained from animal studies. Epigenetic modifica-
tion following TBI have been reported in various types 
of molecular mechanisms, including DNA methylation 
in animal models [8–10], microRNA in humans with 
TBI [11–13] and the upregulation of various transcrip-
tion factors involved in the regulation of inflammatory 
and immune response, apoptosis, or the migration of 
neuronal progenitor cells in rats [14]. In particular, DNA 
methylation at BDNF promoters potentially played an 
important role in the anxiety-like behavior in rats follow-
ing minimal TBI [9, 15].

Recently, Li conducted an epigenome-wide DNA meth-
ylation association study on the recovery outcome 1–6-
day post-injury in a cohort of 120 severe TBI patients, 
but failed to identify any methylation sites passing the 
epigenome-wide significance level [16]. The main chal-
lenge with this type of analysis is the large number of 
tested CpG sites and weak effects carried by each site 
[2, 17, 18]. Thus, a more focused investigation of specific 
pathways may be an effective approach to investigate epi-
genetic involvement. For example, Nielsen and colleagues 
[19] have recently identified that methylation CpG sites 
in the apolipoprotein E (APOE) promoter region were 
related to the plasma APOE protein levels, and plasma 
APOE protein levels were associated with posttraumatic 
stress disorder symptom severity in a cohort of veterans 
with and without mild TBI (mTBI).

Besides genomic and epigenetic factors, demographic 
(e.g., age, sex) and clinical variables (e.g., degree of post-
traumatic stress, psychological distress, pain) also play 
important roles in determining outcomes following mTBI 
[20, 21]. Specifically, both preexisting and posttraumatic 
affective disturbances have been shown to be one of the 
strongest predictors of outcome following mTBI [22]. 
Bombardier and colleagues [23] reported that 53% of 
mTBI participants (N = 297/559) met the diagnostic cri-
teria for major depressive disorder (MDD) in at least one 

instance during a one-year follow-up period [1, 6, 8, 10, 
and 12  months], and mTBI participants with MDD had 
lower quality of life at one-year follow-up compared with 
those without MDD. Similar findings were also reported 
recently by Stein and Mac Donald [24, 25]. Moreover, a 
review paper on depression and depressive symptoms in 
pediatric TBI suggests that depression is likely a second-
ary outcome following pediatric TBI [26]. The underly-
ing mechanism at the molecular level linking the clinical 
conditions (e.g., anxiety, depression, and stress) to worse 
outcomes following mTBI in humans has yet to be dis-
covered. Understanding the biological basis of trau-
matically induced depression and the relationship with 
outcomes is critical given the increased risk for suicide 
rates for both concussed persons and athletes retrospec-
tively diagnosed with chronic traumatic encephalopathy 
[27, 28].

This study was undertaken to investigated whether 
DNA methylation markers from the major depression 
pathway could predict post-concussive symptom burden 
and quality of life four-month post-injury in a pediatric 
mTBI (pmTBI) cohort beyond traditional demographic 
and clinical variables [21]. Methylation CpG sites in 
genes BDNF and APOE4 were also included as prior fea-
tures in analyses given previous associations observed in 
the preclinical and clinical literature [9, 15, 29–35].

Materials and methods
Participants
Participants were from an ongoing study examining 
biomarkers in pmTBI [36]. Inclusion criteria for mTBI 
participants were based on the American Congress of 
Rehabilitation Medicine and the Zurich Concussion 
in Sport Group guidelines (see details in Supplemen-
tal Materials). Exclusion criteria included the history of 
previous head injury with greater than 30-min loss of 
consciousness, neurological diagnosis, most psychiat-
ric disorders, autism spectrum disorder, intellectual dis-
ability, history of substance abuse/dependence or current 
use, contraindications for MRI, or non-English speak-
ing. Healthy controls (HCs) were also free of diagnosis 
of attention-deficit hyperactivity disorder, a learning dis-
ability, or a recent mTBI (within six months). The study 
was approved by the University of New Mexico School of 
Medicine Institutional Review Board.

Based on the quality of acquired DNA material, com-
pletion of clinical measurements, and data quality con-
trol (details later on), the final sample included 110 
pmTBI patients at the subacute (SA) visit (8–18  years; 
14.90 ± 2.07  years old; 53 females; 7.26 ± 2.28-day post-
injury), with 91 returning for the early chronic (EC) 
visit (14.80 ± 2.10  years old; 46 females; 130.08 ± 13.20-
day post-injury; 122.45 ± 14.29  days between visits). 
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In addition, 87 age-matched HC completed both SA 
and EC visits (14.93 ± 2.00  years old; 36 females; 
124.84 ± 15.67 days between visits). The 197 participants 
were from 171 one-member families and 13 two-member 
families (exclusively of HC). One hundred and sixty-
four participants reported themselves as White, and 5 
as Black or African-American (detailed race information 
can be found in Supplemental Materials).

Clinical and cognitive measures
Clinical assessments were administered during SA visit 
(1–10-day post-injury) and EC visit (approximately 
four-month post-injury), using a common data ele-
ments focused battery of clinical and neuropsychologi-
cal measures. Retrospective ratings (i.e., estimation for 
one month ago) of symptoms and quality of life were 
also acquired at the SA visit (See Table S1 for retrospec-
tive clinical ratings across groups). Two primary clinical 
measures were included, the Post-Concussion Symptom 
Inventory (PCSI) and the Pediatric Quality of Life Inven-
tory Generic Core (PedsQL). PCSI had self- and parental 
reports with lower PCSI values indicating fewer or less 
severe symptoms. The PedsQL is a self-report measure 
with larger values indicating better quality of life. It is a 
reliable outcome measure and can discriminate among 
children with TBI [37]. Secondary clinical measures con-
sisted of the Patient Reported Outcomes Measurement 
Information System (PROMIS; anxiety, depression, and 
sleep scales), a self-report pain rating (0–10 Likert scale) 
and the Headache Impact Test (HIT-6). Additional injury 
characteristics, such as loss of consciousness (LOC), 
posttraumatic (PTA) and retrograde (RTA) amnesia, and 
the previous number of concussions, were also collected 
(see Supplemental Materials). Finally, substance use his-
tory for tobacco, alcohol, and cannabis were summarized 
based on Alcohol, Smoking, and Substance Involvement 
Screening Test (ASSIST). Days post-injury at SA visit 
were not significantly related to any of the above-men-
tioned clinical assessments at SA after false discovery 
rate (FDR) at p < 0.05 correction.

Cognitive estimates of premorbid abilities were 
obtained along with neuropsychological tests selected 
from specific subtests of the Delis–Kaplan Executive 
Function System (DKEFS) and age-appropriate versions 
of Wechsler scales. Raw scores were age-corrected and 
aggregated into composites for primary domains of atten-
tion and processing speed, along with secondary domains 
of working memory and executive function. Measures of 
processing speed, attention, visual learning, and working 
memory were acquired from the Cogstate battery (detec-
tion, identification, one card learning, and one back test, 
respectively) for both reaction time and accuracy.

Classification of persistent post‑concussion symptoms
Classification of PPCS from “recovered” patients at the 
follow-up visit four-month post-injury (EC) was deter-
mined based on self-reported PCSI data [38]. Briefly, 
individual HC and pmTBI PCSI data at the EC visit were 
summed, base 10 log-transformed to correct for non-
normality, and further normalized to a standard normal 
distribution based on the HC EC data. A z threshold of 
1.64 (the same threshold as in a previous study [38]) was 
used to classify patients as having PPCS, while those 
below the threshold as “recovered” patients. A clinical 
risk score for PPCS [21] was also calculated for all pmTBI 
patients using demographic and clinical data collected at 
the SA phase (see Supplemental Materials).

DNA methylation data processing
Saliva samples were collected during the SA visit. DNA 
samples (see Supplemental Methods for details) iso-
lated from saliva were used to generate methylation 
data by the Infinium Methylation EPIC array, covering 
over 850,000 CpG sites. A series of quality control steps 
were performed. Specifically, we removed individuals (1) 
with mismatched sex information between self-report 
and methylation data indicated, (2) with more than 1% 
of methylation sites missing (CpG sites with detection 
p-value larger than 0.05 were set as missing), and (3) 
three standard deviations away from the median based 
on the top four principal components (PCs) of the meth-
ylation (beta value) matrix. Using R package minfi [39], 
both methylated and unmethylated signals of the remain-
ing participants were normalized based on the quantile-
based normalization method. For methylation CpG sites, 
we excluded (1) CpG sites with more than 1% missing 
values; (2) CpG sites on sex chromosomes; (3) CpG sites 
coinciding with SNPs or at the single-nucleotide exten-
sion; (4) CpG sites potentially affected by cross-hybrid-
ization as provided in [26]. Totally, 754,160 methylation 
sites were retained after preprocessing. Missing beta val-
ues were imputed with the average of CpG sites. Batch 
(chip) effects were corrected by using the R package 
Combat [40]. Cell type (B cells, CD8 + T cells, mono-
cytes, granulocytes, and buccal cells) proportions in 
saliva samples were estimated by using a previously pro-
posed algorithm [41] with the reference methylation data 
collected from buccal epithelial cells (GSE46573) and 
other leukocyte cell types available in the minfi package 
[39]. The estimated proportions for B cells, CD8 + T cells, 
and monocytes were very close to 0. Proportions of gran-
ulocytes and buccal cells summed to one approximately. 
So, we used buccal cell proportion as a covariate to con-
trol for potential confounding effects from cell type pro-
portion in this study.



Page 4 of 17Duan et al. Clin Epigenet          (2021) 13:140 

A methylome-wide association study (MWAS) was 
performed on the batch-corrected beta values of 754,160 
CpG sites to investigate pmTBI versus control difference 
using a mixed effect regression model:

a CpG site = diagnosis (pmTBI/con-
trol) + age + sex + BMI + race + buccal cell pro-
portion + three principal components of 
methylation + family,

where family was modeled as a random effect and other 
predictors were modeled as fixed effects. Race (White, 
African-American or other) was coded as dummy vari-
ables. BMI represented body mass index. Principal com-
ponents (PCs) decomposed from genomic methylation 
data have been used to control for potential confound-
ing factors in genomic association analyses [42]. The 
change rate of eigenvalues suggested using the first five 
PCs, while PC 1 was highly collinear with buccal cell 
proportions (correlation r = 0.87) and PC 5 was associ-
ated with gender (r = 0.45, p = 4.18 × 10–11), race (r = − 
0.33, p = 3.17 × 10–6), and PCSI at SA (r = 0.19, p = 0.02). 
Given that buccal cell proportions, gender, and race were 
already included in the model and PCSI at SA signifi-
cantly related to the variables we are interested in (PCSI 
at EC with r = 0.44, p = 9.08 × 10–10 and PedsQL at EC 
with r = − 0.47, p = 3.94 × 10–11). To avoid PC 5 canceling 
out the partial individual variance we are interested in, 
we only controlled three principal components (PC 2–4) 
(the same for later models). Previous studies [43–46] 
have suggested using a standard deviation (SD) > 0.05 as a 
reasonable threshold for selecting reliable and variable 
CpG sites. We chose SD threshold of 0.1 for the selection 
of reliable and variable CpG sites because our estimated 
sample variance is likely larger than population variance 
due to the relatively small sample size of this study. This 
more conservative selection yielded 17,857 CpG sites. 
Derived methylation features included global meth-
ylation level and independent factors from the major 
depression pathway, as well as individual CpG sites in 
BDNF and APOE4 genes. The average beta values of all 
included epigenomic CpG sites were treated as a proxy 
of global methylation for each participant. The pmTBI 
versus control difference of the global methylation was 
investigated using the above-mentioned mixed effect 
model, and the only difference is that global methylation 
was treated as the dependent variable.

Given the primary focus on the predictive ability of the 
major depression pathway, we selected 278 genes anno-
tated to affect major depression in the ingenuity path-
way analysis database (IPA, http://​www.​ingen​uity.​com). 
Adding 20 k base-pair flanking regions for each gene, we 
mapped 223 CpG sites after quality control in our data. 
Lists of the selected 278 genes and mapped 223 CpG 
sites can be found in the Supplemental spreadsheet. A 

multivariate blind source separation method, independ-
ent component analysis [ICA [47]], was applied onto the 
223 CpG sites of 110 pmTBI patients at the SA visit to 
capture maximally independent patient-specific meth-
ylation patterns. Methylation data (hereafter referred to 
as X) were decomposed into a component matrix S and 
a loading matrix A ( X = A × S ). Each row of S is one 
independent component, and individual CpG sites con-
tribute to the component differently. Each column of A is 
the loading vector, which represents the expression lev-
els of the corresponding component across participants. 
The component number is estimated to be 30 based on 
Chen’s consistency method [48] and retained 96.95% of 
the data variance. Global methylation level and loading 
vectors in A were utilized as methylation features in the 
prediction model.

Since we were also interested in investigating CpG 
sites in BDNF and APOE4 genes for their ability to pre-
dict symptoms and outcomes following pmTBI, 13 meth-
ylation CpG sites under BDNF and APOE4 genes with 
standard deviations larger than 0.05 (see Table  S2 for 
detail, they were not included in the selected 223 CpG 
sites because their standard deviations were less than 
0.1) were included as prior methylation features [44, 49]. 
Given that only 13 CpG sites were covered by BDNF and 
APOE4 genes, we believe that support vector regression 
(SVR) with the least absolute shrinkage and selection 
operator (LASSO) model (explained in detail later) is able 
to capture effects of all linear combinations of 13 CpG 
sites. Thus, it is not necessary to apply ICA factorization 
to 13 CpG sites prior to SVR with LASSO.

Outcome/symptom prediction models
In this study, we employed SVR with LASSO regulariza-
tion to predict PCSI and PedsQL scores at four-month 
post-injury using data available at the SA visit. SVR with 
LASSO can select features of importance to achieve a 
stable regression outcome. We tested five different mod-
els (see Fig. 1a). Model 1 focused on all available features 
from demographic, clinical, and cognitive variables. 
Model 2 focused on DNA methylation features (i.e., 
global methylation level and 30 independent methyla-
tion components decomposed from the major depression 
pathway). Model 3 combined variables in Models 1 and 
2, whereas Model 4 focused on behavioral variables sub-
jectively selected to reflect the known key features of TBI. 
Model 5 focused on methylation CpG sites in BDNF and 
APOE4 genes. Thus, we named Models 1–5 as clinical, 
methylation, clinical + methylation, prior clinical, and 
prior methylation models, respectively. Each model was 
cross-validated with the training samples, and its perfor-
mance was evaluated with a hold-out testing set (Fig. 1b). 
Among 91 pmTBI patients with information at both 

http://www.ingenuity.com
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visits, 63 (around 70% samples, female/male = 32/31, age: 
14.75 ± 2.12 years old) were utilized for training, with the 
remaining 28 participants (around 30% samples, female/
male = 14/14, age: 14.93 ± 2.11 years old) used as a hold-
out testing set. Mean square error (MSE) and correlation 
coefficient ( r ) between the predicted PCSI/PedsQL and 
true PCSI/PedsQL scores, receiver operating character-
istic (ROC) curve for classifying PPCS versus recovered 
patients using the predicted PCSI/PedsQL score with all 
possible thresholds, and the area under the ROC curve 
(AUC) was estimated to reflect the accuracy of the pre-
diction models.

The full demographic variables included age, sex, 
BMI, and duration between two visits. The full clinical 
variables included the previous number of concussions, 
LOC, PTA, RTA, depression, sleep disturbances, pain 
rating, and PCSI score at the SA visit. Cognitive vari-
ables included measures of processing speed, attention, 
visual learning, and working memory from the Cogstate 
battery, DKEFS battery, and Wechsler tests. In addition, 
history of substance use of tobacco, alcohol, and can-
nabis from ASSIST  were also included. For the meth-
ylation model, global methylation level and loadings of 
30 methylation components from the major depression 
pathway were used as predictors. For the prior clinical 
model, the features included the clinical risk score for 

PPCS [21], the previous number of concussions, LOC, 
PTA, and RTA, and days post-injury at the SA visit. For 
the prior methylation model, 13 CpG sites in BDNF and 
APOE4 genes were included as predictors. Each vari-
able/predictor was scaled to be between 0 and 1 prior 
to SVR for all models.

Training a model includes three steps: tuning the reg-
ularizer λ for the LASSO, feature selection, and model 
fitting. We adopted the leave-one-out cross-evaluation 
to tune the parameter λ for LASSO regularization due 
to the small sample size. The λ producing the smallest 
MSE in the leave-one-out cross-evaluation was selected. 
With the selected λ, variables were included as final pre-
dictors for PCSI/PedsQL predictions when their weights 
from all cross-validation trials were significantly different 
from zero in Models 1 and 2. Model 3 included variables 
selected from Models 1 and 2 for fair comparisons with 
the accuracies achieved from Model 1 and 2. Features 
were fixed for Models 4 and 5 (prior clinical and methyla-
tion model). Model fitting used all selected variables and 
all samples in the training set to finalize model parame-
ters (weights). When testing a model, the finalized model 
was applied to the hold-out testing samples to predict 
PCSI/PedsQL, and the prediction performance was eval-
uated by comparing the predicted PCSI/PedsQL values 
with the true values.

Fig. 1  a Prediction models and b Diagram for predicting PCSI/PedsQL
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Secondary analyses
After finalizing the models, we then performed univari-
ate analyses for each selected variable to better under-
stand their characteristics, including associations with 
PCSI/PedsQL score at the EC visit, as well as differences 
between pmTBI and HC, if applicable. FDR at p < 0.05 
was applied to correct for multiple comparisons.

For the identified clinical/cognitive variables, the 
pmTBI versus HC difference was tested using linear 
mixed-effect regression model (a) (Table 1). For the iden-
tified methylation components, we projected them into 
HC data and computed the corresponding loadings of 
controls (see Supplemental Materials for details). The 
pmTBI versus HC difference of methylation loadings 
and CpG sites in BDNF or APOE4 was tested with linear 
mixed-effect regression model (b) (Table 1). The associa-
tions between each identified methylation feature (e.g., 
global methylation, loadings of methylation components 
or CpG sites in BDNF or APOE4) and PCSI/PedsQL/
depression symptom score at the EC visit were investi-
gated for pmTBI participants with the linear regression 
model (c) (Table 1).

To test how the IPA-selected molecular features (i.e., all 
30 methylation components decomposed from the major 
depression pathway) represented the depression symp-
tom at SA and EC visits within pmTBI patients, we used 
the linear regression model (d) (Table  1). The methyla-
tion-fitted depression score was computed based on the 
regression coefficients of 30 methylation components, 
and its correlation with the true depression symptom 
score was further evaluated.

For the identified methylation components, top CpG 
sites (with weights |z|> 2), their locations and z values, 
relations to the island, and annotated gene names were 
summarized. Correlations between saliva and brain 

methylation for top CpG sites were checked using the 
IMAGE-CpG tool (http://​han-​lab.​org/​methy​lation/​defau​
lt/​image​CpG#) [50]. Moreover, the reliability of top CpG 
sites was examined by using the summary provided in 
[51], where the reliability of 438,593 CpG sites covered 
by the Illumina Human Methylation 450K chip was 
summarized.

Given that the whole methylome data were available, 
depression-related methylation feature selection was per-
formed on 197 samples by applying a univariate MWAS 
on the depression symptom at SA. Specifically, each of 
the 17,857 CpG sites was regressed on the depression 
symptom at SA, with diagnosis (pmTBI/control), age, 
gender, BMI, race, buccal cell proportions and PC 2–4 
as fixed effects and family ID as a random effect. Depres-
sion-related top CpG sites (p < 0.05) were then selected 
and used as the features for SVR with LASSO to predict 
PCSI and PedsQL scores at EC.

In addition, univariate MWASs on PCSI and PedsQL 
scores at EC visit were performed on the 63 training sam-
ples to select CpG sites potentially contributing to PCSI 
and PedsQL prediction, respectively. Specifically, each 
of the 17,857 CpG sites was regressed on PCSI/PedsQL 
score at EC, with age, gender, BMI, race, buccal cell pro-
portions and PC 2–4 as fixed effects and family ID as a 
random effect. PCSI-related or PedsQL-related top CpG 
sites were then selected and used as the features for SVR 
with LASSO to predict PCSI or PedsQL scores at EC (see 
details in the Supplemental Materials).

Results
Table  2 lists the demographic and primary outcome 
measures. Based on thresholded PCSI scores at EC visit, 
23 pmTBI patients were classified as having PPCS, and 
the remaining 68 pmTBI as recovered.

Table 1  Linear mixed/fixed effect regression models used in the secondary analyses

BMI represents body mass index. N/A denotes not available (same for Tables 2 and 3)

Model Function Response Predictors

Fixed effect Random effect

Model (a) Test pmTBI  versus  HC difference of 
clinical/cognitive variables

A clinical or cognitive variable Diagnosis (pmTBI/HC), age, sex, BMI, 
race

Family ID

Model (b) Test pmTBI  versus  HC difference of 
methylation features

Loadings of a methylation component 
or a CpG site in BDNF/APOE4

Diagnosis (pmTBI/HC), age, sex, BMI, 
race, buccal cell proportion, PC 2–4

Family ID

Model (c) Test the association between meth-
ylation features and PCSI/PedsQL/
depression symptom score at EC 
within pmTBI patients

Global methylation or loadings of a 
methylation component or a CpG 
site in BDNF/APOE4

PCSI/PedsQL/depression symptom 
score at EC, age, sex, BMI, race, buc-
cal cell proportion, PC 2–4

N/A

Model (d) Test the association between depres-
sion symptom at SA/EC and loadings 
of 30 methylation components 
within pmTBI patients

Depression symptom at SA/EC Loadings of 30 methylation compo-
nents, age, sex, BMI, race

N/A

http://han-lab.org/methylation/default/imageCpG#)
http://han-lab.org/methylation/default/imageCpG#)
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Figure  2a shows the quantile–quantile plot of the 
sorted MWAS p values for pmTBI vs control difference of 
754,160 CpG sites against sorted p values sampled from a 
uniform distribution. The sorted MWAS p values largely 
followed a uniform distribution, indicating that there is 
no systematic bias. Figure 2b demonstrates the Manhat-
tan plot of the MWAS p values for pmTBI versus control 
difference. One CpG site, cg00415333 located in chromo-
some 6 and in the open sea region of the protein-coding 
gene IL22RA2, showed significant hypermethylation in 
pmTBI patients compared to controls (p = 4.12 × 10–12, 
t = 7.42, degree of freedom = 186) after FDR at p < 0.05 
correction for 754,160 CpG sites. Global methylation did 
not show a significant difference between pmTBI and HC 
groups.

PCSI prediction
Prediction accuracies of PCSI scores at EC are summa-
rized in Table  3 upper panel. Model 1 (clinical model) 

selected six variables, including age, the previous number 
of concussions, attention accuracy from the Cogstate bat-
tery, depression score, pain scale, and the SA PCSI score. 
Model 1-predicted PCSI score was significantly and posi-
tively related to the true PCSI score for both training and 
testing sets (Fig. 3a). Using Model 2 (methylation model), 
the predicted PCSI was not significantly related to the 
true PCSI at EC (p > 0.5). Thus, Model 3 (clinical + meth-
ylation model) was the same as Model 1. Using Model 4 
(prior clinical model) to predict PCSI at EC, the result-
ing PCSI score was significantly and positively related to 
the true PCSI score for the training set, but not for the 
testing, indicating a high likelihood of model overfitting. 
Using Model 5 (prior methylation model), the predicted 
PCSI was not significantly related to the true PCSI at EC 
visit for both training and testing sets (p > 0.4). The pre-
dicted PCSI from the methylation model, prior clinical 
and prior methylation models was not further tested for 
classification of PPCS.

Table 2  Demographic information, PCSI and PedsQL across groups at each eligibility phase

SD represents standard deviation

Variables SA EC

HC pmTBI HC pmTBI

Number of participants 87 110 87 91

Sex (female/male) 36/51 53/57 36/51 46/45

Age (mean ± SD) 14.93 ± 2.01 14.90 ± 2.07 14.93 ± 2.01 14.80 ± 2.10

BMI (mean ± SD) 21.71 ± 4.64 23.09 ± 5.40 21.71 ± 4.64 23.10 ± 5.66

Days post-injury (mean ± SD) N/A 7.26 ± 2.28 N/A 130.08 ± 13.20

PCSI (mean ± SD) 5.86 ± 9.36 25.45 ± 25.94 5.83 ± 7.39 14.31 ± 19.48

PedsQL (mean ± SD) N/A N/A 87.12 ± 10.84 83.66 ± 13.04

Fig. 2  a Quantile–quantile plot of sorted − log10(pobs) values (ascending order, pobs values were obtained from MWAS of 754,160 CpG sites for 
pmTBI versus control difference) against sorted − log10(pexp) values (ascending order, pexp were sampled from a uniform distribution), b Manhattan 
plot of − log10 transformed p values for pmTBI versus control difference of 754,160 CpG sites
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Figure 3b plots the weights of six predictors identified 
in Model 1, where bars with cyan and magenta colors 
denote variables with negative and positive weights 
(same for Fig.  4b), respectively. Thus, individuals with 
younger age or lower attention accuracy at SA reported 
an increased symptom burden four-month post-injury. 
Participants with a history of previous concussion, or 
higher depression, pain scores, and symptom load at SA 
also reported an increased symptom burden four-month 
post-injury. Among the six selected variables, depres-
sion score had the largest weight, followed by PCSI at SA 
visit and attention accuracy from the Cogstate battery. 
Figure  3c displays the ROC curves of classifying PPCS 
versus recovered patients using the predicted PCSI score 
from Model 1 with all possible thresholds for training 
and testing sets, respectively. The AUC values under the 
ROC curves were 0.8 and 0.71 for training and testing 
data, respectively.

PedsQL prediction
Results regarding the prediction of the PedsQL score at 
EC are summarized in Table  3 bottom panel. Model 1 
(clinical model) selected fifteen variables including age, 
sex, BMI, the previous number of concussions, catego-
ries of LOC, PTA and RTA, depression score, sleep dis-
order, PCSI score at SA, attention accuracy from the 
Cogstate battery, the duration between two visits, as well 
as previous substance use of tobacco, alcohol, and can-
nabis. Based on these fifteen variables, the predicted 
PedsQL scores showed significant and positive relation-
ships with the true PedsQL scores for both training and 
testing (Fig. 4a, black line). Model 2 (methylation model) 
selected loadings of 5 methylation components (ICs 1–5), 

and the predicted PedsQL scores (Fig. 4a, light blue line) 
demonstrated significant and positive associations with 
true PedsQL scores for both training and testing. Load-
ings of methylation ICs 1–5 and the fifteen variables 
selected from Model 1 were treated as final predictors 
in Model 3 (clinical + methylation model). The accuracy 
of the predicted PedsQL score was largely improved 
in Model 3 compared to Models 1 and 2 (see Fig.  4a, 
magenta line). Model 4 (prior clinical model) significantly 
predicted PedsQL at EC for the training set, but not for 
the testing set. Using Model 5 (prior methylation model), 
the predicted PedsQL was not significantly related to the 
true PedsQL at EC visit for both training and testing sets 
(p > 0.6). Thus, the results were not plotted, and the pre-
dicted PedsQL scores from the prior clinical and prior 
methylation models were not further tested for classifica-
tion of PPCS.

The weights of the nineteen variables (tobacco use had 
a weight of zero, thus omitted) included in Model 3 (clini-
cal + methylation model) for predicting PedsQL at EC are 
plotted in Fig. 4b. Age, BMI, categories of PTA and RTA, 
attention accuracy, duration between two visits, as well 
as loadings of methylation ICs 1–4 had positive weights, 
indicating that participants with larger values for these 
ten variables would have better outcomes four-month 
post-injury. However, sex (females were coded as ones, 
males were coded as zeroes), alcohol use, cannabis use, 
category of LOC, the previous number of concussions, 
depression score, sleep disorder, PCSI score at EA, and 
the loadings of methylation IC 5 had negative weights, 
implying that individuals with larger values for these 
nine variables would have worse outcome four-month 
post-injury. Among the nineteen variables, loadings of 

Table 3  Accuracies for predicting PCSI/PedsQL using Models 1–5 and AUC values

N. S. denotes not significant. Accuracies were reflected by the correlation and MSE value between predicted PCSI/PedsQL and true PCSI/PedsQL values. AUC values 
were for classifying PPCS versus recovered using the predicted PCSI/PedsQL values

Prediction Models Correlation MSE AUC for 
classifying 
PPCS  versus  
recovered

Train Test Train Test Train Test

PCSI prediction Model 1 r=0.47, p = 1.20 × 10–4
r  = 0.57, p = 2.07 × 10–3 293.96 304.22 0.8 0.71

Model 2 N. S N. S N/A N/A N/A N/A

Model 4 r  = 0.41, p = 8.00 × 10–4 N. S 340.28 458.34 N/A N/A

Model 5 N. S N. S N/A N/A N/A N/A

PedsQL prediction Model 1 r  = 0.71, p = 1.76 × 10–10
r  = 0.59, p = 1.20 × 10–3 120.78 132.67 0.70 0.56

Model 2 r  = 0.42, p = 6.53 × 10–4
r  = 0.50, p = 6.80 × 10–3 137.15 161.60 0.59 0.68

Model 3 r  = 0.74, p = 1.72 × 10–11
r  = 0.71, p = 3.89 × 10–5 106.24 106.75 0.70 0.63

Model 4 r  = 0.36,
p = 3.90 × 10–3

N. S 167.96 194.41 N/A N/A

Model 5 N. S N. S N/A N/A N/A N/A
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methylation IC 5 had the highest weight, followed by 
cannabis use, loadings of methylation IC 4, PCSI at EA, 
age, loadings of methylation IC 3, attention accuracy, 
alcohol use, and depression score, etc.

Figure 4c plots the ROC curves of classifying PPCS ver-
sus recovered patients using the predicted PedsQL scores 

from Models 1–3 with all possible thresholds for train-
ing and testing sets, where black, light blue, and magenta 
lines were used for Models 1 (clinical model), 2 (methyla-
tion model), and 3 (clinical + methylation model), respec-
tively. The AUC values under training data ROC curves 
of Models 1–3 were 0.70, 0.59, and 0.70, respectively. 

Fig. 3  a Accuracy (correlation and MSE) and b weights of included variables for predicting PCSI using Model 1, c ROC curves and AUC values 
of classifying PPCS versus recovered patients using the predicted PCSI score from Model 1. Note, cyan and magenta colors denote negative 
and positive weights, respectively. Prev. # of Concussion represents the previous number of concussions, and Attention Acc. (Cogstate) denotes 
attention accuracy from the Cogstate test (the same for Fig. 4b)
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Fig. 4  a PedsQL prediction accuracies (correlation and MSE) from Models 1–3, b weights of included variables for predicting PedsQL using Model 
3, c ROC curves and AUC values of classifying PPCS versus recovered patients using the predicted PedsQL scores from Models 1–3 (black, light blue, 
and magenta lines represented the results for Models 1, 2, and 3, respectively)
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The AUC values under testing data ROC curves of Mod-
els 1–3 were 0.56, 0.68, and 0.63, respectively. Using 91 
pmTBI patients’ true PedsQL score to classify PPCS ver-
sus recovered patients, the AUC value was 0.74.

From Fig.  4a and c, we can observe that including 
methylation features decomposed from the major depres-
sion pathway largely increased the accuracy (reflected by 
the correlation coefficients and MSE values) of predict-
ing PedsQL at EC for both training and testing data, and 
the predicted PedsQL scores yielded slightly higher accu-
racy of classifying PPCS versus recovered ones than that 
achieved from the clinical model for the testing set.

Secondary analyses
Six univariate analyses were performed to test the asso-
ciation between each of the six variables selected from 
Model 1 (PCSI prediction) and the PCSI score at EC. No 
significant association was observed for any of the six 
variables. We also examined the association between the 
PedsQL score at EC and each of the nineteen predictors 
selected from Model 3 (PedsQL prediction). The result 
showed that only the depression score was significantly 
and negatively related to the PedsQL score at EC (r = − 
0.48, p = 6.77 × 10–5) after FDR p < 0.05 correction, indi-
cating that higher depression symptoms were associated 
with lower quality of life.

Among the six cognitive/clinical variables (not includ-
ing LOC, PTA, RTA, PCSI, and pain scale due to obvi-
ous differences between controls and pmTBI) selected 
from Model 1 for PedsQL/PCSI prediction, tobacco and 
cannabis use, depression score and sleep disorder score 
showed significant pmTBI versus HC difference (see 
Table  S3 for details). The results showed that pmTBI 
patients had higher usage of tobacco and cannabis, and 
higher depression and sleep disorder scores compared to 
HC. No significant group differences were observed for 
any of the five methylation components identified from 
Model 2 for PedsQL prediction or any of 13 CpG sites in 
BDNF and APOE4 genes.

Among the identified five methylation components, 
loadings of the pmTBI patients for methylation IC 3 
significantly and positively related to PedsQL score at 
EC visit (p = 2.32 × 10–3, R2 = 6.92%), but negatively 
associated with PCSI score at EC visit (p = 3.75 × 10–4, 
R2 = 2.35%). Loadings of the pmTBI patients for meth-
ylation IC 5 significantly and negatively associated with 
the PedsQL score at EC (p = 4.80 × 10–3, R2 = 7.08%), but 
positively related to the PCSI score at EC (p = 2.39 × 10–7, 
R2 = 6.56%). No significant associations were observed 
between PCSI/PedsQL scores at EC visit and loadings 
of methylation ICs 1/2/4 or any of the 13 CpG sites in 
BDNF and APOE4 genes.

Within 91 pmTBI patients, neither the identified 
five methylation components nor the 13 CpG sites in 
BDNF and APOE4 genes were significantly related to 
the depression symptom score at EC visit. The identi-
fied five methylation components together significantly 
predicted the depression symptom score at SA (correla-
tion between the predicted and true depression scores: 
r = 0.23, p = 1.68 × 10–2) and EC (r = 0.28, p = 6.90 × 10–3) 
visits for pmTBI patients. (Similar as regression model (d) 
in Table 1, the depression score at SA/EC visit was used 
as the dependent variable, with the loadings of the iden-
tified five methylation components, age, sex, BMI, and 
race used as predictors.) When using all 30 components 
from the major depression pathway to predict depression 
scores at SA and EC visit, the predicted score explained 
16.81% of the variance within the true depression scores 
at SA visit (r = 0.41, p = 1.06 × 10–5, R2 = 16.81%), and 
14.44% of the variance in the true depression scores at EC 
visit (r = 0.38, p = 2.26 × 10–4, R2 = 14.44%). Highlighted 
CpG sites (with weights |z|> 2) of identified methylation 
ICs 1–5, their locations and z values, relations to the 
island and annotated gene names are listed in Table 4.

The top 12 unique  CpG sites highlighted in ICs 1–5 
(Table  4) were matched in the IMAGE-CpG data-
base [50]. Five of these showed a significant correlation 
between brain methylation level and saliva methylation 
level (see details in Table 5). Based on the reliability sum-
mary in [51], four out of 12 top CpG sites were matched. 
cg06279296 (IC 2 and IC 4), cg00549601 (IC 3), and 
cg04306507 (IC 5) had excellent reliability (reliabil-
ity > 0.8), and cg21163960 (IC 2) had bad reliability 
(reliability < 0.4).

The MWAS on the depression score showed  that no 
CpG sites were significantly associated with the depres-
sion score at SA after FDR at p < 0.05 correction. Using 
depressed-related top 34 CpGs (p < 0.01), no models 
trained could predict PCSI or PedsQL score at EC in the 
independent test data. See details in the Supplemental 
Materials.

Performing MWAS on PCSI score at EC, we obtained 
14 CpG sites significantly related to PCSI score at EC in 
63 training samples (FDR corrected for 17,857 CpG sites 
at p < 0.05). Using these 14 CpG sites to predict PCSI 
score based on SVR with LASSO, we achieved significant 
prediction on the training set (the predicated score was 
associated with the observed PCSI score with r = 0.52, 
p = 4.36 × 10–5), but not on the testing set (p = 0.49). 
MWAS on the PedsQL score detected no CpG sites 
significantly associated with PedsQL score at EC after 
FDR correction. Using PedsQL-related top 35 CpGs 
(p < 0.001), the predicted PedsQL score was significantly 
related to the observed PedsQL score on the training 
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set (r = 0.84, p = 1.41 × 10–17), but not on the testing set 
(p = 0.61). See details in the Supplemental Materials.

Discussion
This study investigated whether DNA methylation 
markers from major depression pathway could improve 
the prediction accuracies of outcomes following mTBI, 
precisely the post-concussive symptoms and quality of 
life four-month post-mTBI, in a pediatric cohort. We 
compared five different prediction models (Models 
1–5: clinic, methylation, clinical + methylation, prior 
clinic, and prior methylation) using DNA methylation, 
and/or demographic and clinical measures. Our results 
demonstrated that DNA methylation factors under the 
major depression pathway contributed to the predic-
tion of the quality of life but not persistent post-con-
cussive symptoms. The prediction accuracy for quality 
of life, when including DNA methylation factors, was 
improved markedly compared to that obtained from 
only demographic and clinical measures. In contrast, 
global methylation did not improve the prediction 

performance, and did not show significant pmTBI ver-
sus control differences. Similarly, CpG sites in the most 
studied TBI-related genes, BDNF and APOE4, failed to 
predict both post-concussive symptoms and quality of 
life four-month post-injury.

When predicting post-concussion symptoms, the 
clinical model (using age, attention accuracy, previ-
ous concussion, depression, pain, and symptom load 
at SA) presented the best performance (correlation 
between observed and predicted values r = 0.57), with 
a prominent contribution from depression score. When 
predicting quality of life four-month post-injury, the 
clinical + methylation model demonstrated the high-
est accuracy (r = 0.71). The predictors include the 
same measures of the post-concussive symptom model 
above (except for pain) and additional clinical measures 
and five methylation factors. Not surprisingly, clini-
cal symptoms are very important for predicting out-
comes following TBI, as previously demonstrated in the 
Zemek model [21] and others [20]. Here, it is notewor-
thy that depression symptom score at SA contributed 
to prediction of both post-injury symptom and qual-
ity of life with relatively large weights (Fig. 3b and 4b). 
When adding DNA methylation factors from the major 
depression pathway, the prediction accuracy of quality 
of life was improved markedly from r = 0.59 (clinical 
model) to r = 0.71. One study led by Hellstrom on pre-
diction of outcome after mTBI has reported a very sim-
ilar prediction power (r = 0.55) from a clinical model 
also based on demographic and clinical measures, with 
no improvement in prediction found from additional 
MRI-based measures of brain morphometry [20]. In 

Table 4  Annotations of highlighted CpG sites (|z|> 2) of methylation ICs 1–5

‘Chr’ and ‘BP Pos’ represent chromosome number and base pair position, respectively. ‘RefGene Name (UCSC)’ denotes reference gene name from University of 
California, Santa Cruz (UCSC) genome browser

IC CpG sites Chr BP Pos Z value Relation to Island RefGene 
name 
(UCSC)

IC 1 cg19097407 chr9 36154750 14.42 OpenSea GLIPR2

IC 2 cg19519355 chr8 26697488 12.53 OpenSea ADRA1A

cg10492858 chr21 35884679 2.43 OpenSea KCNE1

cg06279296 chr10 601816 − 2.48 OpenSea DIP2C

cg21163960 chr11 35441777 − 2.12 Island SLC1A2

cg22186155 chr8 72765158 − 2.02 OpenSea MSC-AS1

IC 3 cg08549495 chr16 8823986 12.55 OpenSea ABAT

cg00549601 chr12 52208872 4.42 Island

IC 4 cg03944460 chr4 3765186 12.82 N_Shore

cg27297376 chr7 98627840 2.70 OpenSea SMURF1

cg06279296 chr10 601816 − 2.64 OpenSea DIP2C

IC 5 cg04306507 chr14 55594613 12.62 N_Shore LGALS3

cg09422301 chr6 24494043 − 3.37 N_Shore ALDH5A1

Table 5  Correlation between saliva methylation level and brain 
methylation level for the top 5 CpG sites

r is the correlation value and p denotes the significance of the correlation

IC CpG sites r p

IC 1 cg19097407 0.61 3.88 × 10–3

IC 2 cg21163960 0.51 1.87 × 10–2

IC 3 cg08549495 0.44 4.93 × 10–2

cg00549601 0.55 1.04 × 10–2

IC 5 cg04306507 0.63 2.55 × 10–3
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comparison, the added value we observed from DNA 
methylation indicates the strong relevance of both 
DNA methylation and depression.

The identified five methylation components under the 
major depression pathway highlighted 12 unique CpG 
sites and 10 unique genes. Five CpG sites, cg19097407 
(IC 1), cg21163960 (IC 2), cg08549495 and cg00549601 
(IC 3), and cg04306507 (IC 5) had high saliva-brain cor-
respondence (i.e., had significant correlation between 
saliva methylation level and brain methylation level). 
Moreover, the methylation levels of cg06279296 (IC 
2 and IC 4), cg00549601 (IC 3), and cg04306507 (IC 
5) were very reliable (reliability > 0.8). The function of 
some identified genes has been related to TBI in several 
molecular studies. For instance, 4-aminobutyrate ami-
notransferase expression (ABAT), playing key roles in the 
biogenesis and metabolism of gamma-aminobutyric acid, 
was upregulated among other genes in adult zebrafish 
with mTBI 21-day post-injury [52]. Cellular expression of 
excitatory amino acid transporter 2  (also known as sol-
ute carrier family 1 member 2 (SLC1A2)) was reduced 
in humans after TBI, and the reduction is mainly caused 
by degeneration of astrocytes and downregulation in 
surviving astrocytes [53]. Expression of smad ubiqui-
tination regulatory factor 1 (SMURF1) was low in the 
normal spinal cord and increased after acute spinal cord 
injury in adult rats. Expression of LGALS3 (galectin 3) 
was upregulated in adults’ plasma following mTBI [54] 
and in mice brain cortex and hippocampus  after con-
trolled cortical impact head injury [55]. Aldehyde Dehy-
drogenase 5 Family Member A1 (ALDH5A1, known 
as succinic semialdehyde dehydrogenase) is a mitochon-
drial  homotetramer  protein, and its expression showed 
a dynamic pattern from elevation at 1-day post-injury, 
followed by a reduction at 3- and 7-day post-injury and 
then restoration at 10-day post-injury in adult male rats 
[56]. Although the role of the alpha 1-adrenergic recep-
tor (ADRA1A) in TBI is not consistent, its involvement is 
clear. Studies have reported that ADRA1A binding den-
sity was reduced in rats after experimental brain injury 
[57], and the reduction was progressed to the whole brain 
30-day post-injury [58]. A more recent study revealed 
that increased ADRA1A mRNA expression level was 
related to working memory dysfunction in rats with TBI 
[59]. The MWAS highlighted cg00415333, which is anno-
tated to the protein-coding gene IL22RA2. IL22RA2 is 
likely involved in the inflammatory response. The expres-
sion level of the IL22RA2 gene was shown to be down-
regulated in TBI plus vehicle-treated mice compared to 
sham plus vehicle-treated mice [60].

In the independent testing dataset, depression-related 
34 top CpG sites (p < 0.01) failed to predict both PCSI 
and PedsQL scores at EC, the14 CpG sites significantly 

associated with PCSI failed to predict PCSI at EC, and 
PedsQL-related top 35 CpG sites (p < 0.001) failed to pre-
dict PedsQL at EC. Altogether these results suggest that 
prediction models trained with features selected from 
a relatively small sample MWAS results are not robust 
and generalizable. In contrast, depression-related meth-
ylation features selected from IPA, which have been veri-
fied by other studies, promise to be more generalizable 
in prediction models and can be easily implemented in 
other independent datasets.

Besides the molecular role of major depression in the 
recovery process following TBI, our results also high-
lighted that depression symptoms were a strong predic-
tor for injury recovery following TBI. Specifically, higher 
depression symptoms were associated with greater post-
concussive symptoms and lower quality of life. Previous 
studies have indicated that patients with major depres-
sion induced by TBI were reported to have significantly 
greater impairment in executive function and poorer 
social functioning 6- and 12-month post-injury [61], 
lower quality of life at one year [23], poorer performance 
on working memory, processing speed, verbal memory 
and executive function [62], higher degrees of psycho-
logical distress, psychosocial dysfunction, and post-con-
cussive symptoms, and poorer instrumental activities 
of daily living performance compared to those without 
major depression following TBI [63].

Interestingly, DNA methylation factors under the 
major depression pathway demonstrated different pow-
ers in predicting post-concussion symptoms versus qual-
ity of life, while depression score was a strong predictor 
for both. We speculate that the reason may be twofold. 
One is that PCSI focuses on post-concussive symptoms, 
while PedsQL measures multidimensional functioning of 
pediatric life, including physical, emotional, social, and 
school. The other is that there are differences between 
DNA methylation under major depression pathway and 
depression scores. Altogether, 30 methylation factors in 
the major depression pathway only explained 16.81% of 
the variance within the depression score at SA visit in 
pmTBI patients. The five identified methylation factors 
together significantly predicted the depression symptom 
at both visits in pmTBI patients, but only explained 5% 
of the variance of the SA depression symptom and 8% of 
the variance of the EC depression symptom. Among the 
five identified methylation factors, two were associated 
with PedsQL score at EC in pmTBI individuals. These 
results indicate that DNA methylation factor from the 
major depression pathway partially underlies depres-
sion symptom presentation, as well as other domains of 
functioning. Depression scores assist prediction of both 
symptom and functional outcomes of mTBI, and specific 



Page 14 of 17Duan et al. Clin Epigenet          (2021) 13:140 

methylation factors add additional prediction value for 
functional outcome.

Based on an empirical model [38], we classified 
patients with PPCS from “recovered” using self-reported 
PCSI scores at EC. We then compared the classification 
power for PPCS versus recovered using the predicted 
PCSI and PedsQL scores. The best prediction model 
(clinical model) of PCSI could classify PPCS from recov-
ered with AUC of 0.71, and the best prediction model 
(clinical + methylation model) of PedsQL could classify 
PPCS from recovered with AUC of 0.63. Due to the lack 
of a standard definition for PPCS, these results cannot be 
directly compared to that in Zemek’s model [21]. How-
ever, the accuracy of classifying PPCS from recovered 
was comparable.

Global methylation changes following TBI have been 
reported in a few preclinical and human studies. One 
preclinical study reported that rats who experienced 
experimental TBI presented global hypomethylation in 
the brain in the early process following TBI (1–4-day 
post-injury) [64]. Another human epigenetic study focus-
ing on a small population of college students (25 par-
ticipants: 11 mTBI patients, and 14 controls) revealed 
that mTBI had a long-term effect on global methylation, 
with patients demonstrating a significantly higher blood 
global methylation compared to controls seven years 
post-injury [65]. Our lack of findings from global methyl-
ation could be from three factors. First, different popula-
tions may have different methylation change trajectories 
following mTBI. Zhang’s study focused on rats and Lee’s 
focused on college students seven years post-injury. We 
focused on pediatric participants, and global methylation 
change may not have yet happened when we collected 
the DNA samples at 7.26 ± 2.28-day post-injury. Second, 
different tissues may have different methylation change 
trajectories. Zhang’s study focused on rats’ brains, Lee’s 
focused on methylation profile from human blood, while 
we focused on methylation features from saliva which is 
more distant from the injury site. Third, different assays 
capture different aspects of global methylation. We used 
the Infinium Methylation EPIC array, while Zhang used 
immunohistochemistry and Lee employed the enzyme-
linked immunosorbent assay. As such, under/over-esti-
mation of global methylation may exist [66].

The current study should be considered in the con-
text of strengths and limitations. This study leveraged 
raw demographic and clinical variables, as well as DNA 
methylation markers under the major depression path-
way, which provided us more information to better 
estimate the post-concussion symptom and quality of 
life post-injury. The limitations may include that CPG 
sites identified from saliva methylation for predicting 
brain-related outcome (quality of life) may not be easily 

interpretable given that the underlying mechanism of 
how saliva relates to the brain is unknown or not direct. 
Some CpG sites have significant correlations between 
saliva methylation and brain methylation, such as the five 
important CpG sites highlighted in Table 5 (cg19097407, 
cg21163960, cg08549495, cg00549601, and cg04306507). 
Other CpG sites may predict the brain-related outcome 
through indirect and/or secondary pathways. Another 
limitation is that DNA analyzed in this study was col-
lected from saliva, where the concentration and purity of 
DNA may be lower than that from the blood/brain. We 
performed a series of quality control to only include CpG 
sites with a higher (> 95%) detection probability and with 
variance (> 0.1) much larger than measurement errors. 
We may have excluded CpG sites with moderate variance 
(< 0.1) that could be relevant to PCSI and PedsQL predic-
tions. It is also challenging to collect methylation data 
prior to the injury since we cannot predict the occur-
rence of injury. This limits our ability to definitively link 
the DNA methylation markers collected at the SA visit to 
depression symptoms introduced by the trauma or rule 
out the possibility that they existed prior to the injury. 
Importantly, these methylation markers are predictive 
of poor outcomes regardless of whether they occurred 
pre- or post-injury. A final limitation is the relatively 
modest sample size utilized in the analyses. Our findings 
should be interpreted with caution pending independent 
replication.

Conclusions
In summary, the current study leveraged traditional 
demographic and clinical variables as well as DNA meth-
ylation markers under the major depression pathway to 
predict outcomes (i.e., post-concussive symptoms and 
quality of life) four months following mTBI in a cohort 
of 110 pmTBI patients and 87 age-matched healthy con-
trols. The results highlighted that both molecular and 
behavioral manifestations of depression symptoms had 
a profound impact on the recovery trajectory following 
mTBI, suggesting the future direction of preventing TBI-
caused symptoms for better recovery outcome.
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