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Objective: Antiseizure medicine (ASM) is the first choice for patients with epilepsy. The

choice of ASM is determined by the type of epilepsy or epileptic syndrome, which may

not be suitable for certain patients. This initial choice of a particular drug affects the

long-term prognosis of patients, so it is critical to select the appropriate ASMs based on

the individual characteristics of a patient at the early stage of the disease. The purpose

of this study is to develop a personalized prediction model to predict the probability of

achieving seizure control in patients with focal epilepsy, which will help in providing a

more precise initial medication to patients.

Methods: Based on response to oxcarbazepine (OXC), enrolled patients were divided

into two groups: seizure-free (52 patients), not seizure-free (NSF) (22 patients). We

created models to predict patients’ response to OXC monotherapy by combining

Electroencephalogram (EEG) complexities and 15 clinical features. The predictionmodels

were gradient boosting decision tree-Kolmogorov complexity (GBDT-KC) and gradient

boosting decision tree-Lempel-Ziv complexity (GBDT-LZC). We also constructed two

additional prediction models, support vector machine-Kolmogorov complexity (SVM-KC)

and SVM-LZC, and these two models were compared with the GBDT models. The

performance of the models was evaluated by calculating the accuracy, precision, recall,

F1-score, sensitivity, specificity, and area under the curve (AUC) of these models.

Results: The mean accuracy, precision, recall, F1-score, sensitivity, specificity, AUC

of GBDT-LZC model after five-fold cross-validation were 81%, 84%, 91%, 87%, 91%,

64%, 81%, respectively. The average accuracy, precision, recall, F1-score, sensitivity,

specificity, AUC of GBDT-KC model with five-fold cross-validation were 82%, 84%, 92%,

88%, 83%, 92%, 83%, respectively. We used the rank of absolute weights to separately

calculate the features that have the most significant impact on the classification of the

two models.

Conclusion: (1) The GBDT-KC model has the potential to be used in the clinic to predict

seizure-free with OXC monotherapy. (2). Electroencephalogram complexity, especially
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Kolmogorov complexity (KC) may be a potential biomarker in predicting the treatment

efficacy of OXC in newly diagnosed patients with focal epilepsy.

Keywords: precisionmedicine, machine learning, predictionmodel, gradient boosting decision tree (GBDT)model,

EEG complexity

INTRODUCTION

Epilepsy is a chronic disease affecting more than 70 million
people worldwide, it is characterized by recurrent, paroxysmal,
rigid, and unpredictable alterations of sensory and motor
systems, and abnormal electrical activity of neurons (1, 2).
Epilepsy is classified into four types: focal, generalized, combined
generalized and focal, and unknown onset (3). Focal epilepsy,
accounting for 60% of all epilepsies, is the most frequent type
of epilepsy and occurs in patients of all ages (4). Comparative
monotherapy trials in patients with newly diagnosed focal
epilepsy have shown that oxcarbazepine (OXC) is equal in
efficacy to phenytoin and immediate-release carbamazepine but
may have superior tolerability (5–7). Pharmacotherapy is the
primary treatment modality for epilepsy, however, in some
patients, seizures cannot be controlled with antiseizure medicine
(ASM) and lead to significant risks of neuronal damage and
cognitive decline (8). This highlights a need for the prediction
of drug response at the drug initiation phase.

However, ASM response is complex and is modulated by
multiple factors, including environmental, anthropometric, and
genetic factors, and biological subsystems affected by the disease
(9). The current standard of care relies on trial and error with
sequential therapy. Although there are drug selection guidelines
based on seizure types (focal or generalized onset), many drugs
have similar efficacy (10). So, drug selection becomes extremely
difficult as it is impossible to predict which drugs will be
the most effective in a particular patient. There are also no
biomarkers that can reliably predict treatment response during
conventional treatment.

Since the 1980s, precision medicine has emerged as a
new paradigm for improving and promoting patient-specific
medicine. Its key goal is to provide personalized treatment
for every patient where medical decisions are based on
the individual characteristics of the patient, rather than the
average characteristics of the entire patient population. Precision
medicine requires the analysis of different types of multivariate
data from the same individual. It has been used in the early
diagnosis and prevention of diseases, reduction of the risk
of side effects and adverse events of medications, and in the
design of clinical trials (11, 12). The development of precision
medicine is inseparable from artificial intelligence. Machine
learning, as a branch of artificial intelligence, has the ability to
build integrated and multi-scale models by integrating different

Abbreviations: ASM, antiseizure medicine; CI, confidence interval; GBDT,

gradient boosting decision tree; GBM, gradient boosting machine; KC,

Kolmogorov complexity; LZC, Lempel-Ziv complexity; NSF, not seizure-

free; OXC, oxcarbazepine; RFE, recursive feature elimination; SF, seizure-free;

SVM, support vector machine; TLE, temporal lobe epilepsy; WGS, whole

genome sequencing.

types of features at different levels. Recently, De Jong et al.
(13) integrated pharmacogenetics and clinical data to achieve
an accurate prediction of brivaracetam treatment response, but
this method is not cost-effective to be integrated in the clinical
practice (14).

Studies have shown that the Electroencephalogram (EEG)
signal is an internal “fingerprint” of individuals (15). Although
with the increase of age, EEG frequency, amplitude, and
other aspects will change to a certain extent, the oscillation
network of brain waves in each adult brain is relatively stable,
and many genetic, structural, and functional abnormalities
related to diseases are more or less directly involved in the
generation and/or synchronization of brain wave oscillations.
Electroencephalogram can be used as a biomarker for the
treatment of brain diseases such as epilepsy (16). Other studies
and our previous work have shown that it is possible to predict
ASM response using EEG-based artificial intelligence (17–20).
So, here we test whether the integration of EEG and clinical data
can be used to construct a prediction model of OXC treatment
outcomes, that can facilitate the correct selection of ASM in
newly-diagnosed patients with focal epilepsy patients.

MATERIALS AND METHODS

Participants and Data Acquisition
Participants
The retrospective study was approved by the Henan Provincial
People’s Hospital ethics committees, and informed consent was
obtained from all participants. Six thousand three hundred
seventy patients with epilepsy were registered between January
2014 and April 2021 at the Epilepsy Center of Henan Provincial
People’s Hospital. Focal epilepsy is defined as seizures originating
within networks limited to one hemisphere and the seizures may
be discretely localized or widely distributed (21). Patients who
meet the following criteria were included: newly diagnosed focal
epilepsy with drug-naïve; OXC is the only ASM after diagnosis;
long-term scalp EEG recordings were conducted before drug
initiation; more than 1 year of follow-up. Exclusion criteria were
the following: generalized epilepsy and epileptic syndrome; other
ASM were taken before OXC; the combination of other ASMs;
lack of EEG data; follow-up data of <1 year and poor adherence;
pregnant or lactating women.

Seventy-four individuals with newly diagnosed patients with
focal epilepsy patients, initially treated with OXC, were enrolled
at our center. After 1 year of follow-up, according to Engel class
(22), SF was defined as patients with epilepsy who met Class I
while not seizure-free (NSF) was defined as patients who met
Engel Class II, III, and IV. Finally, 52 patients were enrolled in
the SF group and 22 in the NSF group (Figure 1).
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FIGURE 1 | Flow chart. EEG, electroencephalogram; AEDs, antiepileptic

drugs; OXC, oxcarbazepine; fPWEs, patients with focal epilepsy; SF,

seizure-free; NSF, not seizure-free.

Clinical Data
We included 15 clinical features: sex, age, age at the onset
of the disease, follow-up time, seizure frequency before OXC,
seizure circadian rhythm, comorbidities, inducement, history of
perinatal injury, physical development, family history of epilepsy,
MRI, temporal lobe epilepsy (TLE), history of central nervous
system infection, and history of head injuries (23–26) (Table 1).

EEG Data
EEG Acquisition
Long-term scalp EEG was carried out by EEG-1200C
electroencephalograph (Nihon Kohden, Tokyo, Japan), the
sampling rate was 256Hz, the amplifier was 1,000x. Electrodes
were placed according to the international 10–20 system.
There were 19 scalp electrodes and 2 reference electrodes.
The discharges of EEG were marked independently by two
experienced electroencephalographers. If there were any
disputes, another clinical neurologist was consulted. We
intercepted a continuous 1-h EEG including the waking period
and the sleeping period. The waking period and the sleeping
period accounted for 30 min each.

EEG Preprocessing
Matlab software (Mathworks Inc., USA) equipped with the
EEGLAB toolbox was used for EEG preprocessing (27).
Electroencephalogram preprocess was as follows: firstly, 0.5–
30Hz EEG fragments were retained using bandpass filter. Then
independent component analysis was used to remove artifacts.
Next, EEG data without epileptic charges or artifacts, were taken
while the patient was awake, and their eyes were open. The EEG

data were divided into 15 s periods and recalculated based on a
reference average. Finally, 15 time periods for each subject were
randomly selected for subsequent analysis.

EEG Complexity Estimators

Lempel–Ziv Complexity
Lempel–Ziv complexity (LZC) is a simple non-parametric
measure to calculate the randomness of a one-dimensional finite-
length sequence. It was related to the number of different
substrings and their occurrence rate along the sequence. The
larger the value is, the more complex the corresponding data is
(28, 29). The following procedure was done with MathWorks in
MATLAB. Before calculating EEG complexity, the binarization
was performed according to the median value of the EEG time
series. For binary sequences S (S1, S2,..., Sn), the sequence length
is n, and c(n) is defined as the LZC value of the EEG time
series. When a new subsequence appears in the time series, c(n)
increases by one unit, and the pattern search continues until
the last string is scanned. For a sufficiently long random 0–1
sequence, the following formula holds if 0 and 1 are equally likely
to occur:

lim
n→∞

c (n) = b (n) = n/ log 2n (1)

The b(n) is used to normalize c(n) to obtain a value independent
of the sequence length n, so LZC is:

LZC = c (n) /b (n) (2)

Kolmogorov Complexity
Kolmogorov complexity (KC), known as algorithmic complexity,
is defined as a new algorithmic measure of randomness
for generating quantitative definitions of information (30).
Kolmogorov complexity describes the randomness of an object,
which is a string based on the length of a computer program; the
complexity of a string, consisting of 0 and 1, is estimated by the
number of bits of the shortest computer program that produces
the string. The KC is described as follows:

ku (x) = min p : u
(

p
)

= xl(p) (3)

Where p is the computer program and l(p) is the length of
x output strings of u general Turing machine (computer).
Kolmogorov complexity is the minimum length of the output
of a computer program. To calculate the KC of an EEG, the
data were first converted into discrete binary sequences. Then,
KC estimation methods could be used to analyze the bits of
the shortest computer program associated with the discrete
sequence. Based on previous reports, the KC estimation was
carried out by the difference method. When the difference
between two sequential samples was positive, the method
assigned 1, and when the difference was negative, it assigned 0.
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TABLE 1 | Demographical and clinical status of the participants.

SF (n = 52) NSF (n = 22) x2/Z/t-value P-value

Sex (Male/female) 33/19 11/11 1.162a 0.281

Age, year 14.5 ± 11.50 16.50 ± 12.00 −0.681b 0.496

Age at onset, year 13.5 ± 12.25 15.50 ± 13.38 −0.361b 0.718

Follow-up time, months 32.58 ± 9.83 36.18 ± 8.91 −1.481c 0.143

Seizure frequency before OXC, times/month 0.65 ± 0.70 15.50 ± 13.37 −1.983b 0.045*

Seizure circadian rhythm (day/night/both) 19/16/17 8/7/7 0.009a 0.995

Comorbidity (Y/N) 27/25 16/6 2.749a 0.097

Inducement (Y/N) 29/23 17/5 3.039a 0.081

History of perinatal injury (Y/N) 12/40 12/10 6.986a 0.008*

Physical development (N/AN) 9/43 3/19 4.469a 0.035*

Family history (Y/N) 2/50 2/20 0.832a 0.362

MRI(P/N) 17/35 13/9 4.469a 0.035*

TLE(Y/N) 16/36 8/14 0.221a 0.638

History of CNS infection (Y/N) 7/45 2/20 0.261a 0.599

History of head injury (Y/N) 5/47 2/20 0.005a 0.944

SF, seizure-free; NSF, not seizure-free; OXC, oxcarbazepine; Y/N, yes/no; N/AN, normal/abnormal; P/N, positive/negative; MRI, magnetic resonance imaging; TLE, temporal lobe epilepsy;

CNS, central nervous system.
aFor qualitative data, Chi-square tests were used.
bFor quantitative data, after Shapiro-Wilk normality test, the Mann-Whitney U-test was applied for data with abnormal distributions, data that did not conform to normal distributions

were presented as the median ± interquartile range.
cData with a normal distribution were compared by the independent sample t-tests, mean ± standard deviation was used to describe. p < 0.05 is considered as statistically significant.

*Defined as features that have statistically significant between SF group and NSF group.

Bold values are statistically significant.

Model Process
For imbalance in a sample, SMOTE was used to strike an
equilibrium during the training process (31). Toolkits: Python’s
sklearn toolkits (32). To avoid overfitting, default parameters
were used unless otherwise specified. The parameters were set
as follows: The number of nearest neighbors is 5 (K = 5);
Degree of over-sampling: making the number of positive and
negative samples consistent. SMOTE in this paper was done
independently within each training set, not used before cross-
validation. The SMOTE consists of two functions, SMOTE (T, N,
K) and Populate (N, i, nnarray). The SMOTE code idea is very
simple: scan every sample point, calculate K nearest neighbor of
every sample point, record the index of each nearest neighbor
point in nnarray, then pass it into Populate (N, i, nnarray), and
complete a sample point. Populate is responsible for randomly
generating N samples similar to the observed sample i based
on the index in the nnarray. The function calculates the gap
dif between random neighboring point nn and each feature of
observed sample point i, multiplying the gap by a [0,1] random
factor gap, and then combining the value of dif ∗ gap plus the
observation point i (33, 34).

SVM Model
The support vector machine (SVM) is a classical classifier with
good performance in dichotomies (35). It has good performance
for small samples (36). Lib-SVM was used for the classification
process. The core of SVM is to establish an optimized hyperplane.
A linear SVM classifier was constructed based on kernel
parameter and regularization C parameter. In this study, the C
parameter was set to 1.

The five-fold cross-validation was used for the classification
process, four-fold pats as the training sets, and one-fold part as
the validation sets. This process was repeated five times until all
subjects went through it once. The recursive feature elimination
(RFE) was used for feature selection. In cross-validation, the
RFE occurs in the training sets but not the validation sets, with
the results of the RFE feature screening from the training sets
to guide the feature selection in the validation sets. Absolute
weight value was applied to the feature selection procedure; the
greater the absolute weight of features, the greater the influence
on classification. We used EEG complexity features such as KC
and LZC combined with clinical features to establish two SVM-
RFEmodels for predicting SF with OXCmonotherapy in patients
with newly diagnosed focal epilepsy.

GBDT Model
Based on the theory of Gradient boosting machine (GBM),
Gradient Boosting Decision Tree (GBDT) is a typical
representative of ensemble learning, which is a lifting algorithm
(37). Gradient Boosting Decision Tree can effectively avoid
overfitting by combining decision trees with gradient algorithms.
It is considered that all machine learning algorithms can be
used as the basic learning machine of gradient lifting by GBM.
Because decision trees are easier to understand and calculate
compared with other algorithms, GBDT chooses decision tree as
the base learning machine. Decision tree can combine multiple
features, and has good processing ability for non-parameterized
features. Therefore, when there are outliers or non-linearly
separable data in the data, decision tree can be used to process
these data. However, the decision tree suffers from the drawback
of overfitting. So, combining the decision tree (formed by the
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combination of multiple gradient lifting methods) with the
gradient lifting algorithm can reduce the overfitting of the
decision tree (38, 39).

Two predictive models were established by GBDT using KC-
clinical, LZC-clinical characteristics. Five-fold cross-validation
was also used for this process. In this process, absolute weights
were used to rank the features that influence classification, as well.

Descriptive Statistics
Statistical analysis was calculated with SPSS. The Shapiro-Wilk
normality test was used to assess the normality distribution of
data. For quantitative data, the independent sample t-tests were
used to compare the data with a normal distribution (Mean
± standard deviation); the Mann-Whitney U-test was applied
for data with abnormal distributions (median ± interquartile
range). A strict false discovery rate based on the Benjamini–
Hochberg correction was applied to p-values to correct for
multiple comparisons. While, for qualitative data, Chi-square
tests were used. P < 0.05 was considered statistically significant
in this study.

RESULTS

The study included 44 males and 30 females. The age range was
5–70, the overall follow-up time ranged from 12 to 60 months.

The average follow-up time was 21.97 months in 74 individuals-
−24.17 months in the SF group and 25.13 in the NSF group.
There were no significant differences in gender, age, and follow-
up time between the two groups. However, significant differences
were found in seizure frequency before OXC (p= 0.045), history
of perinatal injury (p = 0.008), physical development (p=0.035),
and MRI (p= 0.035) (Table 1).

GBDT-LZC
The NSF group showed higher LZC than the SF group. The top
10 features that influenced classification were δ band from F8
channel, θ band from T3 channel (p < 0.05), α band form Cz
channel (p < 0.05), θ band from F3 channel (p < 0.05), α band
form Fz channel (p< 0.05), θ band from T6 channel, TLE, β band
from T3 and Pz channel (p< 0.05), α band form T6 channel (p<

0.05) (Table 2A; Figure 2). The mean accuracy, precision, recall,
F1-score, sensitivity, specificity, and AUC of the GBDT model
after five-fold cross-validation were 81%, 84%, 91%, 87%, 91%,
64%, 81%, respectively (Table 3A; Figure 3). The mean accuracy,
precision, recall, F1-score, sensitivity, specificity, and AUC of the
SVM-RFE model after five-fold cross-validation were 62%, 77%,
91%, 87%, 91%, 64%, 81%, respectively (Table 3B; Figure 3).

GBDT-KC
Like LZC, it was apparent that the NSF group has higher KC
than the SF group. The top ten features that have the highest

TABLE 2 | The top 10 features that impacting the GBDT classifier mostly.

SF NSF Z/t value P-value P
′

-value

(A) GBDT-LZC

δ-F8 0.0240 ± 0.0214 0.0298 ± 0.0132 −1.656 0.098 0.098

θ-T3 0.0518 ± 0.0356 0.0566 ± 0.0558 −2.010 0.044 0.060

α-Cz 0.0631 ± 0.0383 0.0745 ± 0.0500 −2.472 0.013 0.032*

θ-F3 0.0510 ± 0.0352 0.0561 ± 0.0526 −2.032 0.042 0.057

α-Fz 0.0649 ± 0.0384 0.0757 ± 0.0582 −2.424 0.015 0.036*

θ-T6 0.0531 ± 0.0394 0.0587 ± 0.0528 −1.880 0.060 0.068

TLE

β-T3 0.1119 ± 0.0742 0.1261 ± 0.1133 −2.081 0.037 0.050

β-Pz 0.1100 ± 0.7230 0.1227 ± 0.1024 −2.081 0.037 0.050

α-T6 0.0624 ± 0.0334 0.0742 ± 0.0569 −2.389 0.017 0.038*

(B) GBDT-KC

δ-T3 0.2245 ± 0.0068 0.2531 ± 0.2333 −1.809 0.070 0.070

θ-F7 0.0503 ± 0.0204 0.0575 ± 0.0555 −1.904 0.057 0.065

Seizure frequency before OXC

θ-FP1 0.0521 ± 0.038 0.0573 ± 0.0566 −1.928 0.054 0.061

θ-T6 0.0537 ± 0.0398 0.0594 ± 0.0535 −1.904 0.057 0.065

θ-Fz 0.0505 ± 0.0371 0.0564 ± 0.0540 −2.105 0.035 0.044*

β-T6 0.1116 ± 0.0728 0.1250 ± 0.1084 −2.105 0.035 0.044*

β-O2 0.1109 ± 0.0704 0.1244 ± 0.1148 −2.200 0.028 0.031*

Seizure circadian rhythm

α-Pz 0.0645 ± 0.037 0.0753 ± 0.0542 −2.306 0.021 0.028*

GBDT, gradient boosting decision tree; LZC, Lempel-Ziv complexity; KC, Kolmogorov complexity; SF, seizure-free; NSF, not seizure-free; TLE, temporal lobe epilepsy; δ-F8, δ band from

F8 channel; OXC, oxcarbazepine; P
′

-value refers to P-value that is corrected by false discovery rate correction.

*The features that have statistically significance. Although the selected features may not be statistically significant, they did have a classification value in the model.

Bold values are statistically significant.
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FIGURE 2 | EEG features that have the most significant impact on classification. θ-T3: θ band from T3 channel, p < 0.05 is considered statistically significant.

absolute weights were δ band from T3 channel, θ band from
F7 channel, seizure frequency before OXC, θ band from FP1
channel, T6 and Fz (p < 0.05) channel, β band from T6 and
O2 channel (p < 0.05), seizure circadian rhythm, and α band
form Pz channel (p < 0.05) (Table 2B; Figure 2). Although the
selected features may not be statistically significant, they did have
a classification value in the model. The model yielded average
accuracy of 82%, precision of 84%, recall of 92%, F1-score of
88%, sensitivity of 83%, specificity of 92%, and AUC of 83%
after five-fold cross-validation, respectively (Table 3C; Figure 3).
Compared with the GBDT model, SVM-RFE model yielded
mean accuracy, precision, recall, F1-score, sensitivity, specificity,
AUC of five-fold cross-validation were 62%, 77%, 67%, 71%, 67%,
55%, 63%, respectively (Table 3D; Figure 3). The results of each
fold were presented in Figure 4.

DISCUSSION

We constructed amodel for predictingOXC treatment outcomes.
Our GBDT-KC model (EEG complexity and clinical data)
performed better in terms of the performance merits compared

with De Jong’s study (pharmacogenetics and clinical data) (13).
Our research has a more clinical application because it is cost-
efficient. To our knowledge, this is the first study that applied
EEG complexity to predict OXC response in patients with focal
epilepsy, and achieved good performance.

EEG Complexity as a Biomarker for
Epilepsy
Electroencephalogram plays an important role in the
diagnosis, treatment, and prognosis of epilepsy (40–42).
Electroencephalogram signals have non-linear structures in
the time dimension. Recently, new methods for studying
EEG signals have been developed from non-linear systems
theory since non-linear measurements are more suitable to
reflect the complex, irregular, and non-stationary behavior
of neural processes. The non-linear analysis quantifies the
complexity of EEG and reflects the state of brain neural
networks. Electroencephalogram complexity correlates with
synchronization (43); highly synchronized signals (e.g., epileptic
seizures) give rise to low complexity values (44). Complexity
is related to the degree of entropy, so some of these estimators
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TABLE 3 | The performance of the four classifier models.

Fold1 Fold2 Fold3 Fold4 Fold5 Mean-Value

(A) GBDT-LZC

Accuracy (%) 67 87 80 93 79 81

Precision (%) 69 80 81 100 90 84

Recall (%) 90 100 90 92 82 91

F1-score (%) 78 89 86 96 86 87

AUC (%) 64 89 82 100 70 81

Sensitivity (%) 90 100 90 92 82 91

Specificity (%) 20 71 60 100 67 64

(B) SVM-LZC

Accuracy (%) 60 53 67 67 64 62

Precision (%) 70 56 78 100 80 77

Recall (%) 70 63 70 62 73 67

F1-score (%) 70 59 74 76 76 71

AUC (%) 54 64 64 100 33 63

Sensitivity (%) 70 63 70 62 73 67

Specificity (%) 40 43 60 100 33 55

(C) GBDT-KC

Accuracy (%) 67 87 80 100 79 82

Precision (%) 69 80 82 100 90 84

Recall (%) 90 100 90 100 82 92

F1-score (%) 78 89 86 100 86 88

AUC (%) 66 89 88 100 73 83

Sensitivity (%) 66 89 88 100 73 83

Specificity (%) 90 100 90 100 82 92

(D) SVM-KC

Accuracy (%) 60 53 67 67 64 62

Precision (%) 70 56 78 100 80 77

Recall (%) 70 63 70 62 73 67

F1-score (%) 70 59 74 76 76 71

AUC (%) 54 63 64 100 33 63

Sensitivity (%) 70 63 70 62 73 67

Specificity (%) 40 43 60 100 33 55

LZC, Lempel-Ziv complexity; GBDT, gradient boosting decision tree; AUC, the area

under the curve; SVM, support vector machine; RFE, recursive feature elimination; KC,

Kolmogorov complexity.

are called entropy estimators. Based on the complexity of
the algorithm, LZC does not rely on large amounts of EEG
data and is suitable for short and non-stationary time series
(45). Kolmogorov complexity is defined as the complexity
of a sequence and is based on the length of the shortest
program that could generate the sequence (46). Kolmogorov
complexity was found to be more sensitive to the detection
in patients with schizophrenia compared with other measures
(47). However, the application of EEG complexity in epilepsy
remains limited.

In our study, the LZC and KC showed a complexity decrease
in the SF group compared with the NSF group. Though the
relationship between EEG complexity and epilepsy is not clear,
EEG complexity is related to the severity and prognosis of the
disease. Cerquera et al. (48) analyzed the difference between

cognitive deficit schizophrenia (DS) and non-cognitive deficit
schizophrenia (NDS), and found that the DS group showed less
LZC in the frontal lobe than the NSD group. Another study
found a significant reduction in EEG complexity, 2min before the
seizure, compared with the inter-seizure period (about 6–8min
before the seizure) (49). Valproic acid treatment also decreased
the overall complexity of 19 EEG channels in patients with
idiopathic epilepsy (50).

The Prediction Models of Drug Response
Antiseizure medicines are still the mainstream treatment for
patients with epilepsy. Non-standard treatment in the early stage
has been shown to contribute to poor prognosis (51). Therefore,
it is necessary to choose appropriate ASMs for epileptic patients.
Although there are many ASMs for focal epilepsy, the differences
between these ASMs are unclear and many ASMs are cross-
referenced for both focal and generalized epilepsy. Further, there
are different adverse effects and different treatment responses of
these ASMs. Therefore, ASMs suitable for patient A, may not be
the right choice for other patients (B, C,. . . ). Previous studies
of drug response were based mostly on clinical characteristics,
without an in-depth analysis of individual patients (52, 53).

Recently, precision medicine has made significant
development where the goal is to make personalized medical
decisions based on the individual characteristics of the patient.
Precision medicine is closely related to pharmacogenetics,
but mostly in oncology, and has considerable impact on drug
prescription (54). Outside oncology, genetic information has not
yet played a major role in drug selection. However, the field is an
active area of research. Precision medicine is usually associated
with gene manipulation or gene targeting. De Jong et al. (13)
designed a phase III clinical trial in which 235 participants were
randomly assigned to brivaracetam or placebo groups. Only
the genomes of brivaracetam treated patients were sequenced.
Clinical characteristics and whole genome sequencing (WGS)
pharmacogenetics data were combined to predict brivaracetam
drug response in patients with focal epilepsy. The GBDT classifier
was confirmed as the best performing model with an AUC of
0.76 in the discovery datasets and 0.75 in the validation datasets;
the asymptotic 95% confidence interval (CI) was wide (0.6–0.9).
However, the study had several limitations which are as follows:
the dimensions of WGS data are huge, concerns over overfitting,
WGS data were generated only for patients with brivaracetam
therapy, the 95% CI in validation datasets as wide and it was
too expensive to be clinically applicable. Our GBDT model,
based on clinical and EEG complexity features, achieved better
prediction performance than De Jong’s study, with an average
AUC of 0.832. At present, using EEG to predict drug response
has high clinical value, the price is more affordable, and the
prediction performance is not bad. Although, pharmacogenetics
is not cost-effective currently, if the cost of genetic sequencing
decreases and/or the demonstrated benefit of genetically-guided
ASM selection is increased, then it may be cost-effective. It
cannot be denied that EEG combined with pharmacogenetics
would be more clinically beneficial.

Lin et al. (18) used 24 univariate EEG features extracted
from EEG fragments from 11 drug-refractory epilepsy patients
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FIGURE 3 | The mean evaluation indexes after five-fold cross-validation.

FIGURE 4 | The performance of four models. GBDT, gradient boosting decision tree; LZC, Lempel-Ziv complexity; AUC, area under the curve; ROC, receiver

operating-characteristic curve; std. dev, standard deviation; SVM, support vector machine, RFE, recursive feature elimination, CV, cross-validation; KC,

Kolmogorov complexity.
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and 16 control epilepsy patients to predict drug-resistant
epilepsy; the study yielded a precision rate of 0.942, ROC
area 0.938. We have devised an integrated model combining
clinical features and EEG functional connectivity. Our study
used the phase lag index functional connectivity to predict
drug-refractory epilepsy for newly diagnosed epilepsy patients
and achieved good performance with AUC of 0.98, an
accuracy of 0.94, sensitivity of 0.95, and specificity of 0.93(17).
We show that EEG has good prediction performance in
drug response.

Zhang et al. (20) used clinical and EEG sample entropy
features to predict drug response with levetiracetam therapy via
SVM achieved good performance. Our SVM-RFE model was
inferior to Zhang’s, while, the GBDT model achieved better
performance than theirs’. In this study, we established a GBDT-
KCmodel to predict SF for patients with focal epilepsy with OXC
monotherapy. Our study yielded an average accuracy of 82%,
a precision of 84%, recall of 92%, F1-score of 88%, sensitivity
of 83%, specificity of 92%, and AUC of 83% after five-fold
cross-validation, respectively. Focal-onset epilepsy accounts for
the majority of all epilepsy cases. The selection of ASMs for
focal epilepsy is of great clinical significance. However, there
is still no referenced study for personalized drug selection
for focal epilepsy. Our study may facilitate future studies in
this field.

Limitations and Prospects
There are limitations to our study. The study was retrospective,
and selection bias is inevitable. Prospective studies need to be
conducted in the future. The sample size in our study was
small, and the model was only suitable for Asians. Multi-center
studies with large sample sizes and diverse populations are
required. Currently, the clinical problem is the choice between
multiple potential ASMs. For example, there are many ASMs
for focal epilepsy, such as carbamazepine, OXC, lamotrigine,
valproate, clobazam, topiramate, phenytoin, phenobarbital, and
zonisamide. Although this study was focused on the drug
response of OXC, our final purpose was to make personalized
and optimal treatment with less adverse effects for newly
diagnosed epilepsy patients. We demonstrated that it is feasible
to predict ASMs’ response in combination with clinical and
EEG complexity features, EEG complexity could be used as
a biomarker to predict drug response, the concept is still in

its theoretical stage. Our study proposed the possibility of this
research in this area, there is still a long way to go in the future.

CONCLUSION

We established a GBDT-KC prediction model for seizure
outcome of patients with focal epilepsy with OXC monotherapy.
EEG complexity, especially KC can be used as a biomarker for
predicting outcomes of ASMs treatment.
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