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ABSTRACT

Accumulating evidence indicates that microRNAs
(miRNAs) can function as oncogenes or tumor
suppressor genes by controlling few key targets,
which in turn contribute to the pathogenesis of
cancer. The identification of cancer-related key
miRNA–target interactions remains a challenge.
We performed a systematic analysis of known
cancer-related key interactions manually curated
from published papers based on different aspects
including sequence, expression and function.
Known cancer-related key interactions show more
miRNA binding sites (especially for 8mer binding
sites), more reliable binding of miRNA to the target
region, higher expression associations and broader
functional coverage when compared to non-
disease-related interactions. Through integrating
these sequence, expression and function features,
we proposed a bioinformatics approach termed
PCmtI to prioritize cancer-related key interactions.
Ten-fold cross-validation of our approach revealed
that it can achieve an area under the receiver
operating characteristic curve of 93.9%.
Subsequent leave-one-miRNA-out cross-validation
also demonstrated the performance of our
approach. Using miR-155 as a case, we found
that the top ranked interactions can account for
most functions of miR-155. In addition, we further
demonstrated the power of our approach by 23
recently identified cancer-related key interactions.
The approach described here offers a new way
for the discovery of novel cancer-related key
miRNA–target interactions.

INTRODUCTION

MicroRNAs (miRNAs) are single-stranded RNAs
consisting of �22 nt. They play important roles in the
post-transcriptional regulation of gene expression by
translation repression and mRNA decay based on par-
tially base-paring to the 30 untranslated regions (UTRs)
of their target messenger RNAs (mRNAs). During the last
few years, many studies have highlighted the roles of
miRNAs in many cancer-related processes including
apoptosis, proliferation, survival and metastasis.
Dysfunction of miRNAs leads to the abnormality of
their downstream targets, which, in turn, can cause
cancer development. Therefore, identifying cancer-related
miRNA–target interactions is pivotal for understanding
how miRNAs acting as oncogenes or tumor suppressor
genes are involved in the pathogenesis of cancer.
Despite recent advances in identifying miRNAs

associated with cancer (1) and developing corresponding
bioinformatics methods (2), the discovery of the cancer-
related miRNA–target interactions is still lagging.
Experimental evidence indicates that the regulation of
few key targets can largely explain the functions of
individual miRNAs (3). For example, two studies have
recently revealed that targeted mutagenesis of miR-155
binding sites in the 30UTR of the AID gene could lead
to the similar phenotypes of deletion of miR-155 itself
(4,5). The miR-15a and miR-16-1 cluster, residing in the
13q14 chromosome region, was found to be frequently
deleted in chronic lymphocytic leukemia (CLL). Further
experiments demonstrated that the cluster can target an
oncogene BCL2. Loss of the cluster in CLL leads to the
over-expression of BCL2, which subsequently triggers the
initiation of most CLL (6). Although many studies have
demonstrated the cooperative effects of multiple miRNAs
to ‘fine-tune’ gene expression (7,8), many-to-many
regulatory relations are more difficult to be studied and
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experimentally proven than one-to-one functional rela-
tions. Furthermore, because miRNAs generally have
many targets, experiments used for the discovery of
these cancer-related key miRNA–target interactions can
be time-consuming and laborious. Thus, there is a sub-
stantial need for a method of prioritizing cancer-related
key miRNA–target interactions.
It is worth noting that very little is known about the

properties of cancer-related key miRNA–target inter-
actions. Because different types of seed matched sites,
ranging in length from 6nt to 8 nt (i.e. canonical
targets), are corresponding to different site efficiencies,
the type and the number of binding sites may provide
important clues to identifying key interactions. For
example, the lin-4 miRNA has been found to control the
developmental timing of the Caenorhabditis elegans by
regulating the expression of the protein-coding gene
lin-14 (9,10). Although hundreds of targets are predicted
for lin-4, genetic experiments showed that the lin-4:lin-14
is the most important interaction, because mutations of
lin-4-binding sites in lin-14 phenocopy mutations of lin-4
(11). Target-prediction results showed that the target with
the highest number of binding sites among all predicted
targets of lin-4 is lin-14, and that all binding sites in the
30UTR of lin-14 belong to the 8mer sites (12). In addition
to canonical targets for miRNAs, recent studies also
found that miRNAs have non-canonical targets that are
not dependent on the seed sequence and generally show
more extensive base pairing. However, these non-
canonical targets only play modest roles in miRNA
function (12).
The integration of miRNA and mRNA expression

profiles has been widely used to improve miRNA-target
detection (13), because expression correlations between
miRNAs and their corresponding targets can partially
reflect the efficiency of interactions (14). More import-
antly, many experiments revealed that miRNAs
modulate the concentration of key target proteins in a
dose-dependent manner (15). For example, a dose-
dependent development block mediated by the transfec-
tion of miR-150 in mice was found to be mainly caused
by the down-regulation of its key target, c-Myb (16).
A recent study also showed that changes in the mRNA
levels closely reflect the influence of miRNAs on gene
expression (14). Therefore, expression relationships
between miRNAs and their targets may also provide
clues to finding key interactions. In addition, considering
the fact that loss of binding sites in few key targets
for a specific miRNA can phenocopy most aspects of
the miRNA mutations, we suspected that the majority
of the functions of the miRNA should depend on the
interactions with these key targets, that is, the functions
of these few targets are sufficient to capture most func-
tions of the miRNA. Thus, functional associations of
miRNAs with their targets can be an important factor
for identifying key interactions.
In this study, we systematically analyzed sequence,

expression and function features of known cancer-related
key miRNA–target interactions manually curated from
>3000 literatures. By integrating these different features,
we proposed an approach, termed PCmtI, to prioritize

cancer-related key miRNA–target interactions. Our
method produced good predictions on the known
cancer-related key interactions by 10-fold cross-validation
and leave-one-miRNA-out cross-validation. We also
demonstrated that prioritization using integrated
features significantly outperforms those using individual
features. Our results suggest that PCmtI can help biologist
to find novel cancer-related key miRNA–target inter-
actions. We made our approach freely available on the
web at http://bioinfo.hrbmu.edu.cn/PCmtI.

MATERIALS AND METHODS

Data sources

Mature miRNA sequences, miRNA family and cluster
data were obtained from miRBase (release 16) (17).
The annotated 30UTR of each transcript of a gene was
downloaded from UCSC Genome Browser (hg18, http://
genome.ucsc.edu/) (18), and then the longest 30UTR of the
gene was used to search for different types of binding sites
of miRNAs. Predicted conserved and non-conserved
targets of miRNAs were obtained using TargetScan (19).
The atlas gene expression data from 79 normal human
tissues was downloaded from Gene Expression Omnibus
(GEO; GSE1133) (20). Four paired miRNA and mRNA
expression data sets were downloaded from GEO
(multiple myeloma: GSE17306 and prostate cancer:
GSE25692) and The Cancer Genome Atlas (TCGA)
(21–24). The human protein–protein interaction network
was obtained from HPRD (25). Gene annotation infor-
mation about molecular function, biological process and
cellular component was obtained from gene ontology
(GO) (26). Pathway information was downloaded from
KEGG (27). We got 797 disease-related miRNAs from
miR2Disease (28), HMDD (29) and dbDEMC (30), and
8995 disease-related genes from OMIM (31), GAD (32)
and CGC (33).

Experimentally validated cancer-related key miRNA–
target interactions were collected as positive interactions
by manually curating >3000 literatures. To construct a
bona fide set of negative interactions, we chose miRNA–
target interactions in which both miRNAs and their
targets are not associated with any disease. It should be
clear that miRNAs with expression values in four paired
miRNA–mRNA expression data sets, and genes with
expression values in both the atlas and paired expression
data sets and with GO, KEGG and network annotations
were selected for the following analysis.

Feature extractions

For a given cancer-related key miRNA–target interaction,
most of the abnormal phenotypes mediated by the dys-
function of the miRNA are caused by this miRNA–target
interaction. The miRNA should effectively control the
target in order to make the target highly responsive to
expression changes of the miRNA. Most importantly,
the key target should account for most functions of the
miRNA, that is, the target may be a functional hub among
all targets of the miRNA. Therefore, for a given miRNA–
target interaction, we construct different types of features
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based on sequence, expression and function information
as follows.

Sequence features
Because different types of binding sites have different site
efficiencies and the regions beyond the seed pairing also
contribute to site efficiency, we thus considered sequence
features including the numbers and types of binding sites
in the 30UTR, and site context. Our study focused on four
types of binding sites: one is the 6mer site, which perfectly
matches the 6-nt miRNA seed; another is the 7mer-m8
site, for which seed paring is supplemented by a
Watson–Crick match to miRNA nucleotide 8; the third
is the 7mer-A1 site, for which seed pairing is supplemented
by an A across from miRNA nucleotide 1; the forth is
the site with both the m8 and A1 match, which is called
8mer site. In general, 8mer sites are more effective than
7mer sites, which are more effective than 6mer sites (34).
We calculated the numbers of different types of binding
sites and a ‘context score’ obtained from TargetScan.

Recent experiments highlighted that miRNAs in the
same family or in the same cluster can be cooperatively
involved in many important biological processes (7,35,36).
We reasoned that miRNAs belonging to the same family
or cluster may help to control the key targets. Therefore,
we recorded the family and cluster related to the miRNA.
A miRNA cluster is defined as a set of miRNAs separated
by less than 10 kb. Then, we calculated the total number
of each type of binding site for all miRNAs belonging to
the family, and the total number of each type of binding
site for all miRNAs belonging to the cluster.

Expression features
Co-expression of genes has been widely used to predict
gene functions based on an assumption that co-expressed
genes tend to have similar functions (37). To characterize
the functional essentiality of the target from the perspec-
tive of gene expression, we calculated the average Pearson
correlation between this target and all other targets of the
miRNA using the atlas expression data set that has been
widely used to infer functional relationships between genes
(38,39). In addition, expression relationships between
miRNAs and their targets are often used to delineate the
regulatory effects of miRNAs on their targets (40). Based
on the four paired miRNA and mRNA expression data
sets, we calculated the Pearson correlations between the
miRNA and the target.

Function features
Like expression data, we used human protein interaction
network, GO and KEGG resources to further characterize
the functional essentiality of the target among all targets
of the miRNA. Using the human protein interaction
network, we calculated the average shortest distance
between the target and all other targets of the miRNA.
As for GO, we considered each of the three GO sub-
ontologies (i.e. molecular function, biological process
and cellular component). For each GO sub-ontology, we
determined significantly over-represented GO terms in all
targets of the miRNA through GO enrichment analyses
based on the hypergeometric distribution test.

Subsequently, we obtained GO terms annotated for the
target from the GO database and then calculated the
percentage of GO terms of the target in all enriched GO
terms associated with the miRNA. Similarly, we
determined the biological pathways significantly over-
represented in all targets of the miRNA, and then
calculated the percentage of pathways associated with
the target in all enriched pathways.
Taken together, for a miRNA–target interaction, we

obtained sequence features (including the numbers of
8mer, 7mer-m8, 7mer-A1 and 6mer sites as well as a
context score for this interaction, the total number of
each type of binding site in the miRNA family, the total
number of each type of binding site in the miRNA
cluster), expression features (including the average expres-
sion correlation between the target and all other targets,
and expression correlations between the miRNA and the
target), and function features (including the average
shortest distance between the target and all other
targets, and the functional coverage of the target among
all targets based on three GO sub-ontologies and KEGG
pathways). These features were used to construct a model
for prioritization of cancer-related key interactions.

The PCmtI model

PCmtI integrates all of the sequence, expression and
function features described above for prioritizing cancer-
related key miRNA–target interactions. Due to the large
size difference between the positive and negative inter-
actions, we randomly constructed 1000 negative sets
with the same number of interactions as in the positive
set from the negative interactions. On the basis of these
features, 1000 SVM classifiers were built using the positive
set and the 1000 negative sets. We combined the outputs
of these 1000 classifiers, and computed an average predic-
tion score for a specific miRNA–target interaction.
The prediction score was used to rank miRNA–target
interactions. Interactions with high prediction scores
would have higher possibility to be cancer-related key
interactions.

Performance evaluation

To evaluate the performance of PCmtI using individual or
all features, we applied the 10-fold cross-validation
method. The positive and negative interactions were
randomly and evenly divided into 10 groups, with each
group having the same numbers of positive and negative
samples. In each validation run, one random group was
regarded as the testing set, and the rest nine were regarded
as the training set. Prediction scores of interactions in the
testing set were calculated using a PCmtI model created
based on the training set. We plotted a receiver operating
characteristic (ROC) curves and calculated the area
under the ROC (AUC).
We also used the leave-one-miRNA-out cross-

validation to further assess the performance. For each
miRNA included in the positive interactions, all
interactions associated with the miRNA were selected as
the testing set. The positive and negative interactions not
associated with the miRNA were used to construct a
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PCmtI model. Using the PCmtI model, we calculated
prediction scores for all interactions in the testing set.
According to the prediction scores, we ranked the
interactions in the testing set in a descending order, and
retrieved the relative ranks of the known cancer-related
key interactions.

30UTR luciferase reporter assays

30UTR fragments of PAK7, TCF4 or FOXO3 containing
the putative binding sites for miR-155 were subcloned into
pGL3 luciferase reporter vectors. Respective counterparts
carrying mutated sequences in the complementary binding
sites for the seed regions of miR-155 at the 30UTRs of the
above genes were also constructed (JIN SIRUI Inc.
Nanjing, China). For luciferase reporter assays, human
malignant glioma cells LN18 (ATCC) were seeded onto
12-well plates and co-transfected with optimized 40 pmol
miR-155 (or control miRNA) and 1.6 mg one of the
constructed vectors when the cells reached 60–70% con-
fluence, using Lipofectamine 2000 (Invitrogen, Carlsbad,
CA, USA). miR-155 (hsa-miR-155 mimics) and control
miRNA mimics were synthesized and purchased from
Invitrogen. Assays were performed on a Multi-Mode
Microplate Readers (M5, Molecular Devices, Inc.,
Sunnyvale, CA, USA) 48 h after transfection using the
Luciferase Reporter Assay System (Promega, Beijing,
China) according to the manufacturer’s protocol. Each
set of experiments was repeated at least four times.

RESULTS

Features of cancer-related key miRNA–target interactions

We manually retrieved 210 high-confidence cancer-related
key miRNA–target interactions involving 91 miRNAs and
122 genes from >3000 papers (Supplementary Table S1).
These cancer-related key interactions, which have been
experimentally demonstrated to play key roles in
miRNA-mediated cancer development, were defined as
the positive interactions. In order to obtain the negative
ones, the interactions in which miRNAs and their targets
are not found to be related to disease were selected. Then,
8433 negative interactions were obtained. For every inter-
action, we subsequently extracted different sequence,
expression and function features (Figure 1).
Different types of seed-matched sites (i.e. 8mer,

7mer-m8, 7mer-A1 and 6mer site) and multiple matches
to the same target are important for the efficiency of
miRNA–target interactions. Comparing the numbers of
different types of binding sites between the positive and
negative interactions, we found significant differences in
the numbers of 8mer and 7mer-A1, and the total number
of all types of binding sites [Figure 2A; P=6.66e�16,
0.048 and 9.05e�05, respectively, two-side Kolmogorov
Smirnov (KS) test]. The numbers of 7mer-m8 binding
sites in the positive interactions were slightly different
from those in the negative interactions (P=0.09,
two-side KS test). There was no significant difference in
the numbers of 6mer binding sites. Specially, the positive
interactions exhibit significantly more 8mer binding sites
(P=3.13e�16, one-side KS test) compared with the

negative interactions, suggesting strong site efficiency of
cancer-related key interactions.

As expected, due to similar targets of miRNAs in the
same family, the numbers of binding sites for the same
family showed similar tendency: obvious differences for
all types of binding sites excluding 6mer binding sites
(P< 0.001, two-side KS test), and more 8mer binding
sites (P=3.62e�14, one-side KS test; Figure 2B). By con-
sidering miRNAs belonging to the same cluster, we also
revealed that the cancer-related key interactions tended to
have more 8mer binding sites compared to the negative
interactions (Figure 2C; P=0.002, one-side KS test),
which may be attributed to the fact that many miRNAs
in the same cluster also belong to the same family,
suggesting that these co-clustering miRNAs possibly
sharing a common transcriptional unit can help to
regulate the key target. In addition, for each interaction,
we gained a context score, a metric proposed in (34),
characterizing the binding site efficiency by combining
the contribution of site context features, such as 30

pairing contribution and local AU contribution. We
revealed that the context scores of the positive interactions
were significantly lower than those of the negative
interactions (P< 2.2e�16, one-side KS test), suggesting
higher binding affinity in the cancer-related key
interactions.

Expression of miRNAs and their targets can further
enhance understanding of the cancer-related key inter-
actions. We downloaded the atlas expression data (20),
and four paired miRNA and mRNA expression data
sets referring to different types of cancers [including
glioblastoma (GBM), ovarian cancer, multiple myeloma
and prostate cancer] from GEO and TCGA. For each
interaction, the average expression correlation between
the target and all other targets of the miRNA was
calculated using the atlas expression data. We found a
modest difference between the positive and negative
interactions, although without statistical significance
(Figure 2D; P=0.055, two-side KS test). Using the four
paired miRNA and mRNA expression data sets, we
observed that the expression correlations of the positive
interactions were significantly different from those of the
negative interactions in two data sets (P=1.02e�08 and
3.34e�10 for GBM and ovarian cancer, respectively,
two-side KS test), and slightly different in the expression
data set of multiple myeloma (P=0.074, two-side KS
test; Figure 2D).

Subsequently, we used the human protein interaction
network, GO and KEGG annotation information to
further explore functional distinctions between the
positive and negative interactions. For each interaction,
we calculated the average shortest distance between the
target and all other targets relevant to the corresponding
miRNA using the human protein interaction network.
The distances in the positive interactions were significantly
shorter than those in the negative interactions (Figure 2E;
P< 2.2e�16, one-side KS test). With regard to GO, we
used three separate sub-ontologies (i.e. molecular
function, biological process and cellular component) to
characterize the functional essentiality of miRNA–target
interactions. For each interaction, we created a measure to
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assess the functional coverage of the interaction (i.e. the
extent to which the target can account for the functions of
the miRNA). The GO-based score is represented by the
percentage of GO terms annotated for the target in sig-
nificantly enriched GO terms determined using all targets
of the corresponding miRNA. The GO-based scores in the
positive interactions were significantly higher than those in

the negative interactions (Figure 2E; P< 0.001 for three
GO sub-ontologies, one-side KS test). Likewise, we
calculated a KEGG-based score for each interaction
using a similar method used in GO analyses. The
KEGG-based scores in the positive interactions were
also significantly higher than those in the negative inter-
actions (Figure 2E; P< 2.2e�16, one-side KS test). Overall,
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Figure 1. Sequence, expression and function features. Given a miRNA–target interaction, the numbers of different types of binding sites of this
miRNA on the 30UTR of the target were calculated. Similarly, the overall numbers of each type of binding site for its neighboring co-clustering
miRNAs and miRNAs from the same family were separately calculated. The context score of the interaction was obtained from TargetScan
algorithm. For expression features, Pearson correlations between the miRNA and the target were calculated using four matched miRNA and
mRNA expression data sets. An average expression correlation between the target and all other targets associated with the miRNA was also
calculated based on the atlas expression data set. Using the human protein interaction network, we calculated the average shortest distance
between the target and all other targets associated with the miRNA. As for GO, the proportion of the GO terms related to the target among all
GO terms significantly over-represented in all targets of the miRNA was calculated. Similarly, we calculated the proportion of the pathways related
to the target using KEGG.
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these results suggest that cancer-related key miRNA–
target interactions harbor strong functional links.

PCmtI: an approach based on integrative genomics

We developed a method called PCmtI for prioritization of
cancer-related key miRNA–target interactions. The 210
positive and 8344 negative interactions were used to
train the PCmtI model. Considering the large size
difference between the positive and negative interactions,
we applied an integrated strategy for constructing
the PCmtI model. From the negative interactions, we
randomly chose 1000 sets with the same size as the
positive interactions. Using the positive interaction set
and each randomly selected negative set, a SVM classifier

was generated. Ultimately, we constructed 1000 SVM
classifiers, which were subsequently assembled to build a
classifier cluster. The output of each classifier in the cluster
was combined to generate an average prediction score
representing the possibility of an interaction to be a
cancer-related key interaction (see ‘Materials and
Methods’ section for details).

Validation of PCmtI using individual and integrated
features

For each type of feature, we assessed whether our
approach is capable of prioritizing interactions known to
be involved in cancer using 10-fold cross-validation.
Obviously, using single features, PCmtI reached higher
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AUC scores for the cancer-related key interactions than
for randomly selected interactions (Figure 3A). Among all
of these features, sequence-based features provided the
highest AUC score of 82.4% (When excluding miRNA
family and miRNA cluster related features, the AUC
score was reduced to 73.5%). GO and network-based
features also offered high AUC scores (80.2 and 81.5%,
respectively). These results suggest that these features
differ in their usefulness, and that combination of these
features may further improve the performance.

To increase the performance of our approach, we
integrated these sequence, expression and function
features and re-evaluated the performance of our
approach using 10-fold cross-validation. As expected,
the AUC scores were 93.9% for cancer-related key inter-
actions compared to 49.8% for randomly selected inter-
actions. Obviously, using all of these features performed
better than using single features (Figure 3B), suggesting
that integration of multiple genomic features can be used
to effectively prioritize cancer-related key interactions.

Leave-one-miRNA-out cross-validation

To further validate our approach, we evaluated the per-
formance using leave-one-miRNA-out cross-validation.
This cross-validation was performed for each miRNA
included in the known cancer-related key interactions.
Since different miRNAs have different numbers of inter-
actions, the ranks were transformed into the relative
ranks. If the known cancer-related key interaction was
at the top of the list, it was assigned a relative rank of
1.0, and if at the bottom, it was assigned a relative of
rank of 0.0.

A total of 91 prioritizations (referring to 91 miRNAs
and 210 known cancer-related key interactions) were per-
formed. The average relative rank is 0.86. In Figure 4, the
distribution of relative ranks shows a strong right-leaning
trend. About 74.8% of relative ranks of known

cancer-related key interactions were at 0.8 to 1.0, and
only 7.1% were less than 0.5.

Validation using miR-155 as a case

Using the positive and negative interactions, we trained
a PCmtI model. Application of this model allows us to
discovery novel cancer-related key interactions. To date,
many miRNAs have been demonstrated to function as
oncogenes or tumor suppressor genes. An interesting case
is miR-155 that has been found to be highly expressed in
lymphoma (41), CLL (42), acute myelogenous leukemia
(43), lung cancer (44), pancreatic cancer (45) and breast
cancer (44). High expression of miR-155 has also been
reported to correlate with poor prognosis in non-small
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Figure 4. Distribution of the relative ranks of the known
cancer-related key miRNA–target interactions.
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cell lung cancer (46). Importantly, genetically engineered
mice with ectopic expression of miR-155 showed
proliferation of polyclonal pre-B cells followed by
leukemia or high-grade lymphoma (47). However, less is
known about the mechanisms of dysregulation of miR-155
in cancer. Using the PCmtI model, we ranked all inter-
actions relevant to miR-155 according to their prediction
scores in a descending order. The top 20 interactions were
selected as potential cancer-related key interactions (Table
1). Two of the three known cancer-related key interactions
relevant to miR-155 were included in the list (i.e.
miR-155:SMAD5, rank 13; miR-155:FOXO3, rank 18).
In addition, several interactions were demonstrated to
play crucial roles in certain biological processes, although
without obvious evidence linking with cancer. For
example, miR-155 was found to repress SMAD1 and
SMAD5 expression, with consequence of inhibition of
bone morphogenetic protein (BMP) signaling, which in
turn reverses BMP-mediated cell growth inhibition (48).
Induction of miR-155 in tumor-activated monocytes can
suppress human CCAAT/enhancer-binding protein b
(CEBPB) protein expression and cytokine production,
and this effect can be mimicked by silencing of CEBPB
(49). A recent study reported that miR-155 participated
in the maturation of human dendritic cells and control of
pathogen binding mostly through directly targeting the
transcription factor SPI1 (50).
By literature mining, 11 biological processes have been

demonstrated to be associated with miR-155, such as
inflammation response, apoptosis and cell migration.
We used these top 20 targets to capture the functions of
miR-155 by function enrichment analysis (Benjamini–
Hochberg corrected P< 0.05), and found that seven of
the 11 known biological processes are identified
(Supplementary Table S2). Using the top 30 targets, eight
of the 11 were identified. The miRNA body map (51)

provides a useful tool for predicting miRNA functions
by integrating multi-level biological resources. We
identified 15 GO biological process terms associated with
miR-155 using the tool, and found seven out of the 15 GO
biological process terms significantly over-represented
in the top 20 targets, and 10 out of the 15 terms in the
top 30 targets. These results suggest that the majority of
functions of miR-155 can be characterized using the top
ranked targets, underscoring the importance of the top
ranked interactions for the function of miR-155.

Additionally, analyzing expression correlations of these
top 20 interactions using the paired miRNA and mRNA
expression data set from GBM showed two interactions
showing significant negative correlations including
miR-155:PAK7 (r=�0.51, P< 2.2e�16) and miR-
155:TCF4 (r=�0.19, P= 1.82e�04). In order to investi-
gate whether miR-155 directly targets the 30UTRs of
PAK7 and TCF4, we performed 30UTR luciferase
reporter assays for PAK7 and TCF4. A known target
of miR-155, FOXO3, was also evaluated. Respective
reporter plasmids harboring the wild-type versus
mutated 30UTR regions of FOXO3, PAK7 or TCF4
downstream of the luciferase coding region were con-
structed. When LN18 GBM cells were co-transfected
with pGL3-FOXO3-30UTR (or pGL3-TCF4-30UTR)
and the mature miR-155, we observed a significant
decrease in relative luciferase activity, while such
decrease was not observed with the control miRNA
and with pGL3-PAK7-30UTR. Furthermore, when we
mutated the putative miR-155 binding sites at the
30UTRs of FOXO3, TCF4 or PAK7, the relative
luciferase activity between the miR-155 group and
control was not significantly different (Figure 5). These
results indicated that miR-155 directly targets TCF4 and
FOXO3 rather than PAK7, suggesting that TCF4 may be
another key target for miR-155. Consistent with our

Table 1. The top 20 interactions associated with miR-155

Rank MiRNA Gene GBMa OVb MM PCd 8mer 7mer-m8 7mer-A1 6mer Predict score

1 miR-155 STAT1 0.26 0.27 0.10 �0.56 0 0 1 0 1.129
2 miR-155 SMAD1 0.31 0.20 0.01 �0.49 1 0 0 0 1.128
3 miR-155 CEBPB 0.48 0.15 0.20 0.74 1 0 0 0 1.113
4 miR-155 RPS6KB1 0.17 �0.05 0.04 �0.25 1 1 0 1 1.112
5 miR-155 PML 0.41 0.18 0.09 �0.53 0 1 0 0 1.097
6 miR-155 FOS 0.27 �0.08 0.15 �0.32 1 0 0 1 1.091
7 miR-155 CSF1R 0.29 0.30 0.25 �0.30 1 0 0 0 1.070
8 miR-155 BIRC3 0.40 0.29 0.05 0.27 0 1 0 0 1.052
9 miR-155 JAK2 0.16 0.21 �0.04 �0.29 0 1 0 0 1.043
10 miR-155 ETS1 �0.05 �0.04 0.12 0.53 2 0 0 1 1.017
11 miR-155 TFEC 0.32 0.43 0.21 0.26 0 0 1 0 1.014
12 miR-155 RB1 0.18 �0.03 �0.07 �0.60 0 0 1 1 0.995
13 miR-155 SMAD5 0.13 �0.14 �0.08 �0.42 0 1 1 0 0.983
14 miR-155 SPI1 0.31 0.33 �0.24 0.49 0 0 0 0 0.967
15 miR-155 TCF4 �0.19 �0.03 �0.41 0.38 2 2 0 0 0.964
16 miR-155 PAK7 �0.51 �0.15 �0.28 0.39 1 0 0 0 0.961
17 miR-155 RAC1 0.16 0.04 0.06 �0.35 0 1 0 1 0.954
18 miR-155 FOXO3 �0.09 �0.03 �0.24 �0.44 1 2 1 0 0.952
19 miR-155 HDAC9 0.04 0.09 �0.14 �0.50 0 1 1 0 0.951
20 miR-155 CTSS 0.42 0.37 �0.14 0.44 0 0 1 0 0.947

a,b,c,dRepresent Pearson correlations calculated using four paired miRNA and mRNA expression data sets from GBM, ovarian cancer, multiple
myeloma and prostate cancer, respectively.
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results, a most recent study (52) reported that miR-155
can directly suppress the expression of TCF4 that is an
important regulator of epithelial-to-mesenchymal transi-
tion (EMT), and in turn reduces the aggressiveness of
tumor cell dissemination.

Validation using recently identified cancer-related
key miRNA–target interactions

In order to evaluate the performance in searching for
novel cancer-related key miRNA–target interactions, we
therefore examined recently published papers regarding
dysfunction of miRNAs in tumorigenesis, and then
obtained 23 novel cancer-related key miRNA–target inter-
actions that are not included in the 210 positive
interactions (Supplementary Table S3). We recorded the
ranks of these 23 interactions based on a PCmtI model
constructed using the positive and negative interactions.
Of these 23 recently identified interactions, 15 were ranked
in the top 20 of the interaction list for the corresponding
miRNA, further indicating the superior performance of
the approach.

The web-tool PCmtI

We developed a free-available web-tool PCmtI
(http://bioinfo.hrbmu.edu.cn/PCmtI) for prioritization of
cancer-related key miRNA–target interactions. The
web-tool used these 210 positive and 8344 negative inter-
actions to construct a model by integrating all sequence,
expression and function features. PCmtI allows a user to
input a miRNA name, and then displays a prioritization
result page. In this result page, all interactions associated
with the given miRNA are ranked according to prediction
scores calculated using the model, and all features of these
interactions are also provided. This web-tool may improve
the chance of identifying cancer-related key miRNA–
target interactions.

DISCUSSION

Identifying cancer-related key miRNA–target interactions
helps to determine which genes are their downstream key
targets and to further understand how miRNAs function
as oncogenes or tumor suppressor genes involving in the
development of cancer. With increasing experimentally
validated cancer-related interactions, analyzing these
interactions from different aspects (including sequence,
expression and function) can reveal some unique
properties, which can be used to discovery novel
cancer-related key interactions. Here, we systematically
explored sequence, expression and function features of
known cancer-related key interactions by comparing to
non-disease-related interactions.
Among all types of binding sites, 8mer binding sites

provide the best basis for carrying out the dysfunction
of miRNAs in cancer. Using seed-targeting 8mer locked
nucleic acid oligonucleotides, a recent study successfully
performed antagonism of miRNA function (53). We
observed that cancer-related key interactions tend to
have more binding sites, especially for 8mer binding
sites, suggesting that cancer-related key interactions
require high site efficiency. This is further supported by
the observation that cancer-related key interactions have
lower context scores.
With regard to expression, cancer-related key inter-

actions show high expression correlations (including
positive and negative correlations). Different patterns of
expression correlations can result from complex regula-
tory circuits (54), which may be corresponding to different
functional roles in the miRNA-mediated repression (55).
High negative correlations generally reflect strong repres-
sion, such as controls of ‘leaky’ mRNAs in coherent
feed-forward loops in which the miRNAs and their
targets are inhibited and activated, respectively, by the
same signals. High positive correlations can be caused
by incoherent feed-forward loops, in which both the
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miRNAs and their targets are co-activated (or
co-repressed) by the same signals (54). In addition,
recent studies (56) reported that miRNAs can even
directly activate rather than repress their targets under
certain conditions (57) or by binding to the 50UTR (58).
Thus, understanding expression relationships between
miRNAs and their targets and understanding the involve-
ment of miRNAs in complex regulatory circuits can offer
insights into the molecular mechanisms of miRNAs
involved in cancer development.
Interestingly, as shown in Table 1, only one miRNA–

target interaction shows inverse expression correlations
in all of these four paired miRNA and mRNA expression
data sets from different types of cancer. The majority
of miRNA–target interactions have inverse expression
correlations only in certain types of cancer. One major
explanation is that both positive and negative correlations
are beneficial for identification of cancer-related key
interactions, because we found that known cancer-related
key interactions tend to show high positive and negative
expression correlations. In addition, we further analyzed
expression correlations of all experimentally validated
miRNA–target interactions from miRTarBase (59)
across these four paired miRNA and miRNA expression
data sets. Surprisingly, we did not observe any tendency
towards negative correlations (Supplementary Figure S1).
Moreover, only 9.3% of experimentally validated inter-
actions showed consistent negative correlations across
these four data sets. These results suggest that miRNA–
target interactions are heavily dependent on the specific
cellular context, which may be attributed to tissue
specificity.
When comparing expression correlations between

cancer-related key interactions and negative interactions
using four data sets, significant differences were
only observed in two data sets. These results can be ex-
plained by the cellular context-dependence of miRNA–
target interactions. Furthermore, due to only a minority
of cancer-related key interactions identified to date,
it may be insufficient to reveal the differences in
some data sets. Even so, we believe that integration of
features derived from these data sets can still provide
advantages for prioritization of cancer-related key
interactions.
By analyzing the GO-based functional essentiality of

cancer-related key interactions, we demonstrated that
the key targets in cancer-related interactions participate
into more functions of their corresponding miRNAs
when compared to those in non-disease-related inter-
actions. Likewise, we observed a similar tendency using
pathway annotations from KEGG. These findings
suggest that the key targets in cancer-related interactions
seem to be sufficient for reflecting partial or complete
functions of their corresponding miRNAs. We next
analyzed a network feature about cancer-related key inter-
actions, and found significantly shorter average distances
between key targets and other targets of their correspond-
ing miRNAs, which indicates that these key targets in
cancer-related interactions may highly connect with
other targets. The key targets in cancer-related inter-
actions may be involved in many functions of their

corresponding miRNAs by cooperating with different
targets, supporting their broad functional coverage.

It is well known that disease genes and non-disease
genes have significant differences in a number of biological
features, such as 30UTR length. Significant differences
between the positive and negative interactions may result
from differences between disease genes and non-disease
genes. To test this possibility, we randomly selected the
same number of disease gene-related interactions as that in
the positive set and the same number of non-disease
gene-related interactions as that in the negative set, and
then compared these two random selected interaction sets.
We repeated the process 10 times, and found that all
sequence features and most of the expression features do
not exhibit significant differences while function features
show significant differences (Supplementary Figure S2;
P< 0.05, two-side KS test). When comparing the
positive interactions with all disease gene-related inter-
actions, we further found that the positive interactions
show significantly higher functional coverage than
disease gene-related interactions (Supplementary Figure
S3; P< 2.2e�16, one-side KS test). Our results suggest
that these significant differences between the positive
and negative interactions should be associated with
cancer-related key miRNA–target interactions rather
than just disease-related genes.

In order to investigate whether these significant differ-
ences also exist between other disease-related interactions
and the negative interactions, we obtained 43 cardiovas-
cular disease-related interactions by literature mining
(Supplementary Table S4). Through comparing these 43
interactions with the negative interactions, we found
similar results as those for the cancer-related key
interactions—these cardiovascular disease-related inter-
actions also show more 8mer binding sites and stronger
functional links relative to the negative interactions
(Supplementary Figure S4), suggesting that the differences
may be extrapolated to other human diseases.

Recently, we witnessed the emergence of a number of
methods for prioritizing disease genes by integrating dif-
ferent biological sources (60–63). These previous studies
demonstrated the efficiency of prioritization methods for
identifying novel disease genes and providing deep insights
into the pathogenesis of disease (64). Inspired by
these previous studies, we developed a method, named
PCmtI, to prioritize cancer-related key miRNA–target
interactions by using an ensemble SVM classifier model
based on these sequence, expression and function features
described above. Ten-fold cross-validation and leave-
one-miRNA-out cross-validation showed the good per-
formance of our approach. Prioritization of recently
identified cancer-related key interactions also showed the
ability of our approach for discovering novel cancer-
related key interactions.

Recent studies found that miRNA oncogenes and
miRNA tumor suppressors tend to regulate tumor sup-
pressors and oncogenes, respectively (65). Therefore, we
examined whether the top 20 interacting targets of some
known miRNA oncogenes/tumor suppressors are signifi-
cantly enriched in tumor suppressors/oncogenes. We
selected five well-known miRNA oncogenes (including
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miR-155, miR-107, miR-146a, miR-224 and miR-20a) and
five miRNA tumor suppressors (including miR-143,
miR-145, miR-34a, miR-200a and miR-195) from (65),
and found that the top 20 targets of each miRNA
oncogene/tumor suppressor are significantly enriched in
tumor suppressors/oncogenes (P-values for miRNA onco-
genes: miR-155, 5.24e�03; miR-107, 2.22e�05; miR-146a,
3.94e�04; miR-224, 2.22e�05; miR-20a, 4.98e�02; P-values
for miRNA tumor suppressors: miR-143, 1.02e�04;
miR-145, 1.30e�03; miR-34a, 1.20e�08; miR-200a,
1.26e�02; miR-195, 1.30e�03, Fisher’s exact test).
Similarly, we selected some well-known oncogenes/tumor
suppressors (oncogenes: MYCN, WNT1, CDC25B, ERG
and PDGFB; tumor suppressors: BRCA1, BRCA2,
FOXO1A, RUNX3 and TCTA) to check whether their
top 20 interacting miRNAs (ranked according to their
prediction scores) are enriched in miRNA tumor suppres-
sors/miRNA oncogenes, using a miRNA set analysis tool
TAM (66). Our results showed that the top 20 miRNAs of
most of these oncogenes/tumor suppressors are signifi-
cantly enriched in miRNA tumor suppressors/miRNA
oncogenes (P-values for oncogenes: MYCN, 1.25e�09;
WNT1, 2.45e�05; CDC25B, 1.38e�12; ERG, 3.43e�03;
PDGFB, 1.73e�11; P-values for tumor suppressors:
BRCA1, 6.58e�03; BRCA2, 0.12; FOXO1A, 3.47e�2;
RUNX3, 1.37e�09; TCTA, 1.45e�05).

Note that miRNAs in the same cluster tend to be
co-expressed. To investigate whether this fact could
affect our results, we selected three highly co-expressed
miRNAs from the same cluster including miR-18a,
miR-19a and miR-20a (36), which share 114 targets. We
then prioritized interactions for each miRNA based on a
model constructed using all positive and negative inter-
actions. For each miRNA, the top 30 interactions were
extracted. We did not find any common targets among
these top 30 interaction sets of the three miRNAs
(Supplementary Figure S5), suggesting that the fact may
not influence our results.

Although the performance of our method is very
encouraging, there is still much room for improvement.
A recent study (51) compared several miRNA target data-
bases by analyzing mass spectrometry protein expression
data from miRNA perturbation experiments and
demonstrated that MIRDB (67) outperforms
TargetScan. Thus, we re-evaluated our model using pre-
dicted interactions from MIRDB, and found that the
AUC score increased from 93.9% using TargetScan to
95.5% using MIRDB, indicating the improvement of per-
formance by increasing the accuracy of miRNA target
prediction. At present, a large number of mRNA and
miRNA expression data sets are available. Integration of
these expression data sets by meta-analysis (68) may
further improve our approach. Additionally, with
increased understanding of the cancer-related key
interactions, more distinct features can be discovered.
For example, recent evidence showed that the presence
of single nucleotide polymorphisms in the 30UTRs of
targets can lead to gain or loss miRNA controls, which
in turn contributes to many human diseases (69).
RNA editing events were also reported to influence
miRNA-mediated regulations (70). We expect that more

features can be used to help improve the performance of
our method.
In summary, we present a computational method

called PCmtI for prioritization of cancer-related key
miRNA–target interactions by combining sequence,
expression and function features. We believe that
PCmtI is a useful method for prioritizing cancer-related
key interactions, which provides a new way of hypoth-
esis generation that will help to reveal the molecular
mechanism responsible for miRNA-associated cancer
development.
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