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Consumption of fruits and vegetables is recognized as an important part of a healthy diet.
Increased consumption of cruciferous vegetables in particular has been associated with
a decreased risk of several degenerative and chronic diseases, including cardiovascular
disease and certain cancers. Members of the cruciferous vegetable family, which includes
broccoli, Brussels sprouts, cauliflower, and cabbage, accumulate significant concentra-
tions of glucosinolates, which are metabolized in vivo to biologically active isothiocyanates
(ITCs). The ITC sulforaphane, which is derived from glucoraphanin, has garnered particular
interest as an indirect antioxidant due to its extraordinary ability to induce expression of
several enzymes via the KEAP1/Nrf2/ARE pathway. Nrf2/ARE gene products are typically
characterized as Phase II detoxification enzymes and/or antioxidant (AO) enzymes. Over
the last decade, human clinical studies have begun to provide in vivo evidence of both
Phase II and AO enzyme induction by SF. Many AO enzymes are redox cycling enzymes
that maintain redox homeostasis and activity of free radical scavengers such as vitamins
A, C, and E. In this review, we present the existing evidence for induction of PII and AO
enzymes by SF, the interactions of SF-induced AO enzymes and proposed maintenance of
the essential vitamins A, C, and E, and, finally, the current view of genotypic effects on ITC
metabolism and AO enzyme induction and function.
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INTRODUCTION
Fruits and vegetables are recognized as being part of a healthy
diet with current U.S. dietary guidelines reflecting this relation-
ship (U. S. Department of Agriculture, and U. S. Department of
Health, 2010). While fruits and vegetables represent a nutrient-
dense, low-fat, low-calorie food option, evidence also suggests that
their consumption may reduce the risk of several degenerative and
chronic diseases. In particular, diets rich in cruciferous vegetables
have demonstrated potential health benefits for their association
with a decreased risk of cardiovascular disease (Law et al., 1994;
Joshipura et al., 1999; Suido et al., 2002; Takai et al., 2003; Cornelis
et al., 2007; Mirmiran et al., 2009; Zhang et al., 2011) and cer-
tain types of cancer (Verhoeven et al., 1996; Feskanich et al., 2000;

Abbreviations: AO, antioxidant; ARE, antioxidant response element; CUL3, cullin
3; DHA, dehydroascorbate; GCLC, glutamate cysteine ligase; GLRX, glutaredoxin;
GPX, glutathione peroxidase; GR, glucoraphanin; GSR, glutathione reductase; GST,
glutathione S-transferase; GSTA1, glutathione S-transferase alpha 1; GSTM1, glu-
tathione S-transferase mu 1; GSTO1, glutathione S-transferase omega 1; GSTO2,
glutathione S-transferase omega 2; GSTT1, glutathione S-transferase theta 1;
HMOX1, heme-oxygenase 1; ITC, isothiocyanate; KEAP1, kelch-like ECH asso-
ciated protein 1; NQO1, NAD(P)H dehydrogenase, quinone 1; NRF2, nuclear
factor (erythroid-derived2)-like 2; PII, phase II; ROS, reactive oxygen species;
SDA, semidehydroascorbate; SF, sulforaphane; TQ, α-tocopherolquinone; TQH2,
α-tocopherolhydroquinone; TXN, thioredoxin; TXNRD, thioredoxin reductase.

Voorrips et al., 2000; Neuhouser et al., 2003; Ambrosone et al.,
2004; Miller et al., 2004; Fowke et al., 2006). The exact mechanisms
and potential bioactives underlying this relationship have been the
subject of intense investigation over the last several decades.

Cruciferous vegetables are a rich source of thioglycoside pre-
cursors of isothiocyanates (ITCs) called glucosinolates (Fenwick
et al., 1983). Upon consumption, glucosinolates are hydrolyzed by
myrosinase (β-thioglucoside glucohydrolase, EC 3.2.1.147), which
is normally segregated from glucosinolates in plants, to their rep-
resentative ITCs through the action of physical damage to the
plant (i.e., chewing). There is also evidence that glucosinolates are
hydrolyzed in the colon through the actions of gut microorganisms
(Shapiro et al., 1998, 2001; Conaway et al., 2000). Broccoli accumu-
lates significant amounts of 4-methylsulfinylbutyl glucosinolate
(4-MSB) or glucoraphanin (GR; Van Poppel et al., 1999), which
can be converted to the ITC sulforaphane (SF; Figure 1). SF has
been intensively studied not only due to the high concentration of
GR in broccoli florets and sprouts (Fahey et al., 1997; Shapiro et al.,
1998; Kushad et al., 1999) but also due to its extraordinary abil-
ity to induce antioxidant response element (ARE) gene products
(Zhang et al., 1992). While out of the scope of this review, evidence
for additional mechanisms of action have also been described
for SF, namely modulation of P450 enzymes, induction of apop-
tosis, inhibition of cell proliferation, inhibition of angiogenesis
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FIGURE 1 | Hydrolysis of glucoraphanin by myrosinase or gut

microorganisms to the biologically active ITC sulforaphane.

Glucoraphanin (GR) or 4-methylsulfinylbutyl glucosinolate is the major
glucosinolate found within broccoli. Upon physical damage to the plant, the
enzyme myrosinase, which is segregated from GR, is released and catalyzes

the hydrolysis of GR to the isothiocyanate sulforaphane (SF). Additionally,
microorganisms within the human gut can catalyze hydrolysis of GR to SF.
Contribution of gut microorganism catalysis is important in SF production due
to inactivation of myrosinase by common culinary preparation of broccoli via
heating, which inactivates myrosinase.

and metastasis, and modulation of histone deacetylase activity (as
reviewed by Zhang and Tang, 2007; Ho et al., 2009). The biological
impact of SF, especially in modulating cytoprotective mechanisms,
underscores the potential health benefits, and research interest
into SF.

Cruciferous vegetables like broccoli are not only important
sources of phytonutrients like SF but are also important dietary
sources of many essential nutrients like vitamins A, C, and E. The
interaction between SF and vitamins A, C, and E may play a sig-
nificant dietary protective role during times of oxidative stress.
This is especially important when the balance of cellular redox
status shifts from a reductive to an oxidative environment. These
changes mediate cell signaling cascades through changes in redox
tone (Landar and Darley-Usmar, 2003). As will be discussed, the
phytonutrient SF affects redox tone by modulating induction of
ARE-dependent gene products, namely through phase II detoxi-
fication and antioxidant (AO) enzymes, which participate in the
recycling and maintenance of vitamins A, C, and E, maintaining
cellular redox balance.

SULFORAPHANE AND ARE-DEPENDENT GENE INDUCTION
Xenobiotic metabolism is typically carried out by two families of
enzymes: phase I and phase II (PII) enzymes. Phase I enzymes,
which belong to the larger cytochrome P450 enzyme family,
are characterized by metabolic activation of substrates, especially
lipophilic molecules, through introduction of functional groups
(Mansuy, 2011). Addition of functional groups can increase the
toxicity of certain compounds, thereby increasing their potential
activity. Phase II enzymes, on the other hand, are characterized by
detoxification, typically through conjugation, thereby inactivating
potentially dangerous substrates, increasing their solubility, and
facilitating excretion. While the terminology of Phase II enzymes
is pertinent to drug or xenobiotic metabolism, it is evident that SF
plays an important role in induction of both PII detoxification and
AO enzymes through the KEAP1/NRF2/ARE-dependent pathway.

The induction of many PII detoxification and AO enzymes
are mediated through the KEAP1/NRF2/ARE metabolic pathway
(Figure 2A). NRF2 [nuclear factor (erythroid-derived2)-like 2] is a
transcription factor that, along with small MAF transcription fac-
tors, heterodimerically binds the ARE within the promoter regions

of many cytoprotective genes, enabling the cellular response to
electrophiles and oxidants (Itoh et al., 1997). The importance
of NRF2 in cellular stress response has been substantiated in
NRF2-knock-out mice, which display increased sensitivity to a
number of xenobiotics (Chan and Kan, 1999; Enomoto et al.,
2001; Thimmulappa et al., 2002; Xu et al., 2006). KEAP1 (Kelch-
like ECH associated protein 1) is a cysteine-rich protein that
functions as a chemical sensor of cellular redox tone, mediating
activation of NRF2 (Itoh et al., 1999). Under basal conditions,
KEAP1 sequesters NRF2 within a complex with Cullin 3 (CUL3),
which is an ubiquitin ligase E3 that targets NRF2 for proteosomal
degradation (Kobayashi et al., 2004). Inducers of NRF2, such as
SF, interact with specific cysteine residues of KEAP1 leading to
dissociation or degradation of the Cul3–KEAP1 complex and sta-
bilization of NRF2, which translocates to the nucleus activating
ARE-dependent genes (Zhang et al., 2004; Eggler et al., 2005; He
and Ma, 2009). Thus, the KEAP1/NRF2/ARE pathway represents
an intricate response system that is capable of reacting to changes
in cellular redox tone (Thimmulappa et al., 2002; Hu et al., 2004,
2006). For this reason, induction of this pathway by dietary com-
ponents, such as SF, has garnered interest as a target in human
health and wellness.

Antioxidant response element-dependent genes encompass a
broad array of gene products that function as a biological defense
system against mediators of oxidative stress and/or xenobiotic
toxicity (Figure 2B). PII detoxification enzymes play an impor-
tant role in biotransformation of molecules through conjugation.
The majority of PII detoxification enzymes are transferases and
include: UDP-glucuronosyltransferases (UGTs), sulfotransferases
(SULTs), glutathione S-transferases (GSTs), N -acetyltransferases
(NATs), and S- and O-methyltransferases (MTs). Induction of
many PII detoxification enzymes are driven by ARE-dependent
mechanisms (Wasserman and Fahl, 1997; Jaiswal, 2004a,b; Alnouti
and Klaassen, 2008; Kalthoff et al., 2010).

In addition to PII detoxification enzymes, activation of the
KEAP1/NRF2, especially by SF, results in an increase in many
ARE-dependent AO enzymes (Juge et al., 2007; Dinkova-Kostova
and Talalay, 2008). Many of these enzymes are intimately involved
in reduction of oxidative species through regulation of glu-
tathione metabolism and quenching of free radicals via one-
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and two-electron reductions. The diverse family of AO enzymes,
which includes glutathione reductase (GSR), glutathione perox-
idase (GPX), glutaredoxin (GLRX), thioredoxin (TXN), thiore-
doxin reductase (TXNRD), heme-oxygenase 1 (HMOX1), and
NAD(P)H:quinone oxidoreductase 1 (NQO1),are now recognized
as primary defense mechanisms against many degenerative and
chronic disease conditions.

HUMAN CLINICAL EVIDENCE OF ARE-DEPENDENT ENZYME INDUCTION
BY SULFORAPHANE
The induction of NQO1 by SF not only identified SF as a bio-
logically active component of broccoli but also demonstrated a
putative mechanism by which cruciferous vegetables may exert
their health promoting benefits (Zhang et al., 1992). Since this ini-
tial observation, a number of in vitro and animals studies have

provided further supportive evidence of SF’s role not only on
induction of NQO1 but of other ARE-dependent enzyme family
members (Dinkova-Kostova and Talalay, 2008). However, to fully
understand the potential impact of SF on health and wellness,
the results of in vitro and animal studies need to be translated to
human clinical evidence. Consumption of SF- or GR-containing
foods results in systemic exposure to SF and SF-metabolites
(Conaway et al., 2000). Accordingly, a handful of human inter-
vention studies have attempted to elucidate the in vivo effects of
SF consumption on ARE-mediated enzyme induction in a limited
number of organ sites (Table 1).

Studies have provided indirect evidence of ARE-mediated
enzyme induction by consumption of vegetables containing SF or
its precursor GR. A randomized, crossover study was conducted
to evaluate the effects of Brassica vegetable consumption vs. a

FIGURE 2 | Mechanism of ARE-mediated detoxifying and

antioxidant enzyme induction by sulforaphane. (A) Under basal
conditions, the transcription factor NRF2 is sequestered within the
cytosol by the repressor proteins Keap1 and cullin 3 (CUL3), presenting it
for proteosomal degradation via ubiquitination. Sulforaphane, through
modification of the highly redox-sensitive cysteine residues of KEAP1,
facilitates the dissociation of the KEAP1/CUL3/NRF2 complex, releasing

NRF2, which translocates into the nucleus. Once within the nucleus,
NRF2 heterodimerically pairs with small Maf transcription factors binding
to antioxidant response elements (ARE) contained within the promoter
regions of many enzymes, initiating their transcription. (B) ARE-mediated
gene products are typically classified as either detoxification or
antioxidant enzymes. (Adapted and modified from Dinkova-Kostova and
Talalay, 2008).

Table 1 | Summary of human clinical evidence for induction of ARE-mediated enzymes by sulforaphane/ITC.

Enzyme/reducing agent Tissue Effective dose1 Reference

NQO1 Upper airway 64 μmol/day SF Riedl et al. (2009)

HMOX1 Upper airway 64 μmol/day SF Riedl et al. (2009)

GSTM1 Upper airway 64 μmol/day SF Riedl et al. (2009)

GSTP1 Upper airway 64 μmol/day SF Riedl et al. (2009)

TXNRD1 Gastric mucosa 344 μmol SF Gasper et al. (2007)

Aldoketoreductases Gastric mucosa 344 μmol SF Gasper et al. (2007)

GCLC modifier subunit Gastric mucosa 344 μmol SF Gasper et al. (2007)

GSTA1 Intestinal mucosa 11 μmol SF Petri et al. (2003)

HMOX1 Mammary 200 μmol SF Cornblatt et al. (2007)

NQO1 Mammary 200 μmol SF Cornblatt et al. (2007)

NQO1 Skin 150 nmol SF Dinkova-Kostova et al. (2007)

1Dose at which induction was observed.
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vitamin, mineral, and fiber supplement on urinary F2-iP levels,
which is a biomarker of systemic oxidative stress (Fowke et al.,
2006). The Brassica vegetable intervention resulted in a signifi-
cant decrease in urinary F2-iP compared to baseline as well as to
the micronutrient and fiber intervention. While the authors did
not assess GSH levels or GST activity, it was speculated that the
reduction in F2-iP involves GSH metabolism since F2-iP synthe-
sis is dependent upon GSH-dependent prostaglandin H2 (Mor-
row et al., 1998). While the underlying mechanisms are unclear,
Brassica consumption resulted in a decrease in oxidative stress
independent of a vitamin, mineral, and fiber supplement.

Since the induction of PII enzymes is implicated in detox-
ification of environmental toxins like aflatoxin (Kensler et al.,
1986; Roebuck et al., 1991; Groopman et al., 1992), the effects
of a broccoli sprout infusion (BSI) were evaluated on urinary
aflatoxin and phenanthrene metabolite excretion (Kensler et al.,
2005). Study participants (n = 200) were recruited from Qidong,
People’s Republic of China, which has a high prevalence of hepa-
tocellular carcinoma emanating from chronic hepatitis B infection
and exposure to aflatoxins in the diet (Ross et al., 1992). Partic-
ipants drank a daily infusion containing either 400 or <3 μM
glucoraphanin for 2 weeks, after which urinary levels of dithio-
carbamate, aflatoxin-N 7-guanine DNA adduct and trans, anti-
phenanthrene tetrol were assessed. There was a significant increase
in urinary dithiocarbamate excretion, a biomarker of ITC bioavail-
ability, based on multi-day assessments in the BSI intervention
compared to controls. Interestingly, the study demonstrated high
interindividual variability in thiocarbamate excretion rates, yet
there was little intra-individual variability displayed across the
multiple assessments. High- and low-ITC excreters have recently
been described as having high and low GR degrading abilities,
yet specific gut microorganisms could not be identified to explain
the observed interindividual differences in GR excretion (Li et al.,
2011). Nonetheless, in the Kensler study, BSI failed to signifi-
cantly reduce either urinary aflatoxin-N 7-guanine or trans, anti-
phenanthrene tetrol. However, when interindividual variability of
SF was controlled for, there was a significant inverse association
between urinary thiocarbamate and aflatoxin-N 7-guanine DNA
adduct and trans, anti-phenanthrene tetrol. While the exact mech-
anisms for this association were not investigated, previous results
suggested that GSTs may play an important role (Wang et al., 1999).

Riso et al. (2009) investigated the effect of broccoli con-
sumption on plasma GST activity and the influence of GST
genotype. A randomized, crossover study was conducted involv-
ing 20 subjects (10 smokers and 10 non-smokers) who con-
sumed 200 g/day steamed broccoli, which contained approxi-
mately 100 μmol ITC/100 g, or a non-cruciferous diet for 10 days
followed by a 20-day washout period between interventions. Sub-
jects were also characterized for glutathione S-transferase mu
1(GSTM1) and glutathione S-transferase theta 1 (GSTT1) geno-
types due to the influence of the GST-null genotypes on ITC
metabolism (Gasper et al., 2005). Of the 20 subjects, 40% pos-
sessed the GSTM1-null allele while 30% had the GSTT1-null allele.
Broccoli consumption resulted in a significant increase in plasma
ITC in addition to a significant increase in plasma lutein and β-
carotene, both constituents of broccoli. However, when stratified
by genotype, there were no significant differences in plasma GST

activity. While there was a trend toward a higher increase in plasma
ITCs in GSTT1-null subjects, it did not reach significance (Gasper
et al., 2005). Additionally, while most investigations have studied
SF specifically, the authors did not distinguish between individual
ITCs, which could have a major impact on the outcome of the
study.

Evidence for direct induction of ARE-mediated enzymes by
SF has been provided in a few human clinical studies. In one
such study, the acute variable effects of different broccoli vari-
eties on gastric mucosal gene expression demonstrated changes
in ARE-mediated enzyme expression (Gasper et al., 2007). Gas-
tric mucosal samples were taken pre- and post-consumption of a
broccoli soup made from a standard broccoli variety compared to
a high-glucoraphanin (HGR) variety containing approximately
threefold higher levels of GR. In subjects consuming the high
HG soup, several ARE enzyme family members, including thiore-
doxin reductase 1 (TXNRD1), several aldoketolases and gluta-
mate cysteine ligase (GCLC) modifier unit (controlling element in
glutathione synthesis), were significantly up-regulated compared
to subjects consuming the standard variety broccoli soup. Only
one member of the oxidoreductase family was up-regulated by
the standard broccoli, implicating a dose-dependent relationship
between GR and AO enzyme induction. While the exact mech-
anisms for the observed differential effects were not elaborated
upon in this study, the higher plasma SF concentrations of sub-
jects consuming a HGR soup (Gasper et al., 2005) may provide
a more sustained induction of AO enzymes. In a separate study,
a significant induction in glutathione S-transferase A1 (GSTA1)
and UDP-glucuronosyltransferase 1A1 (UGT1A1) mRNA expres-
sion was observed in exfoliated enterocytes in subjects receiving
an enteric infusion of a combined broccoli and onion extract com-
pared to subjects receiving a control infusion (Petri et al., 2003).
Follow-up studies in caco-2 colon carcinoma cells indicated that
SF was responsible for the induction of GSTA1 while quercetin
was responsible for the induction of UGT1A1.

In African American women undergoing elective mammo-
plasty surgery, consuming a broccoli sprout extract containing
200 μM SF resulted in the qualitative detection of NQO1 and
HMOX1 transcripts in the breast tissue. Expression levels of
both transcripts were highly correlated, indicating similar mech-
anisms of induction. In addition, NQO1 enzymatic activity was
assessed in breast tissue (Cornblatt et al., 2007). However, the
quantitative effects of SF on breast tissue expression and activ-
ity of NQO1 and HMOX1 was unable to be assessed due to
the absence of a pre-intervention assessment. Nonetheless, these
observations correlated with the induction of NQO1 and HMOX1
expression and NQO1 activity in rat mammary tissue (Cornblatt
et al., 2007). Riedl et al. (2009) evaluated the safety, efficacy, and
dose-dependent relationship of oral SF-containing broccoli sprout
homogenate (BSH) consumption on induction of PII enzymes in
upper airway cells. Groups of subjects (n = 5) consumed escalating
doses of BSH (25, 50, 75, 100, 125, 150, 175, and 200 g BSH/day)
for 3 days. Expression of GSTM1, glutathione S-transferase pi 1
(GSTP1), NQO1, and HMOX1 were evaluated in nasal lavage
samples before and after BSH consumption. At BSH doses greater
than 100 g/day, there was a significant increase in all PII enzymes
assessed compared with control subjects, with NQO1 and HMOX1
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demonstrating the greatest degree of induction. There was also a
significant dose-dependent relationship for induction of all PII
enzymes. A significant positive correlation was evident for AO
enzyme induction, which is consistent with the shared mecha-
nism of induction by SF. While the study provides further support
for induction of AO enzymes by SF in vivo, it does not imply a
functional benefit of ARE-mediated gene induction per se.

Cell culture and animals studies have provided convincing evi-
dence for induction of PII detoxifying and AO enzymes by SF (as
reviewed by Juge et al., 2007), yet the often high concentrations
used in these studies do not adequately reflect the peak concen-
trations (approximately 2 μM) or timing (<1 h) of SF exposure
seen in humans. Additionally, the use of SF in isolation by no
means replicates the food matrix of vegetables that accumulate
high concentrations of glucosinolates.Vegetables like broccoli con-
tain high concentrations of several nutrients, such as vitamins A,
C, and E, in addition to phytonutrients like GR, the precursor of
SF (Fahey and Kensler, 2007). Many studies have failed to account
for this or have relied primarily on dietary intake data without
measuring blood levels of accompanying nutrients. While human
studies have begun to demonstrate the indirect and direct effects
of SF or SF-containing Brassica vegetable consumption on ARE-
mediated enzyme expression and activity, assessing the functional
effects of SF on ARE-mediated enzymes remains a considerable
challenge. In humans, only a limited number of organ sites have
been assessed for enzyme induction. The liver is the major site of
xenobiotic metabolism (Meyer, 1996), yet assessing hepatic ARE
enzyme expression and activity represents a significant logistical
and ethical challenge in humans. Taken together, there still remains
a significant hurdle to translating the observations seen in animal
and cell culture studies to humans and relating these observa-
tions to disease risk reduction and ultimately improved health
and nutrition.

INTERACTIONS BETWEEN VITAMINS A, C, AND E AND
ARE-MEDIATED ENZYMES
Oxidative stress is hypothesized to play a significant role in
the etiology of a number of chronic and degenerative diseases
(Sies, 1997). A number of endogenous biological mechanisms are
present that sense and defend against changes in redox balance,
including superoxide dismutase, catalase, and other antioxidant
enzymes. While sulforaphane itself is not involved in the reduc-
tion of reactive oxidation species, it does induce biological defenses
through changes in redox tone, counteracting free radical for-
mation through the induction of antioxidant enzyme pathways
(Dinkova-Kostova and Talalay, 2008). Dietary antioxidants such
as vitamins A, C, and E, are characterized by their direct inter-
action with free radicals. The idea of dietary antioxidants and
redox or AO enzymes working together exemplifies an intricate
cellular antioxidant network, whereby complimentary systems of
dietary antioxidants defend against oxidative insults and interact
with redox or antioxidant enzymes facilitating their regeneration
to their fully reduced state (Thiele et al., 2001).

Maintaining cellular redox homeostasis is essential to maintain-
ing cellular health. Signaling pathways like KEAP1/NRF2 contain
redox-sensitive thiol sites that are sensitive to changes in cellu-
lar redox homeostasis. Under oxidative conditions, whereby redox

balance is tripped to a more oxidative environment, changes in cel-
lular redox tone initiate signaling of ARE-dependent antioxidant
enzymes, such as NQO1, GCLC, GSR, and TXNRD, that restore
redox homeostasis (Benzie and Wachtel-Galor, 2010; Hybertson
et al., 2011). The actions of SF on ARE-mediated enzyme path-
ways are well described, and there is also considerable evidence
linking the recycling of classical direct antioxidants by many ARE-
dependent antioxidant enzymes. However, there is no evidence
to date directly linking induction of redox or AO enzymes by SF
and recycling or sparing of vitamins A, C, and E. The evidence
supporting this potential relationship will be reviewed below.

MAINTENANCE OF VITAMIN A
Vitamin A is the generic name for a group of essential lipid-soluble
nutrients that are required for a number of cellular processes,
including vision, bone growth, maintenance of epithelial tissues,
embryonic development, and cellular growth and differentiation
(Ross et al., 2000b). Preformed vitamin A, namely retinol and reti-
nal as retinyl esters, is obtained through consumption of animal
products while fruits and vegetables are sources of pro-vitamin A
carotenoids, namely β-carotene, α-carotene, and β-cryptoxanthin,
which are metabolized to vitamin A in vivo (Lietz et al., 2010).

Retinal plays an essential role in vision with loss of dark adap-
tation being one of the earliest signs of vitamin A deficiency
(Tanumihardjo, 2004). Age-related macular degeneration (AMD)
is one of the leading causes of blindness among the elderly and is
characterized by progressive degeneration of both macular pho-
toreceptors and the retinal pigment epithelia (RPE) cells. The RPE
is vital for retinal health, supplying nutrients and removing waste
products from the photoreceptors, absorbing excess light, and
recycling the visual chromophore, retinal (Kiser and Palczewski,
2010). Vitamin A is removed from systemic circulation by the
RPE via all-trans retinol, which is stored as retinyl esters. All-trans
retinol is isomerized to 11-cis-retinol and is then further oxidized
to 11-cis-retinal, where it is then transported back to the photore-
ceptors. Thus, the RPE along with vitamin A plays an important
role in maintaining visual health.

While retinal is essential for the generation of the visual signals,
it is also highly phototoxic and gives rise to reactive singlet oxygen,
resulting in oxidative damage of lipids and other cellular com-
ponents. Additionally, retinal is the precursor of the fluorophore
A2E (pyridinium bisretinoid), which forms granules called lipo-
fuscin that are considered the causative agents of AMD. Thus,
protection of retinal and the retinal tissues is important in the pre-
vention of degenerative eye disorders. Using human adult retinal
epithelial pigment cells (ARPE-19), Gao and Talalay demonstrated
protection against drug-induced oxidative cytotoxicity (Gao et al.,
2001). Cells were pretreated with SF for 24 h and then exposed to
increasing concentrations of menadione, tert -butyl hydroperox-
ide, 4-hydroxynonenal, or peroxynitrite. SF significantly increased
cell viability, cellular glutathione (GSH) levels, and NQO1 activ-
ity. While similar effects were demonstrated in unrelated cell lines
(human keratinocytes, HaCaT; mouse leukemia cells, L1210), the
susceptibility of the retina to oxidative damage and protection
afforded by SF implies a potential role of SF in retinal protection
and maintenance of vitamin A through induction of antioxidant
enzymes.
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Gao and Talalay (2004) extended their previous findings and
investigated protection against retinaldehyde-mediated photoox-
idative damage via SF-mediated induction of antioxidant enzymes.
Treatment of ARPE-19 cells with retinal, retinol, or retinoic acid
(25 or 50 μM) significantly decreased cell viability upon exposure
to UV light with retinal being the most potent. The phototoxicity
of retinal was further associated with a dose-dependent increase in
lipid peroxidation, which is characteristic of degeneration of pho-
toreceptors and RPE (Nowak et al., 2003). Treatment of cells with
SF, however, dose-dependently inhibited the cytotoxic effects of
retinal-mediated phototoxicity. The effects of SF were attenuated
by the addition of buthionine sulfoximine (BSO), an inhibitor of
GSH synthesis. Additionally, SF dose-dependently induced expres-
sion of NQO1, implicating ARE-mediated enzyme induction in
protection of retinal-mediated phototoxicity and further cor-
roborating previous findings on SF-mediated protection against
various oxidants in ARPE-19 cells (Gao et al., 2001). This rela-
tionship was further elaborated upon using embryonic fibroblasts
derived from Nrf2 and Keap1 mutant mice (Gao and Talalay,2004).
Fibroblasts derived from Keap1−/− mice (constitutively activated
Nrf2) displayed increased resistance to retinal-mediated photo-
toxicity compared to either NRF2−/− or KEAP1−/−::NRF2−/−
double knock-out cells. Thus, SF-mediated induction of antioxi-
dant enzymes via the KEAP1/NRF2 pathway plays an important
role in protection of RPE.

The use of in vivo models has also provided evidence of reti-
nal protection by SF. Oral and intra-peritoneal SF administration
in mice was shown to significantly induce TXN expression in
the RPE and neural retina (Tanito et al., 2005). TXN is a small
protein containing two redox-active cysteine residues at its active
site (Holmgren, 1985) and plays an important role in mainte-
nance of cellular redox homeostasis (Tanito et al., 2002). In this
study, pretreatment with SF (0.5 mg/day) for 24 or 96 h signif-
icantly decreased apoptotic cell numbers in both the RPE and
neural retina. Measurement of photoreceptor action potential also
demonstrated a functional protection of the retina. The involve-
ment of the KEAP1/NRF2/ARE pathway in induction of TXN
by SF was confirmed using human K-1034 RPE cells. SF dose-
dependently induced TXN with no evidence of cytotoxicity mea-
sured by lactate dehydrogenase (LDH) release. ARE-reporter and
gel shift assays further confirmed the activation of ARE through
binding of NRF2 upon treatment of SF. These results support
earlier studies, which demonstrated induction of ARE-dependent
antioxidant enzymes in retinal cell lines (Gao et al., 2001; Gao and
Talalay, 2004).

This relationship was taken further by Kong et al. (2007), who
demonstrated protection against photoreceptor degeneration in
the tubby (tub/tub) mouse model. The tubby mouse is a unique
in vivo model that is characterized by progressive hearing loss
and photoreceptor degeneration (Ohlemiller et al., 1995). Dur-
ing early post-natal periods (P10–P14), there was a significant
decrease in retinal mRNA and protein expression of TXN and
TXNRD1 compared to wild-type mice. However, intra-peritoneal
injection of SF dose- and time-dependently increased both TXN
and TXNRD1 retinal mRNA and protein expression compared to
wild-types. Furthermore, daily injection of SF for 14 days inhib-
ited photoreceptor cell loss compared to PBS-treated mice, which

correlated with a functional improvement in photoreceptor cell
action potentials. The role of SF-mediated induction of TXN and
TXNRD1 via Nrf2 was confirmed by western blot, demonstrat-
ing a significant increase in retinal Nrf2 nuclear accumulation.
Interestingly, inclusion of the extracellular signal kinase (ERK)
inhibitor PD98059 ablated the nuclear accumulation of NRF2 and
induction of TXN and TXNRD1, suggesting a potential relation-
ship between ERK and SF-mediated photoreceptor cell survival.
Nonetheless, the induction of the antioxidant enzyme system by
SF is clearly indicated in the protection against photoreceptor
degeneration.

Both in vitro and in vivo studies have provided evidence that
SF induces ARE-mediated AO enzyme expression in the RPE and
neural retina. Protection against retinal-mediated phototoxicity
provides a tangible link between SF-mediated antioxidant enzyme
induction and the importance of vitamin A in the visual cycle.
Additionally, retinaldehyde serves as precursor of A2E formation,
yet whether antioxidant enzyme induction inhibits A2E forma-
tion is currently unknown and deserves investigation. Nonetheless,
induction of the KEAP1/NRF2/ARE pathway by SF is clearly pro-
tective in the retina and potentially serves a functional role in
maintenance of vitamin A stores.

MAINTENANCE OF VITAMIN C
Vitamin C (l-ascorbate) is an essential, water-soluble nutrient
that participates in a variety of biological processes. Ascorbate
functions primarily as an antioxidant, protecting against lipid per-
oxidation by scavenging reactive oxygen species (ROS) and by
one-electron reduction of lipid hydroperoxyl radicals via the vita-
min E redox cycle. Ascorbate also provides reducing potential as an
enzyme cofactor in a number of Cu+-dependent monooxygenase
and Fe2+-dependent dioxygenase enzyme reactions. Scurvy, which
is characterized by impaired collagen synthesis, is the prototypical
deficiency evidenced by inadequate ascorbate (Pimentel, 2003). As
a direct antioxidant, ascorbate’s role as a radical scavenger is facili-
tated by the unique resonance stabilization of ascorbate upon loss
of one-electron, forming the more stable and less reactive semi-
dehydroascorbate (SDA; Buettner, 1993; Buettner and Jurkiewicz,
1996). The monooxidized SDA can be further oxidized via dispro-
portionation to the dehydroascorbate (DHA) metabolite. Both
SDA and DHA can be recycled back to the fully reduced ascorbate,
potentially sparing ascorbate stores. Considering the biological
importance of ascorbate, maintaining adequate cellular ascorbate
concentrations is undoubtedly vital to maintaining health.

Many of the same antioxidant enzymes induced by SF,
namely glutathione-utilizing enzymes and NADH and NADPH-
dependent reductases, are also implicated in the non-enzymatic
and enzymatic reduction of both SDA and DHA to ascorbate.
Quantitatively, ascorbate and GSH are the most abundant cellular
reducing agents. Thus, it is not surprising that GSH functions
in the spontaneous chemical reduction of DHA to ascorbate
(Szent-Gyorgyi, 1928; Winkler et al., 1994). At physiologic pH
and temperature, however, the spontaneous reduction of DHA
is predicted to occur slowly, favoring further catabolism of DHA.
Accordingly, three GSH-dependent reductases have been identified
that reduce DHA, namely glutaredoxin (GLRX), protein disulfide
isomerase (PDI), and glutathione S-transferase omega 1 (GSTO1;
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Linster and Van Schaftingen, 2007). While it was demonstrated
using purified GLRX and PDI that DHA was reduced to ascor-
bate (Wells et al., 1990), recent evidence suggests that PDI may
be inefficient in the reduction of DHA (Saaranen et al., 2010).
GLRX, on the other hand, efficiently reduces DHA using GSH as
a reductant. Human placental GLRX was shown to have an appar-
ent K m of 1.0 and 2.1 mM for DHA and GSH, respectively (Wells
et al., 1990). In certain tissues, such as the eye, GLRX is reported to
play a significant role in DHA reduction (Fernando et al., 2004).
Purified GLRX from human neutrophils efficiently reduces DHA,
especially in the presence of NADPH, GSH, and GSR (Park and
Levine, 1996). Another GSH-dependent reductase, identified as
a GSTO1, accounted for approximately 70% of the DHA reduc-
tase activity of the rat liver cytosol (Maellaro et al., 1994). The
same enzyme was purified from human erythrocytes and displayed
catalytic activity similar to GLRX (Xu et al., 1996). More recent
studies have implicated that glutathione S-transferase omega 2
(GSTO2) also functions in the reduction of DHA to ascorbate
(Schmuck et al., 2005). The GSTO2 gene product demonstrated
approximately 70–100 times greater activity toward DHA than
GSTO1. The wide tissue distribution and cellular expression of
both GSTO1 and GSTO2 suggests a functionally important role
in ascorbate recycling (Board et al., 2000; Whitbread et al., 2003).
While no direct evidence has linked SF to induction of omega
GSTs, dysregulation in Nrf2 signaling has been shown to result
in decreased GSTO1 expression (Kirby et al., 2005). Whether SF
plays a direct role in the induction of omega GSTs deserve further
inquiry.

In addition to GSH-dependent mechanisms, the selenoproteins
TXN and TXNRD1 also play an important role in the reduction
of SDA and DHA (May et al., 1997, 1998). Using purified rat liver
TXN, May et al. (1997) demonstrated the catalytic reduction of
SDA to ascorbate with an estimated K m of approximately 3 μM.
Using the same model, reduction of DHA had an apparent K m

approximately 200-fold higher than reduction of SDA. However,
reduction of DHA by TRX in the presence of TXNRD1 was similar
to that observed using GLRX (Wells et al., 1990). Further evidence
from liver cytosolic fractions derived from selenium deficient
rats, demonstrated an approximate 75% decrease in NADPH-
dependent reduction of both SDA and DHA, underscoring the
role of TXN and TXNRD1 in the maintenance of ascorbate levels.

The Institute of Medicine (IOM) concluded that the one- and
two-electron oxidation products of ascorbate are relatively non-
toxic and easily regenerated by the ubiquitous reductants GSH
and NAD(P)H (Food and Nutrition Board and Institute of Med-
icine, 2000a). NADPH reduction necessitates the involvement of
redox or antioxidant enzymes, such as TXNRD1. The importance
of GSH in the non-enzymatic and enzymatic reduction of DHA
further underscores the role of ARE-mediated enzyme induction
in vitamin C recycling. SF, through induction of TXNRD1, GSTs,
and increased GSH production may be indirectly involved in the
reduction of SDA and DHA to ascorbate, thus, maintaining ade-
quate cellular ascorbate levels. Considering the importance of
ascorbate and the increased awareness and interest in SF, this rela-
tionship deserves future investigations to delineate the role of SF
in ascorbate homeostasis.

MAINTENANCE OF VITAMIN E
α-Tocopherol (referred to herein as vitamin E) is an essential, lipid-
soluble nutrient. Of the four tocopherols and four tocotrienols (α,
β, γ, and δ) found in the diet, only α-tocopherol satisfies human
dietary requirements (Food and Nutrition Board and Institute
of Medicine, 2000b). While vitamin E has been implicated in a
number of cellular processes, the primary function of vitamin E
is to serve as a potent chain-breaking antioxidant, important for
maintaining the integrity of membranes and plasma lipoproteins
through the prevention of free radical propagation (Traber and
Atkinson, 2007). Deficiency in vitamin E manifests as a progres-
sive dying back of nerves resulting in peripheral neuropathy (Food
and Nutrition Board and Institute of Medicine, 2000b), underscor-
ing the important role that vitamin E plays in protecting against
oxidative modification of lipid membranes.

The antioxidant functionality of vitamin E is executed through
direct interactions with lipid peroxyl radicals. When oxidative lipid
hydroperoxides are formed, the hydroxyl group of α-tocopherol
reacts with the lipid peroxyl radical, forming lipid hydroperox-
ide, and an α-tocopheroxyl radical. Importantly, lipid peroxyl
radicals react with vitamin E 1000 times faster than with polyun-
saturated fatty acids (PUFA; Buettner, 1993), thus, preventing
auto-oxidation of lipids and further propagation of free radi-
cals. The resulting tocopherol radical can be recycled or spared
by interactions with other cellular antioxidants. However, in the
absence of other cellular antioxidants, in vitro evidence suggests
that the tocopheryl radical itself can reinitiate formation of lipid
peroxyl radicals (Bowry et al., 1992; Thomas and Stocker, 2000)
yet in vivo evidence of a prooxidant effect of vitamin E is lack-
ing. Additionally, formation of tocopheroxyl side products, such
as epoxides and dimers, further contributes to the depletion of cel-
lular α-tocopherol stores (Gille et al., 2010). Thus, sufficient stores
of both vitamin E and other cellular antioxidants are required for
the proper functioning of vitamin E and maintenance of cellular
antioxidant tone.

Dietary intake and intrinsic recycling mechanisms are impor-
tant in maintaining adequate vitamin E status. Vitamin E can be
directly regenerated through interactions with ascorbate or with
other reducing agents, namely GSH (Packer et al., 1979; Niki, 1987;
Neuzil et al., 1997). It is postulated that upon formation of the α-
tocopheroxyl radical in the membrane, it migrates from the bilayer
into the aqueous cytosol where it interacts with ascorbate, return-
ing vitamin E to its reduced state. The interaction of ascorbate and
vitamin E has been demonstrated in vitro (Halpner et al., 1998) and
has also been observed in humans (Bruno et al., 2006). Since SF
plays a putative role in reduction of SDA and DHA to ascorbate, it
may play an indirect role in the recycling of vitamin E via reduction
of ascorbate. The IOM has reviewed regeneration of α-tocopherol
and concluded that there is suggestive evidence that vitamin C can
regenerate or spare α-tocopherol (Food and Nutrition Board and
Institute of Medicine, 2000b). There is also evidence to suggest
that SF may play a more direct role in vitamin E recycling through
induction of ARE-dependent antioxidant enzymes.

Cellular reductases, such as NQO1, may also play a role in
the maintenance of cellular vitamin E. Oxidation of α-tocopherol
yields a tocopherone intermediate that is further hydrolyzed to
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the primary oxidation product α-tocopherylquinone (TQ; Liebler
et al., 1989). In vitro evidence suggests that α-tocopherol may be
regenerated directly from α-tocopherones without further hydrol-
ysis to the TQ oxidative product. This reaction may occur via a
two-electron reduction, which is hypothesized to be catalyzed by
a reductase similar to NQO1 (Liebler et al., 1989; Siegel et al.,
1997). Whether this reaction occurs in vivo is yet to be demon-
strated. NQO1 is implicated in the two-electron reduction of a
broad array of quinones to the corresponding hydroquinones uti-
lizing either NADH or NADPH as hydrogen donors (Faig et al.,
2000; Bianchet et al., 2004). The participation of NQO1 in regen-
eration of α-tocopherol is not inconceivable considering the role
of NQO1 in the reduction of TQ to the intermediate stage α-
tocopherylhydroquinone (TQH2; Hayashi et al., 1992; Wu and
Croft, 2007). TQH2 has been suggested to possess potent antioxi-
dant properties of its own (Bindoli et al., 1985; Hayashi et al., 1992;
Kohar et al., 1995). In vitro, TQH2 is a more effective inhibitor of
lipid peroxidation than α-tocopherol (Bindoli et al., 1985). In cells
transfected with NQO1, treatment with TQ increased TQH2 lev-
els and decreased susceptibility to lipid peroxidation compared to
controls (Siegel et al., 1997). In comparison to the reduction of
coenzyme Q10, NQO1 revealed a much more efficient reduction
of TQ with an estimated K m of 370 μM. The ability of cells to
reduce TQ to TQH2 via NQO1 therefore represents an effective
mechanism against lipid peroxidation, and also may represent a
two-pronged approach by which SF, through induction of NQO1
and recycling of ascorbate, participates in the maintenance of
vitamin E.

The recycling and maintenance of antioxidant vitamins A, C,
and E involves a complex network of interactions with intrinsic
and extrinsic cellular reductants. Induction of TXN, TXNRD1,
and NQO1 and increases in cellular GSH by SF protects against
retinal-mediated phototoxicity and potentially spares vitamin A.

Ascorbate is regenerated from oxidized SDA and DHA by the uni-
versal reductant GSH and NAD(P)H-dependent reductases. The
SF-mediated induction of TXNRD1, GSTs, and increased produc-
tion of GSH indicates that maintenance of ascorbic acid can be
indirectly mediated by SF. Reduced ascorbate, in turn, regener-
ates and spares vitamin E. Thus, maintenance of ascorbate by
SF indirectly affects cellular vitamin E. Additionally, induction
of NQO1 and increased cellular GSH by SF may mediate direct
reformation of vitamin E and formation of the tocopherol hydro-
quinone metabolite, which has may possess potent antioxidant
activity of its own. Through the induction of PII and AO enzymes,
SF has the potential to maintain and spare vitamins A, C, and E
(Figure 3). However, as reviewed below, this potential relation-
ship could be confounded by genetic relationships that effect ITC
metabolism and AO enzyme functionality that are only beginning
to be understood.

NUTRIGENOMICS, SULFORAPHANE, AND PHASE II
ENZYMES
With the advent and use of omics technologies (genomics, tran-
scriptomics, proteomics, and metabolomics) there is an increasing
awareness and desire to understand the systemic response to nutri-
tional and dietary interventions. Nutrigenomics, which is defined
as “the scientific study of the way specific genes and bioactives
interact” (Trujillo et al., 2006), has been embraced as an approach
to help understand the complex and systemic interactions of diet
at the individual level. While epidemiological studies have demon-
strated a relatively consistent relationship between vegetable con-
sumption and human health, this relationship has failed to prove
conclusive (World Cancer Research Fund, and American Institute
for Cancer Research, 2007). Accordingly, efforts have been made
to identify genetic factors that may modify the effects of dietary
components on disease risk.

FIGURE 3 | Summary of interactions and maintenance of vitamins A, C, and E by Sulforaphane-mediated induction of ARE-dependent gene products.
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SULFORAPHANE METABOLISM
The absorption, distribution, metabolism, and excretion char-
acteristics of bioactives influence their ultimate effectiveness on
health and wellness. GSTs play an important role in ITC metab-
olism and disposition in humans. Upon absorption, ITCs are
conjugated to glutathione by GSTs (Zhang et al., 1995) and fur-
ther metabolized via the mercapturic acid pathway and ultimately
excreted as N -acetylcysteine conjugates (Conaway et al., 2000).
GSTs constitute a large family of glutathione conjugating enzymes
(Hayes et al., 2005). Of the seven cytosolic GST classes, GSTM1,
GSTP1, and GSTT1 isozymes have been implicated in metabo-
lism of ITCs (Kolm et al., 1995; Zhang et al., 1995; Seow et al.,
2005). Several polymorphisms have been identified within these
GSTs that may help explain individual outcomes to SF or ITC
interventions (Meyer et al., 1995; Hayes and Strange, 2000).

Null mutations in the GSTM1 and GSTT1 genes result in the
absence of a functional gene product. Depending upon the pop-
ulation, frequency distribution of the GSTM1-null is estimated
to be between 27 and 53% while the frequency of the GSTT1-
null genotype has been estimated to be between 10 and 21%
for Caucasian populations and as high as 64% for Asian popu-
lations (Cotton et al., 2000). It has been suggested that individuals
with GSTM1 and GSTT1-null mutations may benefit more from
ITC consumption due to the decreased metabolism of ITCs and,
thus, increased systemic exposure to the bioactive ITC (Seow et al.,
2005). Accordingly, several epidemiological studies have provided
evidence to support this hypothesis. Urinary ITC excretion was
significantly higher in GSTT1-positive individuals compared to
GSTT1-null with no effect of GSTM1 or GSTP1 in a Chinese
cohort (Seow et al., 1998). In a separate Chinese cohort, urinary
ITC excretion was significantly higher in GSTP1-null individuals
compared to GSTP1-positive, yet there were no significant associa-
tions between urinary ITC excretion and either GSTM1 or GSTT1
genotypes (Fowke et al., 2003). These results suggest that, at least
in Asian populations, there is a significant interaction between
certain GST-null genotypes and ITC metabolism.

In contrast, results from several epidemiological studies con-
ducted in the United States have suggested that GSTM1-positive
individuals benefit more from either broccoli or cruciferous veg-
etable consumption compared to GSTM1-null (Spitz et al., 2000;
Joseph et al., 2004; Wang et al., 2004). The results of a pharma-
cokinetic study comparing a single administration of a standard
broccoli to a high-glucoraphanin broccoli variety demonstrated
increased SF metabolism in GSTM1-null individuals (Gasper
et al., 2005). Compared to GSTM1-positive individuals, GSTM1-
null carriers exhibited a higher 24 h total excretion of SF and
SF-metabolites and a faster initial rate of urinary SF-metabolite
excretion. In a separate feeding study, there was no difference in
urinary ITC excretion between GSTM1-positive and -null indi-
viduals, yet when high ITC excreters were compared between the
two genotypes, there was a higher proportion of GSTM1-null car-
riers that were classified as high excreters (Steck et al., 2007). The
discrepancies between studies conducted in the United States and
Asia could be attributed to dosage (single vs. habitual), types of
cruciferous vegetables typically consumed (broccoli vs. cabbage),
or differences in exposure assessment (urinary ITC vs. plasma
and urinary ITC metabolites). Understanding this relationship,

however, will undoubtedly add to our understanding of the rela-
tionship between cruciferous vegetable consumption and human
health and wellness.

The relationship between GST genotype, SF/ITC metabolism,
and human health remains far from clear. Additionally, as has
been pointed out by some authors, there may be additional cata-
bolic pathways that may have a significant effect on SF metabolism
(Gasper et al., 2005). The application of metabolomic technolo-
gies may help gain further insight into the complex interactions
involved in SF metabolism (Edmands et al., 2011). Nonetheless, the
interaction between GST genotype needs to be taken into account
when designing and interpreting future studies of SF.

ANTIOXIDANT OR REDOX ENZYMES
Major biological actions of SF are mediated by the induction of
antioxidant enzymes regulated by the Nrf2/ARE pathway. Genetic
polymorphisms within the ARE family of antioxidant enzymes
could have a profound effect on the functional outcomes of crucif-
erous vegetable intake and impact on health (Ginsberg et al., 2010).
While clinical evidence for induction of antioxidant enzymes by
SF is emerging, polymorphisms within many of such enzymes, like
NQO1, TXNRD, and GSTO, may ultimately influence functional
effects of SF on redox tone and maintenance of vitamins A, C, and
E. In fact, a number of studies have linked polymorphisms in genes
for antioxidant enzymes to diseases related to increased oxidative
stress (Bentley et al., 2008; Hail et al., 2008).

Sulforaphane was originally characterized by its ability to
induce expression of NQO1 (Zhang et al., 1992). Several stud-
ies have observed increased susceptibility to the toxin benzene and
modification of air pollutant susceptibility in NQO1-null indi-
viduals (Rothman et al., 1997; Smith, 1999; Minelli et al., 2011).
The NQO1∗2 polymorphism, which results in a serine substi-
tution at amino acid 187, results in trace levels of both NQO1
protein and enzymatic activity (Traver et al., 1992, 1997). Individ-
uals homozygous for the NQO1∗2 variant have undetectable levels
of NQO1 protein (Ross et al., 2000a) due to increased targeting of
the NQO1 protein for proteosomal degradation (Siegel and Ross,
2000). Thus, the NQO1∗2 variant results in the functional knock-
out of NQO1 function, especially in homozygous carriers. The
prevalence of the NQO1∗2 allele varies among ethnic populations
but estimates range from approximately 19% in Caucasians to as
high as 43% in Asians (Kelsey et al., 1997; Ross and Siegel, 2004;
Kiyohara et al., 2005). While no studies have investigated the rela-
tionship between NQO1 variants and vitamin E, the resulting lack
of a functional NQO1 protein would undoubtedly affect ascorbate
and, subsequently, vitamin E recycling.

Thioredoxin and TXNRD play an important role in recycling
and maintaining ascorbate and vitamin A. While specific studies
on the effects of genetic polymorphisms in TXN and TXNRD on
recycling of ascorbate and vitamin A are missing, several studies
have identified polymorphisms that are associated with diseases
that are associated with oxidative stress. To date, only one study
has identified polymorphisms within the TXN gene (Ikegami et al.,
2008). One SNP located within the 3′-untranslated region was
associated with type 1 and type 2 diabetes yet the lack of functional
characterization and low allelic frequency raises questions regard-
ing the exact role and significance of these findings. In addition
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to TXN, several SNPs were recently identified in the TXNRD1
gene. In a case–control study of familial amyotrophic lateral scle-
rosis (FALS), a total of 19 SNPs were identified in the TXNRD1
gene (Mitchell et al., 2009). Of the 19 SNPs identified, two intronic
SNPs (rs6539137 and rs4630362) were significantly associated with
FALS. The minor allele frequency ranged from approximately 11 to
15% in European controls whereas in FALS patients it ranged from
approximately 25 to 32%. Overall, at least 62% of FALS patients
had at least one minor allele of these SNPs. Oxidative stress has
been implicated in the etiology of FALS (Barber et al., 2006), yet
whether the relationship with TXNRD1 is specific or more gen-
eral is not understood. Another variant within the TXNRD1 gene
was shown to be associated with advanced colorectal adenoma
cancer (Peters et al., 2008). In a case–control study of advanced
distal colorectal adenoma, one SNP (rs35009941) in TXNRD1 was
associated with a significant 80% reduction in advanced colorec-
tal adenoma risk (Peters et al., 2008). However, the exact role
of TXNRD1 and the functional consequences of SNPs within
TXNRD1 are yet to be characterized. Additionally, TXNRD1 con-
tains the essential mineral selenium (also found in broccoli) at its
active site. The importance of selenium in PII enzymes, such as
TXNRD1, has been demonstrated by truncation of the selenocys-
teine active site, which resulted in abolishment of activity (Zhong
and Holmgren, 2000). Numerous studies have implicated the role
of polymorphisms within the selenium metabolic pathway and
effects on antioxidant enzymes and disease (Hail et al., 2008; Peters
et al., 2008; Meplan et al., 2010).

The omega glutathione transferases (GSTO1 and GSTO2) facil-
itate the reduction of DHA to ascorbate. Several polymorphisms
have been identified in both the GSTO1 and GSTO2 genes that
could have an effect on this capability. Deletion of Glu155 results
in decreased stability and activity of the GSTO1 protein product
(Whitbread et al., 2003; Schmuck et al., 2008; Zhou et al., 2011).
The Glu155 deletion is estimated to be carried by 3% of Europeans
and may be as high as 10% in Chinese populations (Whitbread
et al., 2003). A valine substitution of Ala236 has been identified
in South American populations and results in diminished activity
and stability (Paiva et al., 2008). A total of 66 polymorphisms have
been identified within the GSTO2 gene (Mukherjee et al., 2006).
However, difficulty in the expression purification of the GSTO2
protein has made characterization of missense mutations challeng-
ing (Schmuck et al., 2005). Genetic linkage studies have indicated
omega GSTs as a factor in the age of onset of both Alzheimer’s
and Parkinson’s disease (Li et al., 2003; Kolsch et al., 2004), both
of which are linked to oxidative stress (Fahn and Cohen, 1992;
Simonian and Coyle, 1996; Mattson, 2004). Ascorbate is an impor-
tant antioxidant in the brain, and, thus, the DHA reductase activity
of GSTO1 and GSTO2 would contribute to the recycling of ascor-
bate in these regions. How genetic alterations in GSTO expression
and activity influence redox tone remains an interesting area for
further investigation.

Polymorphisms within antioxidant enzymes undoubtedly
affect their actions, yet whether the interaction occurs at the
expression or activity level is unclear. Nonetheless, the influence
of polymorphisms within many antioxidant enzymes ultimately
affects the metabolism and actions of SF and the recycling and
maintenance of vitamins A, C, and E. There remain significant
challenges ahead; yet through the implementation of omics tech-
nologies, we can gain further insight into the relationship between
SF consumption and health and wellness.

SUMMARY AND CONCLUSION
Evidence continues to accumulate relating the dietary consump-
tion of SF-containing cruciferous vegetables and chronic and
degenerative disease reduction. While a number of potential mech-
anisms have been put forth to help explain this relationship, the
strongest evidence, at least in in vitro and in animal models, sup-
ports SF’s role in the induction of PII drug metabolizing and
antioxidant enzymes. However, these findings have not been as
clear when extended to functional or clinical outcomes. As out-
lined in Table 1, there is evidence of induction of ARE-mediated
gene products in humans, yet translation to disease reduction,
especially cancer risk, has proven difficult. This translational gap
may be related to polymorphisms that are just now beginning to
be investigated. There is ambiguity as to the effect of GST poly-
morphisms on ITC metabolism and their relationship to cancer
prevention. Furthermore, little effort has been done to understand
the effects of polymorphisms on potential downstream effectors
of ITCs, such as PII and AO enzymes. Understanding these rela-
tionships will only further our understanding of the effects of
SF on ARE-mediated enzyme induction, interactions with dietary
antioxidant vitamins A, C, and E, and, ultimately, the effects on
health and wellness.

In summary, consumption of SF results in the induction of key
enzymes involved in the cellular antioxidant network, and many of
these same enzymes also appear to play a role in the maintenance
and redox recycling of the essential vitamins A, C, and E. Polymor-
phisms within many antioxidant enzymes affect the metabolism
and actions of SF, which in turn may affect the recycling and main-
tenance of vitamins A, C, and E. The challenge and opportunity
ahead is to provide a direct link between dietary substances that
are direct antioxidants and phytonutrients that induce antioxi-
dant enzymes. Availability of vegetable varieties that are enriched
in both of these dietary substances would be valuable resource in
studying the isolated and combined effects of these nutrients and
dietary phytonutrients, such as glucoraphanin, for their overall
benefit on health and wellness.
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