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Understanding the complex neural circuits that underpin brain function and behavior
has been a long-standing goal of neuroscience. Yet this is no small feat considering
the interconnectedness of neurons and other cell types, both within and across brain
regions. In this review, we describe recent advances in mouse molecular genetic
engineering that can be used to integrate information on brain activity and structure
at regional, cellular, and subcellular levels. The convergence of structural inputs can
be mapped throughout the brain in a cell type-specific manner by antero- and
retrograde viral systems expressing various fluorescent proteins and genetic switches.
Furthermore, neural activity can be manipulated using opto- and chemo-genetic
tools to interrogate the functional significance of this input convergence. Monitoring
neuronal activity is obtained with precise spatiotemporal resolution using genetically
encoded sensors for calcium changes and specific neurotransmitters. Combining these
genetically engineered mapping tools is a compelling approach for unraveling the
structural and functional brain architecture of complex behaviors and malfunctioned
states of neurological disorders.

Keywords: viral tracers, optogenetics, chemogenetics, genetically encoded calcium indicators, genetically
encoded transmitter indicators, synapse, brain mapping

INTRODUCTION

Information is processed in the brain by a vast number of diverse neurons that are extensively
intermingled and interconnected mainly through synapses. Structural and functional analyses of
neural circuits are essential for deciphering the operational principles of the brain. Neurons often
convey multiple layers of information converging from various cell types and/or brain areas, with
integration of these signals coordinating a variety of behaviors and cognitions. To understand
highly regulated and complex information processing in neural networks, knowledge of afferent
input organization is crucial because functions of certain neurons within a brain region are shaped
by the profiles of their inputs as initial signals. Therefore, increasingly, scientific endeavors are
ongoing to untangle convoluted neural circuits at different levels (synapse–neuron–region) in
various organisms (White et al., 1986; Stephan et al., 2001; Kötter, 2004; Sporns et al., 2005;
Bock et al., 2011; Briggman et al., 2011; Van Essen et al., 2013; Oh et al., 2014; Hildebrand et al.,
2017; Cook et al., 2019; Scheffer et al., 2020), generally starting with connections between defined
populations of neurons and cell types (Druckmann et al., 2014; Kasthuri et al., 2015; Iascone
et al., 2020). Developing and improving new technologies for identifying, labeling, imaging, and
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manipulating individual neurons, as well as populations of
neurons in the context of behaviors, will lead to a comprehensive
picture of neural network organization (Micheva and Smith,
2007; Kim et al., 2011; Yizhar et al., 2011; Ragan et al., 2012;
Sternson and Roth, 2014; Lin and Schnitzer, 2016; Kornfeld
and Denk, 2018). The initial step in these connectivity research
studies relies on genetic engineering: well-established animal
models expressing genetic switches, such as Cre and tetracycline-
controlled transactivator, for defining and labeling certain
populations and types of neurons (Sauer and Henderson, 1988;
Gossen and Bujard, 1992; Gong et al., 2007; Gerfen et al., 2013;
Harris et al., 2014, 2019; Hooks et al., 2018); viral systems
with different features, such as tropism and axonal transduction,
in a genetic switch-dependent manner (DeFalco et al., 2001;
Wall et al., 2010; Lo and Anderson, 2011; Ährlund-Richter
et al., 2019; Lazaridis et al., 2019; Sun et al., 2019; Gong et al.,
2020); fluorescent sensors for monitoring neural events, such
as intracellular Ca2+ influx and neurotransmitter release in
response to neural activity (Lin and Schnitzer, 2016; Sabatini and
Tian, 2020); and actuators for manipulating neuronal activity,
such as opto- and chemo-genetics (Deisseroth, 2015; Roth, 2016;
Atasoy and Sternson, 2018). The next step requires advances
in imaging and reconstruction of genetically defined neural
populations, and in sophisticated behavioral measurements
linking the wiregram and dynamics of neural circuits to behaviors
(Ragan et al., 2012; Gong et al., 2016; Harris et al., 2019;
Wang et al., 2020).

The field of neuroscience has been rapidly and dramatically
changing in the last two decades, fueled by innovations in
molecular genetic engineering, imaging, and computer science.
Recently equipped with advanced tools including microscopes
and optrodes (Flusberg et al., 2008; Ghosh et al., 2011; Cui
et al., 2013; Kim C.K. et al., 2016; Sofroniew et al., 2016; Zong
et al., 2017; Skocek et al., 2018; Sych et al., 2019), researchers are
increasingly capable of monitoring and perturbing the activity of
specific types and populations of neurons as well as dissecting
complex neural connectivity. It is no exaggeration to state that at
the core of these advanced versatile tool boxes there are genetic
tools making it possible to deliver tailored detectors, sensors,
and manipulators to specific circuits, neurons, and synapses
for studying the convergence of multiple information in the
brain. Here, with particular attention to genetic approaches, we
review the advanced tools for structural and functional mapping
of convergence connectivity now available to neuroscientists
working in the mouse. Beginning with a brief technical account
and discussion of the unique significance of these approaches,
we then discuss recent advances in their applications and
combinatorial strategies for exploring structural and functional
organization of various circuits.

Structural Input Convergence Mapping
With Anterograde Viral Tracers
A plethora of neuronal input studies have emerged from the idea
that complex brain functions are operated by signal integration
of various inputs and coordination of neural activity at the
network level. One straightforward approach has been labeling

of a certain neural population in a brain area with anterograde
tracers and examination of the labeled axonal projections
(Hunnicutt et al., 2014, 2016; Oh et al., 2014). Collective data
from separate experiments labeling various neural populations,
maximally two or three at once, illustrated convergence inputs.
Owing to limitations of classical non-viral tracers, such as
biotinylated dextran amine, we have focused on recombinant
adeno-associated virus (rAAV) as the most commonly chosen
anterograde viral tracer. Several reviews have extensively covered
the limitations of conventional non-viral tracers (Nassi et al.,
2015; Saleeba et al., 2019). In fact, synergetic application
of anterograde AAVs expressing fluorescent proteins (FPs),
advanced imaging techniques, and computational methods, have
recently generated brain-wide and large-scale connectivity data
that provide a comprehensive convergence map (Ragan et al.,
2012; Hunnicutt et al., 2014, 2016; Oh et al., 2014; Kuan et al.,
2015; Winnubst et al., 2019; Wang et al., 2020; Figure 1).

Anterograde Viral Systems
Viral vectors are a powerful tool for gene delivery in the
nervous system, and in particular, rAAV is proven as an
optimal gene delivery system with safety, efficiency, and
practical ease (Wang et al., 2014; Haggerty et al., 2020; Xu
et al., 2020). Given the technical advantages of rAAV, recent
studies of input mapping have used rAAV-expressing FPs as
reliable anterograde tracers. For instance, rAAV-expressing
EGFP has been stereotaxically injected into various brain areas
(Hunnicutt et al., 2014, 2016; Oh et al., 2014). Advances in
imaging and computer capabilities made a standardized data
generation and processing platform possible, thereby axonal
projections were digitally traced throughout the whole mouse
brain. These detailed high-resolution images and anatomically
defined input/target areas are accessible in online resources
(i.e., Allen Brain Map1). The Allen Mouse Common Coordinate
Framework provides a fully digitalized three-dimensional (3D)
average brain image. A labeled brain region space (Allen CCF
v3 Brain Atlas) facilitates systematic analysis of input/output
profiles throughout the whole brain. Taking advantage of
these standardized and digitalized platforms, axonal projection
datasets from various brain regions can be reconciled to generate
a map of convergent circuitry, despite data being obtained
through separate experimental performances. Furthermore,
detailed descriptions of topographical patterns of these
axonal projections to a target region (converged from various
spatially and functionally segregated input areas) captures
important information on the organization principles of neural
underpinnings. These recent studies have delineated convergent
circuitries suggesting rules of connectivity organization and
functional domains, with particular attention to cortical inputs to
the thalamus and striatum, thalamic nuclei inputs to the cortex,
and thalamic inputs to the striatum.

Notably, there are interesting investigations using rAAV-
mediated anterograde trans-synaptic tagging, although rAAV is
generally known to be transduced via anterograde single-cycle
infection rather than trans-neuronal/trans-synaptic transduction

1http://www.brain-map.org/
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FIGURE 1 | Viral systems for visualizing input convergent circuitry and delivering genetic tools for functional input mapping. (A) Schematic illustration of antero-,
retrograde, and transsynaptic viral tracers. Anterograde virus (red) and retrograde virus (green) are distinguished by their neural entry site and axonal transport
directions. Several viruses can cross synapse(s) and enter the connected neurons. Transsynaptic delivery of retrograde virus and engineered rabies virus, as an
example of trans-synaptic retrograde viral tracers, are illustrated (A-1). Anterograde transsynaptic delivery of AAV 1 or 9 expressing Cre is illustrated (A-2).
(B) Schematic illustration of labeling strategies of various viral systems. For convergence circuit mapping, anterograde virus to the multiple input areas (B-1–3) or
retrograde virus to a target area (B-4–6) can be injected. Engineered rabies virus (RV) labels convergent circuits to the cell type neuron in the target area (B-7).
Furthermore, antero- and retrograde polysynaptic viruses enable identifying neural circuitries integrated cross multiple synapses by injecting input and target areas,
respectively (B-3,6). Two schematic strategies of Cre-dependent viral vectors for labeling particular cell types, such as Double floxed inverted open reading frame
(DIO) and single floxed version (Jx-ON) (B-8,9).
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(Zingg et al., 2017, 2020). It has been demonstrated that rAAV
can label trans-synaptic outputs via anterograde trans-synaptic
transduction when packaged with serotype 1 and 9. AAV-
mediated trans-synaptic labeling is restricted to Cre expression,
and not other proteins of a similar size such as GFP, offering
a faithful complementary set of tools for labeling trans-synaptic
outputs. Its successful applications have been increasing in input-
defined circuitry functions, such as cortico-collicular pathways
for defense behaviors and motion discrimination (Zingg et al.,
2017; Beltramo and Scanziani, 2019), and gustatory cortico–
amygdala pathways for taste (Wang et al., 2018).

Cell Type-Specific Structure Mapping by Anterograde
Viral Systems
Diverse cell types are believed to be responsible for specific
functions in a given brain area. Thus, cell type-resolved
connectivity profiling will undoubtedly provide novel insights
into structural and functional organization of neural networks.
Significant progress in classifying diverse neuronal cell types
has been made through the development of new techniques,
such as single cell RNA sequencing-based molecular profiling,
and remains ongoing (Zeng and Sanes, 2017; Luo et al.,
2018). Meanwhile, decades-long efforts together with advances
in genomics and genetics have generated a useful resource of
genetic switch driven lines (mainly Cre) in a cell type-specific
manner (Gong et al., 2007; Gerfen et al., 2013; Harris et al.,
2014). The rich collection of diverse Cre driver lines have
made neuroscience research more efficient and precise, allowing
cell type-specific labeling, monitoring, and manipulating. With
respect to molecular identity, using these Cre driver lines, AAV
engineered for Cre-dependent on/off switching modes has been
widely used for selective labeling of a given neuronal type in
a given brain area, such as projection pattern- and cortical
layer-specific neurons. In the GENSAT collection2 for instance,
two specific Cre drivers (Tlx3_PL56 and Sim1_KJ18) allow
selective labeling of intra-telencephalic (IT)-type and pyramidal
tract (PT)-type neurons by injection of AAV expressing Cre-
dependent FPs in various sites of the sensory, motor, and
frontal cortices (Hooks et al., 2018). This study revealed different
topographic organization of cortico–striatal projections of IT-
and PT-type neurons, suggesting that striatal regions integrate
input convergence from multiple cortical areas via at least
two different cell type-specific channels. Furthermore, using 49
different Cre driver lines to selectively label cell types in cortical
layers showing different projection patterns, cortical cell type-
specific connectivity mapping revealed hierarchically organized
convergence in the thalamus (Harris et al., 2019).

Structural Input Convergence Mapping
With Retrograde Viral Tracers
Brain-wide mapping of multiple inputs converged into a
given target area became evidently feasible and beneficial by
collecting comprehensive information from individual datasets
using anterograde virus data together with computational

2http://www.gensat.org

processing, as described above. However, anterograde virus-
based convergence mapping can be incomplete, unless all
multiple input areas and cell types are covered by viral labeling.
Additionally, this approach requires careful validation because
of potential misinformation delivered by ectopic injection of
the anterograde tracer in neighboring and/or boundary regions
around a given input area. Therefore, retrograde axonal transport
of tracers, e.g., cholera toxin subunit B and rabies virus (RV),
offers considerable advantages to selectively map multiple inputs
to a subpopulation of neurons and even to a single neuron
(Ugolini et al., 1987; Ugolini, 1995; Lanciego and Wouterlood,
2011; Zingg et al., 2014; Callaway and Luo, 2015; Junyent and
Kremer, 2015; Tervo et al., 2016; Mandelbaum et al., 2019;
Schwarz and Remy, 2019). In the past decade, there have
been advances in developing and improving tools of retrograde
viral systems for selective and precise input mapping. Again,
several reviews have extensively covered the limitations of
conventional non-viral retrograde tracers (Nassi et al., 2015;
Saleeba et al., 2019).

Retrograde Viral Systems
Several types of virus, such as herpes simplex virus (HSV),
canine adenovirus-2, and RV, are characterized by retrograde
neurotropism through entry at axonal terminals followed by
transport to cell bodies. With further engineering, retrograde
viral systems have become a valuable tool for dissecting
the structural and functional connectivity of various circuits
(Norgren and Lehman, 1998; Soudais et al., 2003; Osakada et al.,
2011; Kato et al., 2014; Kim E.J. et al., 2016; Tervo et al., 2016;
Del Rio et al., 2019). Of these, the RV-based system offers specific
retrograde access to mono-synaptically connected neurons to
cell(s) in a brain region of interest (Wickersham et al., 2007b).
RV is enveloped by a glycoprotein that mediates retrograde travel
between synaptically connected neurons, possibly via multi-
synaptic jumps. This feature makes it ambiguous to define
directly connected pairs of neuronal populations. To construct
a trans-synaptic tracer that travels retrogradely by only one
synaptic step, a genetically engineered RV system has been
developed (Mebatsion et al., 1996; Etessami et al., 2000; Barnard
et al., 2006; Wickersham et al., 2007a,b). Glycoprotein-deleted
RV (gdRV) is packaged with the envelope protein of avian
sarcoma and leukosis virus (EnvA) to direct its entrance into
so-called starter cells expressing avian tumor virus receptor A
(TVA). EnvA-packaged gdRV is co-delivered to starter cells
with a complementary virus expressing RV glycoprotein (e.g.,
AAV-G). In the starter cells, gdRV is further packaged with
complementarity provided RV glycoprotein, and consequently
spreads to presynaptic neurons by only one synaptic step. The
engineered RV allows labeling of monosynaptic inputs to the
starter cells in a cell type-specific manner—for instance, using
Cre drivers and Cre-dependent strategies for expressing TVA
(Wall et al., 2010). Given its advantages, such as unambiguous
identification of synaptically connected neurons, RV-based
systems have been increasingly used for structural and functional
mapping of multiple inputs converging from various areas or
cell types (Osakada et al., 2011; Dorocic et al., 2014; Sun et al.,
2014, 2019; Tian et al., 2016; Ährlund-Richter et al., 2019;

Frontiers in Systems Neuroscience | www.frontiersin.org 4 June 2021 | Volume 15 | Article 688673

http://www.gensat.org
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-15-688673 June 15, 2021 Time: 17:43 # 5

Yook et al. Convergence Circuit Mapping

Lazaridis et al., 2019; Tasaka et al., 2020), as reviewed below.
Owing to innate features of rabies virus system, cytotoxicity of
rabies infection remains concerning in longer expression (Schnell
et al., 2010; Callaway and Luo, 2015) and further effort to reduce
its cytotoxicity is in progress (Reardon et al., 2016).

Alternatively, anterograde viral systems have been engineered
for implementing a retrograde feature, while keeping their
advantages such as a low immune response post-infection,
low cytotoxicity, and stability. By engineering retrograde viral
glycoproteins for pseudotyping (i.e., RV- and vesicular stomatitis
virus-glycoprotein), variants of retrograde lentivirus (LV) have
been developed and successfully applied in several animal models
(Kato et al., 2011; Kato and Kobayashi, 2020). Using engineered
retrograde LV, a recent study revealed action selection-related
functions of the thalamo-striatal circuit in mice (Kato et al., 2018),
and cognitive functions of prefrontal cortex networks in macaque
monkeys (Oguchi et al., 2015).

Recently, as one of the most widely used and effective gene
delivery systems, rAAV has been engineered for retrograde
transport. Retrogradely accessible AAV, named rAAV2-retro, has
been engineered by in vivo directed-evolution (Tervo et al., 2016),
which is unlike intellectually designed strategies for retrograde LV
pseudotyped with naturally existing retrogradely transportable
glycoprotein. First, AAV vector libraries were constructed by
packaging with engineered capsid variants generated by error-
prone PCR, peptide insertion, randomization of loop regions, and
DNA shuffling from wild-type capsid genes of variant serotypes.
These virus libraries were then pooled and injected into the
substantia nigra pars reticulata or cerebellum. Subsequently,
spatially remote retrograde target tissues (such as the striatum
or hindbrain, respectively) were collected and viral genomes
extracted to select virions that had retrogradely reached these
areas. Selected capsid sequences were re-cloned for the next AAV
library that was subsequently evolved through iterative selection
rounds. The final selected variant, rAAV2-retro, showed efficient
retrograde access to projection neurons and sufficient expression
of genetic tools, such as calcium sensors, for interrogations
of structural and functional circuits. As cytotoxicity of RV
remains an issue, rAAV2-retro provides promising potential
and has been increasingly applied for various studies (Shang
et al., 2019; Chen et al., 2020; Cushnie et al., 2020; Lafferty
et al., 2020). More recently, another rAAV capsids have been
engineered for retrograde transport (Davidsson et al., 2019;
Düring et al., 2020). Davidsson et al. (2019) developed a
method for capsid engineering, called barcode rational AAV
vector evolution (BRAVE) combining rational design and direct
evolution. New capsid variants (such as MNM004 and MNM008)
generated by BRAVE have been demonstrated as a powerful
tool for structural and functional connectivity studies. Düring
et al. (2020) constructed self-complementary AAV-DJ/9 for
retrograde transport in songbirds and mice by engineering the
heparin binding domain that is important for cellular entry of
virus (Grimm et al., 2008; Düring et al., 2020). Interestingly,
these new engineered capsid variants show retrograde specific
access to dopaminergic circuitry, which provides potential for
not only various dopaminergic pathway-related studies but also
clinical application.

Cell Type-Specific Structure Mapping by Retrograde
Viral Systems
Similar to cell type-specific input mapping based on anterograde
viral systems, retrograde viral tracers combined with genetic
switch systems enable more detailed information of cell type-
specific convergence connectivity. Sun et al. (2019) developed
the Cre-dependent TVA-expressing mouse combined with the
engineered monosynaptic-RV system to map synaptic inputs
to specific cell types in the hippocampal CA1 region of TVA-
expressing mice crossed with Cre drivers (CamK2a-, PV-,
SOM-, and Dlx5/6-Cre for labeling excitatory pyramidal neurons,
parvalbumin (+), somatostatin (+), and general interneurons,
respectively). Additionally, recent studies described brain-wide
mapping of mono-synaptically connected long-range inputs to
different cell types of the medial prefrontal cortex using a
Cre-dependent RV system with different interneuron-specific
Cre drivers (PV-, SOM-, and VIP-Cre) (Ährlund-Richter et al.,
2019; Sun et al., 2019). In Sun et al. (2019), RV-labeled input
cells were further identified by immunostaining with several
cell type markers, for example, cholinergic and serotonergic
neurons. Similarly, another recent study described whole-brain
mapping of glutamatergic inputs to the lateral habenula (LHb),
and further identified RV-labeled input cell types by single
nucleus RNA sequencing (snRNA-seq) (Lazaridis et al., 2019).
To define glutamatergic inputs into the LHb, Cre-dependent
gdRV-expressing EGFP was injected into the LHb of a vesicular
glutamate transporter type 2 (vGluT2) Cre-line. LHb-projecting
glutamatergic neurons in the globus pallidus internal segment
and lateral hypothalamic area (LHA) were profiled by molecular
analysis in terms of gene expression for GABA/glutamate co-
releasing components as well as other cell markers. This study
revealed that the glutamatergic LHA–LHb circuit is a critical
node in value processing, with further functional assessments
using activity actuators and sensors, which we review below.
Furthermore, combinatorial anterograde and retrograde viral
systems enable integration of cell type-specific inputs and target
mapping (Dorocic et al., 2014).

Functional Input Convergence Mapping
With Activity Actuators and Sensors
So far, we have described antero- and retrograde viral systems
expressing mainly FPs to visualize convergence of structural
inputs. Combined with another set of genetically encoded tools
for monitoring and manipulating neural activity, these useful
viral systems have been applied to interrogate the functional
significance of input convergence. Beginning with a brief
technical account of recently developed manipulators and sensors
of neural activity, we will review recent studies describing
their combinatorial applications for physiological and behavioral
studies as network-level phenomena (Figure 2).

Activity Actuators: Opto- and Chemo-Genetics
To dissect circuit functions underlying complex behaviors
and various neurological diseases, an obvious approach is
perturbation of neural activity in a specified circuit; this
was traditionally performed by lesion studies and electrical
stimulation. Through perturbation-triggered physiological,
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FIGURE 2 | Genetic tools for functional input convergence mapping. (A) Schematic illustration of dual-channel ChR-assisted circuit mapping (2CRAM). AAV
expressing ChR2 and ReaChR are injected in different input regions/cell types and postsynaptic target cell recording after illumination (sequential stimulation of 590
and 470 nm lights) represents functional convergence. (B) Combinatorial strategy of DREADD and retrograde virus for input-selective manipulation. Input neurons
are labeled with retrogradely delivered Cre using CAV-2 or retroAAV virus and Cre-dependent DREADDs (e.g., hM3Dq and hM4Di). Electrophysiological recording or
behavioral analysis (e.g., reward seeking) after CNO ligand administration represents functional convergence. (C) Illustration of multi-color GECIs for convergent
circuit mapping. Multi-color GECIs (XCaMP-G, -B, -Y, and -R) consist of a circularly permuted FPs and enable to monitor different cell-type activities in the target
region of the freely behaving mice. Dual-color imaging for XCaMP-labeled pre- and postsynaptic neurons at a target region represents convergent circuit.
(D) Illustration of multi-color GETIs for convergent circuit mapping. Dual-color imaging for co-expressing iGluSnFR and RdLight1 at the target region enable to
monitor glutamate and dopamine releases during behavior test (e.g., reward seeking).
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developmental, and behavioral alterations, potential causality
between neural activity of specific circuits with brain functions
and behaviors have been discovered. In past years, great advances
have been made in manipulating neural activity at specific
and precise spatiotemporal resolution using e.g., light- and
chemical-controllable genetic tools (i.e., opto- and chemo-
genetics, respectively). This has led to advances in circuit-level
understanding of brain functions and diseases (Kim et al., 2017;
Atasoy and Sternson, 2018).

Optogenetic approaches are based on light-sensitive microbial
opsins, and enable activation and inactivation of neuronal activity
by illumination that opens light-gated ion channels (Boyden
et al., 2005; Zhang et al., 2007; Chow et al., 2010; Deisseroth,
2015). Early optogenetic molecules included channelrhodopsin-2
(ChR2) for activation and halorhodopsin for inhibition (Boyden
et al., 2005; Zhang et al., 2007). ChR2 is a blue light-gated
cation channel conducting H+, Na+, K+, and Ca2+ ions, and
enabling action potential elicitation. Alternatively, halorhodopsin
is a yellow light-gated chloride pump that enables membrane
hyperpolarization. These optogentic tools can be delivered into
a certain circuit or cell type (mostly by viral gene delivery), and
then activated by a small and lightweight implanted fiber-optic
probe (Adamantidis et al., 2007; Aravanis et al., 2007; Atasoy
et al., 2008; Kuhlman and Huang, 2008), which is connected
to a laser diode or light-emitting diode (LED) light source of
different wavelengths. Further engineering generated variants of
optogenetic tools in terms of light sensitivity, kinetics, functional
stability, and so forth. Of the new opsins, red-shifted optogenetic
variants (e.g., Crimson and Red-activable [ReaChR]) enable
activation of neuronal populations by red light illumination
(Zhang et al., 2008; Lin et al., 2013; Klapoetke et al., 2014),
and offer the potential to explore circuitry functions of distinct
neuronal populations by combinatorial yet specific excitations. In
fact, a combinatorial strategy using ChR2 and ReaChR (named 2-
channel ChR-assisted circuit mapping [2CRACM]) has been used
for mapping functional convergence of multiple inputs from the
primary somatosensory cortex and posterior medial thalamus on
the primary motor cortex (Hooks et al., 2015; Prasad et al., 2020).

As a powerful chemo-genetic approach, designer receptor
exclusively activated by designer drug (DREADD), is based on
engineered ligand-sensitive receptors and an exogenous ligand
specific for these receptors to in/activate neural activity (Sternson
and Roth, 2014; Roth, 2016). DREADD utilizes engineered G
protein-coupled receptors (GPCR) that respond exclusively to
synthetic exogenous chemicals as a ligand, but not to their
natural endogenous ligands. With a choice of Gq- and Gi-coupled
GPCRs, DREADD can trigger activation and inactivation,
respectively, of neuronal activity via intracellular signaling
cascades. Similar to optogenetic tools, variants of DREADD
have been developed e.g., mutated muscarinic acetylcholine
(hM3Dq and hM4Di for activation and inactivation, respectively,
by clozapine-N-oxide) and κ-opioid receptors (KORDi for
inactivation of neuronal activity by salvinorin B) (Armbruster
et al., 2007; Alexander et al., 2009; Vardy et al., 2015). In
particular, a recent study demonstrated that two DREADD
variants activated by different ligands, such as KORDi and
hM3Dq, enable modulation of neuronal activity and further

behaviors (Benekareddy et al., 2018). In parallel, improvement
and development of new ligands with greater specificity and less
potential side effects are underway. Compared with optogenetics,
DREADD-based manipulation has pros and cons: (1) time;
optogenetics offers high and precise temporal resolution (on
the millisecond-scale), while DREADD-based manipulation is
not elicited immediately and is prolonged (on the hour-scale).
Nevertheless, this prolonged activation period by DREADD can
be beneficial for behavioral and disease models. Furthermore, (2)
invasiveness; DREADD offers a less invasive option and is more
flexible with simple injection of ligands, while the optogenetic
approach requires an implanted intracranial light source. Yet
these neuronal activity actuators have become one of the most
powerful tools for functional studies of various circuits (Smith
et al., 2016; Campbell and Marchant, 2018; Luo et al., 2018;
Lee et al., 2020). Moreover, various combinatorial strategies
of optogenetics, DREADD, engineered viral systems, and cell
type-specific Cre drivers have been designed and successfully
applied for investigating functional convergence (Kato et al.,
2018; Johansson and Silberberg, 2020; Lafferty et al., 2020;
Prasad et al., 2020; Soden et al., 2020; Yamawaki et al., 2020;
Zolnik et al., 2020).

Activity Sensors: GECI and GETI
Monitoring neuronal activity and synaptic events with precise
spatiotemporal resolution is necessary to decipher functional
information processing engaged in complex behaviors and
malfunctioned states of neurological disorders. Development and
refinement of genetically encoded sensors will permit better
understanding of how neuronal dynamics is encoded in which
neural circuits to control brain functions.

Regarding activity sensors (Lin and Schnitzer, 2016),
genetically encoded calcium indicators (GECIs) provide the
most mature modality for monitoring neural activity. As neural
activity causes rapid changes in intracellular Ca2+ level, GECIs
have advanced our knowledge of functional circuits (Broussard
et al., 2014). GCaMP, the most enthusiastically used GECI, is an
intracellular Ca2+ indicator comprising a circularly permuted
FP (cpFP, typically cpGFP), Ca2+-binding protein calmodulin
(CaM), and a Ca2+/CaM-sensing domain (typically, M13).
Earlier GECI versions are based on Forster resonance energy
transfer (FRET) of paired FPs. Single FP-based engineering has
virtually revolutionized development of biosensors with sufficient
brightness for in vivo events. In the presence of calcium, bright
fluorescence can be detected through conformational changes
triggered by Ca2+ binding to CaM, with poor fluorescence in
the absence of calcium. GCaMP has evolved by engineering
its variants to enhance the signal-to-noise ratio, sensitivity,
and kinetics (Nakai et al., 2001; Tallini et al., 2006; Tian et al.,
2009; Akerboom et al., 2009, 2012; Muto et al., 2011; Chen
et al., 2013; Sun et al., 2013; Dana et al., 2016). Additionally,
similar to the activity actuators described above, understanding
of complex activity dynamics of convergent circuits demands
multicolor availability of GECIs. Accordingly, recent efforts have
succeeded in providing various colored GECIs that are applicable
in vivo, including R-CaMP2, jRGECO1a, and XCaMP-Blue,
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-Yellow, and -Red (Zhao et al., 2011; Inoue et al., 2015, 2019;
Dana et al., 2016).

Multicolor availability of GECIs has enabled simultaneous
monitoring of neuronal activity of postsynaptic compartments
innervated by multiple cell type-specific presynaptic neurons
(Inoue et al., 2019). More recently, another expanded endeavor
has developed genetically encoded indicators for imaging the
release of specific neurotransmitters and neuromodulators.
Inspired by the successful application of cpFP in the GCaMP
family, various genetically encoded transmitter indicators
(GETIs) have been developed using engineered ligand-binding
proteins fused with cpFP that is conformationally changed
upon binding of glutamate, GABA, acetylcholine, serotonin,
and dopamine: iGluSnFR, iGABASnFR, GACh, iSeroSnFR, and
dLight, respectively (Marvin et al., 2013, 2019; Jing et al.,
2018; Patriarchi et al., 2018; Unger et al., 2020). Again, further
development of color variants as well as optimization are ongoing
(Wu et al., 2018; Patriarchi et al., 2020). GETIs can importantly
dissect neural activity by detecting the release of various
neurotransmitters and neuromodulators. Recent studies have
demonstrated that application of multicolor GETIs combined
with ChR2 and GECI can increase understanding of the functions
and mechanisms of complex neural circuitry by mapping input
convergence (Patriarchi et al., 2018, 2020; Kazemipour et al.,
2019; Lee et al., 2021).

Functional Input Convergence Mapping
With Combinatorial Labeling Tools
A large variety of the powerful tools described above have
enriched the neuroscientific arsenal by their combinatorial
applications. Today strategies for labeling and defining a specific
neuronal population underlying specific behavioral functions
has become possible, yet increasingly complex, sophisticated,
and representational. Combining active cell labeling, retrograde
RV, and DREADD, a recent study revealed that the temporal
association cortex (TeA) receives monosynaptic multiple inputs
converging from cortical and subcortical areas, playing a critical
role in auditory-driven maternal preference for pup calls (Tasaka
et al., 2020). In this study, neuronal populations active in response
to ultrasonic vocalizations (USVs) were determined by targeted
recombination in active populations (TRAP), which is designed
to express inducible Cre (CreERT2) under a control of an
immediate early gene, such as Fos (Guenthner et al., 2013).
Further combination of TRAP and RV allowed visualization of
functional input connectivity by introducing RV specifically into
TRAPed USV-responsive neurons of the TeA as starter cells.
DREADD expression in these USV-TRAP neurons of the TeA
demonstrated their functional link to a maternal behavioral effect.

In another recent study, Gong et al. (2020) demonstrated
a clever and complex combinatorial strategy for convergence
of feeding and drinking circuits, taking advantage of various
advanced technologies, i.e., anterograde polysynaptic HSV, Fos-
mapping, image segmentation using the standardized Allen Brain
Atlas, optogenetics, and GECI. The recombinant H129 strain
of HSV, a cell type-targetable version, has been demonstrated
as an effective anterograde trans-synaptic viral tracer for

labeling poly-synaptically connected output cells in cell type-
specific Cre lines (Lo and Anderson, 2011). To broadly
and unbiasedly search for a convergence hub-type region of
feeding and drinking circuits, anterograde polysynaptic HSV was
introduced into defined hunger-and-thirst-related neurons, such
as Agouti-related protein (AGRP) neurons in the hypothalamic
arcuate nucleus (ARC) and nitric oxide synthase 1 (Nos1)
in the suprafornical organ (SFO). In addition to identifying
active downstream areas engaged in hunger and thirst, Fos-
immunostaining was performed after ontogenetic stimulation
of these defined hunger-and-thirst-related neurons. The two
datasets of cell type-specific HSV and Fos labeling were processed
using the Allen Reference Brain for identifying hotspot areas
as a convergence point. This intention map of HSV and
Fos labeling guided further functional investigations which
identified glutamatergic neurons in the peri-locus coeruleus as a
polysynaptic convergence hub for hunger and thirst circuits.

Convergence Mapping at the Synapse
Level
Thus far, we have described various advanced tools for
mapping structural and functional input convergence, mainly
at the regional and cellular levels. Because the synapse is
the primary unit of information processing, detailed synapse-
level descriptions of connectivity converging from multiple
individual neurons has strengthened our understanding of fine-
scale organization of synaptic input profiles governing global and
subcellular signal computations.

Electron microscopy (EM)-based dense mapping, with
significant recent advances in large-scale image data acquisition
and 3D volume reconstruction, allows visualization of relatively
complete neuronal structures, offering high resolution on
the nanometer ultrastructure scale (Briggman et al., 2011;
Helmstaedter et al., 2013; Morgan et al., 2016; Schmidt et al.,
2017; Motta et al., 2019). In recent studies, a combination
of two-photon calcium imaging, optogenetics, and EM-based
reconstruction permitted synapse-level functional convergence
mapping (Bock et al., 2011; Briggman et al., 2011; Lee et al., 2016;
Liang et al., 2018; Borges-Merjane et al., 2020). One such study
used GECI, such as GCaMP6, to monitor the activity of retina
ganglia cell (RGC) axons and dorsolateral geniculate nucleus
(dLGN) neurons upon visual stimulation. This was followed
by 3D EM reconstruction of dLGN dendrites innervated by
RCG axonal boutons (Liang et al., 2018). Liang et al. (2018)
demonstrated that clusters of boutons from different RGC axons
on dLGN dendrites share similar visual feature preferences,
and that one RGC axon can innervate multiple bouton clusters
specialized for different visual feature preferences. As it is
believed that dendritic signal processing is facilitated by spatially
and temporally organized synaptic input patterns such as
clustering (Baden et al., 2016; Gökçe et al., 2016; Wilson et al.,
2016; Rompani et al., 2017), these results provide important
details about the functional implication of fine-scale convergence
for the transmission and integration of visual information from
the retina to thalamus.
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Additionally, recent studies have described fine-scale
distributions of excitatory and inhibitory synaptic input
convergence onto individual pyramidal neurons in different
cortical layers by EM-based (Karimi et al., 2020) and fluorescent
labeling of synaptic component-based 3D reconstruction
(Iascone et al., 2020). Iascone et al. (2020) used genetically
labeled pre- and post-synaptic components, such as Gephyrin-
EGFP and Homer1c-tdTomato, respectively, as well as annotated
spines to map E and I synapses. This study revealed local E/I
balance in specific dendritic domains in layer 2/3 cortical neurons
that might restrict dendritic and somatic firing. These detailed
synaptic mapping studies reveal a precise excitatory/inhibitory
balance suggesting distinct principles of signal integration in
individual neurons. Using such fluorescent labeling of synaptic
components, array tomography (AT) has been developed to
visualize synaptic architecture and connection (Micheva and
Smith, 2007; Micheva et al., 2010; Collman et al., 2015).
AT is a combinatorial method for synaptic composition and
connectivity mapping by reconstruction of images of serial
ultrathin sections that can be labeled by immunofluorescence
and imaged by fluorescence and EM. AT offers detailed synaptic
compositions by repeated immunofluorescence labeling of
multiple synaptic components.

Alternatively, for synapse-level connectivity mapping,
genetically encoded synaptic detectors have been developed,
and in particular, GFP reconstitution across synaptic
partners (GRASP) technology. These are based on functional
complementation between two non-fluorescent split-GFP
fragments targeted to the synaptic membranes of the synaptic
cleft (Feinberg et al., 2008; Gordon and Scott, 2009). Further
variants of GRASP, such as mGRASP, eGRASP, tGRASP, and
syb:GRASP, are available for improved accuracy, efficacy, and
specificity to detect synapses in complex circuits (Kim et al., 2011;
Macpherson et al., 2015; Choi et al., 2018; Shearin et al., 2018).
Combination of mGRASP and optogenetics demonstrated that
functional measures of synaptic strength correspond strongly
with mGRASP-based structural measures of synapse size, which
enabled high-resolution functional connection mapping (Song
et al., 2018). Similar to the needs for red-shifted ChR and
XCaMP, differently colored varieties known as X-RASPs (i.e.,
yellow Y-RASP and cerulean C-RASP) have been developed.
This has broadened their utility to simultaneous labeling of
synapses innervated by different inputs conveying distinct

information, for instance, thermo-sensory and visual information
(Macpherson et al., 2015) and engram and non-engram (Choi
et al., 2018). These GRASP-based approaches can be expanded
into multiple synapse-level convergence mapping when limits
of color detection are overcome with further optimization and
combination in sophisticated strategies.

CONCLUSION AND FUTURE
PERSPECTIVES

In this review, we have described advanced techniques, mainly
genetic tools that are currently available for mapping anatomical
and functional convergence connectivity. These tools mostly
rely on imaging systems and computational platforms that are
also in rapid progress (Lichtman et al., 2014; Zong et al., 2017;
Kornfeld and Denk, 2018; Skocek et al., 2018; Sych et al., 2019;
Wang et al., 2020). Creative and sophisticated combinations of
all the above techniques are underway and will go a long way
toward allowing untangling complex inputs in neural circuits.
Further innovative new technologies are still required, such as
less-toxic and definable trans-synaptic viral systems and genetic
switches with reversible and spatiotemporally precise on/off
control. Continuous upgraded versions of currently available
tools and innovations of new tools joined with integrative and
combinatorial approaches will provide deeper understanding of
how multiple integrative information coordinates a variety of
behaviors and cognitions.
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