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Selecting molecules with diverse 
structures and properties 
by maximizing submodular 
functions of descriptors learned 
with graph neural networks
Tomohiro Nakamura1,6, Shinsaku Sakaue1,6*, Kaito Fujii2,6*, Yu Harabuchi3,4,6*, 
Satoshi Maeda3,4,5,6 & Satoru Iwata1,4,6

Selecting diverse molecules from unexplored areas of chemical space is one of the most important 
tasks for discovering novel molecules and reactions. This paper proposes a new approach for selecting 
a subset of diverse molecules from a given molecular list by using two existing techniques studied 
in machine learning and mathematical optimization: graph neural networks (GNNs) for learning 
vector representation of molecules and a diverse-selection framework called submodular function 
maximization. Our method, called SubMo-GNN, first trains a GNN with property prediction tasks, 
and then the trained GNN transforms molecular graphs into molecular vectors, which capture both 
properties and structures of molecules. Finally, to obtain a subset of diverse molecules, we define 
a submodular function, which quantifies the diversity of molecular vectors, and find a subset of 
molecular vectors with a large submodular function value. This can be done efficiently by using the 
greedy algorithm, and the diversity of selected molecules measured by the submodular function value 
is mathematically guaranteed to be at least 63% of that of an optimal selection. We also introduce a 
new evaluation criterion to measure the diversity of selected molecules based on molecular properties. 
Computational experiments confirm that our SubMo-GNN successfully selects diverse molecules from 
the QM9 dataset regarding the property-based criterion, while performing comparably to existing 
methods regarding standard structure-based criteria. We also demonstrate that SubMo-GNN with a 
GNN trained on the QM9 dataset can select diverse molecules even from other MoleculeNet datasets 
whose domains are different from the QM9 dataset. The proposed method enables researchers to 
obtain diverse sets of molecules for discovering new molecules and novel chemical reactions, and 
the proposed diversity criterion is useful for discussing the diversity of molecular libraries from a new 
property-based perspective.

Chemical  space1–4, a concept to represent an ensemble of chemical species, was originally established in medicinal 
 chemistry2,5 and is used in a wide area of chemistry. The size of chemical space, i.e., the number of molecules in it, 
is estimated to be 1060 even if it is limited to drug-like  molecules6, and other estimations of chemical-space sizes 
have also been  reported4,7. In any case, the number of molecules is too large to explore exhaustively. Currently, 
more than 68 million molecules are registered in the chemical abstracts service (CAS) of Americal Chemical 
 Society8,9, and some accessible online molecular databases, e.g.,  PubChem10,  ZINC11, have been constructed. 
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Moreover, owing to recent advances in high throughput screening,  chemoinformatics12, and machine  learning13, 
many chemical compounds have been discovered from chemical space in the fields of organic light-emitting 
 diode14, organic  synthesis15, and  catalyst16. These are, however, small fractions of chemical space, and vast areas 
remain unexplored.

Selecting diverse molecules from chemical space is an important task for discovering molecules that exhibit 
novel properties and new chemical  reactions3,17. In medicinal chemistry, diversity selection algorithms have been 
widely studied for exploring chemical space and discovering bioactive  molecules5,18–21. The diversity of a set of 
molecules is also essential in molecular library  design17,22. Furthermore, when analyzing the quality of molecu-
lar libraries, the way to assess their diversity is crucial. This paper contributes to diverse molecular selection by 
proposing a novel selection framework and a new criterion for evaluating the diversity of molecules.

For computing the diversity of sets of molecules, most existing methods start by specifying molecular descrip-
tors, which encode molecules as vectors. Examples of molecular descriptors include  ECFP23, MACCS  keys24, 
and Daylight  fingerprints25, which typically encode structural information of molecules as binary vectors. Given 
such descriptors, pairwise dissimilarities are defined to quantify how dissimilar two molecules are. A widely used 
pairwise dissimilarity is the Tanimoto coefficient (more precisely, the Tanimoto coefficient indicates a similarity 
value, and subtracting it from 1 yields the dissimilarity)26. Computation of molecular similarities constitutes a 
broad research area, and other approaches based on, e.g., graph edit  distances27, cosine similarities of SMILES 
 kernels28, maximum common  substructures29, a root mean square deviation of 3D-molecular  structures30 and 
the persistent homology (a topological signature)31 have also been proposed. Given such pairwise (dis)similarity 
measures, the diversity of sets of molecules is usually evaluated with, e.g., the mean pairwise dissimilarity (MPD) 
or the mean distance to closest neighbors calculated over selected molecules.

While the diversity of molecules can be computed as above, selecting molecules that maximize a diversity 
measure from given molecular lists is computationally more challenging. For example, a naive brute force search 

for selecting 10 out of 100 compounds requires calculating diversity values 
(

100
10

)

 times. To overcome this 

computational difficulty, the greedy algorithm, which iteratively selects a new molecule that is the most dissimilar 
to a set of currently selected molecules, has been widely used as an efficient heuristic  method32. In each iteration, 
the dissimilarity between a new molecule and a set of selected molecules is computed according to a certain rule, 
e.g.,  MaxSum33 and  MaxMin34,35, and the choice of such rules affects outputs of the greedy algorithm. The diver-
sity of molecular sets obtained by the greedy algorithm is usually evaluated with, e.g., the MPD defined with the 
Tanimoto coefficient of MACCS keys. Thus calculated diversity values intrinsically depend on the choice of 
molecular descriptors and pairwise dissimilarities. Consequently, the existing framework for selecting molecules 
and evaluating the diversity puts much weight on structural information of molecules since molecular descrip-
tors usually encode structural information of molecules and pairwise dissimilarities are calculated based on such 
structure-based descriptors.

On the other hand, exploration of chemical space that takes the diversity of molecular properties into account 
has been reported to be effective for discovering novel functional  materials36. Also, in drug discovery, the Fréchet 
ChemNet Distance (FCD), which is a novel property-based metric using hidden layers of prediction models for 
bioactivities as representation of molecules, has been reported to be useful for evaluating models for generating 
 molecules37. When it comes to discovering novel reactions, examining collections of molecules that are diverse 
regarding molecular properties (in particular, reactivity) is vital for efficient exploration of chemical space. There-
fore, utilizing not only structural information but also properties of molecules can be a promising approach to 
pushing the diverse molecular selection framework to the next level, which will facilitate the discovery of novel 
molecules and new chemical reactions.

In the field of machine learning, neural network (NN) architectures have yielded great success in various 
areas such as image recognition and natural language processing. Following the achievements, researchers have 
applied them to molecular property prediction tasks. Among such approaches, graph neural networks (GNNs) 
have been gaining attention since many GNN-based prediction methods have achieved high  performances38–43. 
GNNs transform molecular graphs into vectors, which are used in downstream property prediction tasks. Nota-
bly, GNNs generate vectors taking both molecular properties and structural information of molecules into 
account, and it is reported that molecular vectors obtained from trained GNNs successfully reflect chemists’ 
intuition of molecular  structures41. Therefore, GNN-based molecular vectors can be effective alternatives to the 
aforementioned traditional molecular descriptors. However, to leverage GNN-based vectors for selecting diverse 
molecules, we need to discuss how to select diverse molecular vectors generated by GNNs, for which the existing 
structure-based selection framework is not necessarily appropriate.

Mathematically, the problem of selecting diverse items (in our case, molecular vectors) has been widely 
studied as submodular function maximization44,45. This framework is one of the best ways for diverse selection 
due to the following two advantages. First, many submodular functions for quantifying the diversity have been 
developed in various fields, and thus we can choose an appropriate one to achieve desirable diverse selection. 
In particular, some submodular functions can represent relationships between multiple molecules that pairwise 
similarities cannot capture. For example, the log-determinant function, a submodular function our method will 
use, serves as a volumetric diversity measure of molecular vectors. Such functions can offer us the potential for 
going beyond the existing pairwise-similarity-based framework. Second, and more importantly, we can math-
ematically guarantee the greedy algorithm to select near-optimally diverse molecules in terms of submodular 
function values. Specifically, resulting submodular function values are guaranteed to be at least 63% of those 
achieved by optimal  selection44. Moreover, the empirical performance of the greedy algorithm for submodular 
function maximization is known to be much better; it often achieves more than 90% of optimal  values46,47. There-
fore, the submodularity-based approach enables us to efficiently obtain near-optimally diverse sets of molecules 
without relying on costly selection algorithms such as the brute force search.
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This paper proposes a new approach to diverse molecular selection by utilizing the aforementioned GNN-
based molecular vectors and the existing submodularity-based selection method. First, we train a GNN with 
property prediction tasks and use the trained GNN to transform molecular graphs into molecular vectors. Then, 
we define a submodular function that quantifies the diversity of those molecular vectors as volumes of paral-
lelotopes spanned by them. Owing to the submodularity of the function, we can select near-optimally diverse 
molecular vectors by using the greedy algorithm. Both GNNs and submodular function maximization are known 
to be effective in various tasks, and thus each of them has been well studied. However, few existing studies utilize 
both of them for a single purpose. The only exception is a recent study on multi-robot action  selection48, which 
uses GNNs in selection methods, while we use GNNs to design submodular functions. In view of this, our work 
provides a new type of application combining GNNs and submodular function maximization. Furthermore, to 
evaluate the diversity of selected molecules based on molecular property values, we introduce a new diversity 
measure using the Wasserstein  distance49,50 to uniform distributions defined on molecular property values. This 
property-based measure can play a complementary role to the existing structure-based measures such as the 
MPD of the Tanimoto coefficients, thus enabling researchers to more profoundly discuss the diversity of mole-
cules. Computational experiments compare the proposed method with the existing structure-based methods and 
confirm that our method selects more diverse molecules regarding molecular properties. Furthermore, although 
our method does not explicitly use structure-based descriptors (e.g., ECFP and MACCS key), it successfully 
selects diverse molecules in terms of MPD values calculated with the Tanimoto coefficient of such structure-
based descriptors. We also validate the practical effectiveness of our method via experiments on out-of-domain 
settings, where we use datasets in different domains between training of GNNs and selection of molecules.

Method
This section presents our molecular selection method, which comprises two steps: training a GNN that generates 
molecular vectors and selecting GNN-based molecular vectors via submodular function maximization. Figure 1 
shows a high-level sketch of our method. In Step 1, we train a GNN and task-specific layers with property predic-
tion tasks, where the GNN converts molecular graphs into molecular vectors and the task-specific layers take 
them as input and predict molecular properties. In this step, parameters of the GNN and the task-specific layers 
are updated by the error backpropagation method. In Step 2, we transform graphs of candidate molecules into 
molecular vectors by using the GNN trained in Step 1, and then select a predetermined number of molecular 
vectors based on submodular function maximization.

We also introduce a new property-based diversity criterion, which quantifies the diversity of selected mol-
ecules as the Wasserstein distance to uniform distributions defined on molecular property values. Intuitively, we 
regard a set of molecules as diverse if the property values of those molecules are evenly distributed.

Graph neural networks for generating molecular vectors. We briefly explain how GNNs generate 
molecular vectors. GNNs are deep learning architectures that work on graph domains. Taking a graph with node 
and edge features as input, GNNs capture structures of the graph by iteratively passing messages, which are cal-
culated based on the features. Specifically, each node iteratively receives messages from its neighbors, aggregates 
them, and pass them to its neighbors; after this message passing phase, a molecular vector, denoted by x , is com-
puted based on the resulting messages of all nodes. Along the way, messages are updated with certain parameter-
ized functions. Our specific choice of a GNN architecture is Attentive  FP41, which is reported to achieve high 
performances in molecular property prediction. For the sake of completeness, we present mathematical details 
of GNNs in the “Supplementary information”.

In the task-specific layer, molecular properties, y , are predicted with molecular vector x via simple linear 
regression as ŷ = Wx + b , where ŷ is a prediction of y . In the training step (Step 1 in Fig. 1), we update W , b , 
and the parameters of the GNN by backpropagation, where a loss function is the mean squared error between 
ŷ and y . Consequently, the GNN, which captures structures of molecular graphs via message passing, is trained 
to predict molecular properties. Therefore, the trained GNN generates molecular vectors taking both structures 
and properties of molecules into account.

Selection of diverse molecular vectors. Given molecular vectors generated by the trained GNN, we 
aim to obtain a set of diverse molecules by selecting diverse molecular vectors. For selecting diverse vectors, we 
utilize the mathematical framework called submodular function maximization.

Submodular function maximization. Submodular function maximization has been studied in the field of com-
binatorial optimization. This framework enables development of effective diverse selection methods by offering 
flexible models for representing the diversity and efficient selection algorithms with mathematical performance 
guarantees; below we detail these two advantages.

The first advantage of using the submodular-function-maximization framework is that there are various 
known functions for representing the diversity. To find a diverse subset from a large pool of molecules, research-
ers specify a diversity criterion and search for a diverse subset based on the criterion. Here, a diversity criterion 
is formally regarded as a set function, which assigns to each subset a real value that indicates how diverse the 
subset is. Some of such functions have a special property called submodularity, and they are called submodular 
functions. Many submodular functions have been developed as diversity criteria for various kinds of data such 
as images, documents, and videos. Therefore, we can choose a suitable function from them for modeling the 
diversity of molecular vectors. For example, the Shannon entropy is known to satisfy submodularity with respect 
to the selection of random variables. Other diversity criteria that have submodularity include the ROUGE-N 
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score for document  summarization51,52 and facility location  functions53. In the area of bioinformatics, submodular 
functions for peptide identification are also  developed54.

The second advantage of the submodular-function-maximization framework is that we can utilize various 
simple, efficient, and mathematically rigorous algorithms for selecting a diverse subset. When selecting a subset 
from a large number of molecular vectors, there are exponentially many possible candidate subsets. Therefore, 
we need efficient algorithms for finding diverse subsets. In a series of studies on submodular function maximiza-
tion, many simple and efficient algorithms for finding subsets with large submodular function values have been 
developed. Notably, the resulting submodular function values are often guaranteed to be nearly optimal by math-
ematical analyses. Therefore, once we specify a submodular function as a diversity criterion, we can automatically 
ensure that those algorithms return highly diverse subsets with respect to the criterion. Among such algorithms, 
the greedy algorithm is widely used due to its simplicity, efficiency, and strong mathematical  guarantee44.

In the “Supplementary information”, we present mathematical details of submodular function maximization 
and the greedy algorithm.

Log‑determinant function. In our computational experiments, we use a submodular function called a log‑
determinant function, which quantifies the diversity of selected molecular vectors based on the volume of a 
parallelotope spanned by the selected vectors. As depicted in Fig. 2a, the more diverse the directions of vectors 
are, the larger the volume of the parallelotope spanned by them. Thus the log-determinant function provides 
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Figure 1.  A high-level sketch of our method. In Step 1, a GNN is trained with property prediction tasks. The 
black and red arrows indicate the forward pass and backpropagation, respectively. In Step 2, the trained GNN 
is used to generate molecular vectors of candidate molecules, and then molecules are selected via submodular 
function maximization.
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a volume-based measure of the diversity of vectors, and it is often used for expressing the diversity of vector 
 datasets55. Note that the volume-based diversity can capture relationships of vectors that cannot be represented 
in a pairwise manner. Therefore, the log-determinant function yields a different selection rule than existing 
methods such as MaxSum and MaxMin, which use pairwise dissimilarities of molecular structures.

Formally, the log-determinant function is defined as follows. Suppose that n candidate molecules are 
numbered by 1, . . . , n and that the ith molecule is associated with m-dimensional molecular vector xi for 
i = 1, . . . , n . Let X = [x1 x2 . . . xn] be an m× n matrix whose columns are given by n molecular vectors. For 
any S ⊆ N :={1, . . . , n} , we denote by X[S] an m× |S| submatrix of X with columns restricted to S. We define 
the log-determinant function flogdet by

for any S ⊆ N , where I|S| is the |S| × |S| identity matrix. The relationship between the flogdet value and the volume 
of a parallelotope can be formally described as follows. Let x̃i ( i = 1, . . . , n ) be a vector of length m+ n such that 
the first m elements are given by xi , the ( m+ i)-th element is 1, and the others are 0. When S ⊆ N is selected, 
flogdet(S) indicates the volume of a parallelotope spanned by {x̃i}i∈S.

Given the function, flogdet , and the number, k , of molecules to be selected, the greedy algorithm operates as 
follows: it first sets S = ∅ and sequentially adds i ∈ N \ S with the largest flogdet(S ∪ {i})− flogdet(S) value to S 
while |S| < k holds. In our computational experiments, we use a fast implementation of the greedy algorithm 
specialized for the log-determinant  function56. Function flogdet satisfies flogdet(∅) = 0 , monotonicity (i.e., S ⊆ T 
implies flogdet(S) ≤ flogdet(T) ), and submodularity. With these properties, we can mathematically guarantee 
that the greedy algorithm returns a subset whose flogdet value is at least 1− 1/e ≈ 63% of an optimal selection.

Refinements to molecular vector generation: ReLU and normalization. We refine the GNN-
based vector generation process so that it works better with the log-determinant function. Specifically, we make 
GNNs output non-negative and normalized. Below we detail why we need these refinements and explain how to 
modify the vector generation process.

First, as in Fig. 2b, if vectors are allowed to have negative elements, nearly origin-symmetric vectors form a 
parallelotope with a small volume even though their directions are diverse. Consequently, the log-determinant 
function fails to indicate that such molecular vectors correspond to diverse molecules. To circumvent this issue, 
we add a ReLU layer to the end of the GNN, which makes all entries of output vectors non-negative.

Second, if GNNs are allowed to output vectors with different norms, task-specific layers may distinguish 
molecules with different properties based on the norm of molecular vectors. In such cases, maximizing the log-
determinant function may result in selecting non-diverse vectors due to the following reason. As mentioned 
above, the log-determinant function represents the volume of the parallelotope spanned by selected vectors, and 
the volume becomes larger if selected vectors have larger norms. Consequently, molecular vectors with larger 
norms are more likely to be selected, which may result in selecting molecules with almost the same properties 
as in Fig. 2c. To resolve this problem, after passing through the ReLU layer, we normalize molecular vectors so 
that their norms become 1 by projecting them onto a hypersphere. In other words, we add a normalization layer 
that transforms molecular vector x as

flogdet(S) = log det(X[S]⊤X[S] + I|S|)

(a) (b) (c) (d)

Figure 2.  Graphical explanation of (a) the log-determinant function, (b) the effect of ReLU, and (c and d) the 
effect of normalization. In all figures above, the black dot indicates the origin. (a) is a parallelotope spanned 
by vectors colored in red. (b) illustrates an example where the log-determinant function value for dissimilar 
vectors becomes small if vectors are allowed to have negative elements. Here and in the next two figures, points 
with different colors (red and blue) represent molecules with dissimilar properties, while those with the same 
colors have similar properties. (c) shows why maximizing the log-determinant function without normalization 
may result in a non-diverse selection, and (d) presents how normalization helps the log-determinant function 
maximization to select diverse vectors. Note that (d) is generally different from the normalized version of (c), 
i.e., vectors generated by the GNN with normalization are different from those obtained by normalizing vectors 
generated by the GNN without normalization. This is because the backpropagation is performed through the 
normalization layer, and thus the presence of the normalization layer affects how the GNN parameters are 
updated. As a result, the GNN is trained to generate molecular vectors so that the task-specific layer can predict 
molecular properties based on the angles of vectors, as in (d).
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As a result, x̂ becomes non-negative and its norm is equal to 1. In the training phase, we train the GNN with 
the additional ReLU and normalization layers, where non-negative normalized vector x̂ is used for predicting 
property values as ŷ = Wx̂ + b . Due to the above normalization, the task-specific layers cannot distinguish 
molecular vectors by using their norms, and thus the GNN learns to generate molecular vectors so that task-
specific layers can predict molecular property values based not on norms but on angles of vectors. Consequently, 
as illustrated in Fig. 2d, diverse molecular vectors can be obtained by maximizing the log-determinant function 
value. We experimentally confirmed that GNNs trained with normalization yield similar prediction results to 
those obtained without normalization (see, the “Supplementary information”). This implies that GNNs trained 
with normalization can successfully generate molecular vectors whose angles have enough information for 
predicting molecular properties.

Property-based evaluation of diversity. By using our selection method, we can select molecules so that 
corresponding molecular vectors are diverse. However, even if molecular vectors are diverse, selected molecules 
themselves may not be diverse. This issue is also the case with the existing structure-based methods, and it has 
been overlooked in previous studies. That is, the existing methods select molecules that are diverse in terms of 
the Tanimoto coefficient of molecular descriptors (e.g., MACCS keys or ECFP), and thus those methods natu-
rally achieve high mean pairwise distance (MPD) values, which are also calculated by using the Tanimoto coef-
ficient of such descriptors. If we are to evaluate selection methods fairly, we need diversity criteria that do not use 
molecular descriptors employed by selection methods. This section presents such a criterion for evaluating the 
diversity of selected molecules in terms of their property values without using molecular vectors. In contrast to 
the existing structure-based criteria (e.g., the aforementioned MPD values), our criterion is based on the diver-
sity of property values, thus offering a new perspective for evaluating the diversity of molecules.

Our idea is to regard molecular property values as diverse if evenly distributed over an interval on the 
property-value line. We quantify this notion of the diversity using a statistical distance between a distribution 
of property values of selected molecules and a uniform distribution. As a distance between two distributions, we 
use the Wasserstein distance, which is defined by the minimum cost of transporting the mass of one distribution 
to another, as detailed below. We call this diversity criterion the Wasserstein distance to a uniform distribution 
(WDUD). A smaller WDUD value implies that selected molecules are more diverse since the distribution of 
their property values is closer to being uniform.

Formally, WDUD is defined as follows. Let vmax and vmin be the maximum and minimum property values, 
respectively, in a given list of molecules. Suppose that k molecules with property values y1, y2, . . . , yk are selected 
from the list. We assign probability mass 1/k to each yi and compute how far this discrete distribution is from a 
uniform distribution over [vmin, vmax] . Let V and U be the cumulative distribution functions of the two distri-
butions, respectively. Defining the transportation cost from y ∈ [vmin, vmax] to yi as |y − yi| , the WDUD value 
can be computed as 

∫ vmax

vmin
|U(x)− V(x)|dx50, which we use for quantifying the diversity of property values 

{y1, y2, . . . , yk} of selected molecules.
There are other possible choices of statistical distances, such as the variance or the Kullback–Leibler (KL) 

divergence. However, the Wasserstein distance is more suitable for measuring the diversity than the variance and 
the KL divergence for the following reasons. If we use the variance of property values of selected molecules as a 
diversity measure, a set of molecules with extreme property values is regarded as diverse, although this selection 
is biased since it ignores property values nearby the mean (see, Fig. 3a). If we use the KL divergence between 
the property-value distribution of selected molecules and the uniform distribution, the distance structure of 
the support is ignored unlike WDUD, which takes the ℓ1-distance, |y − yi| , into account. As a result, we cannot 
distinguish molecular sets with completely different diversities as in Fig. 3b.

Wasserstein greedy: a property-based benchmark method. In the computational experiments, we 
use a benchmark method that is intended to minimize the WDUD value directly. To the best of our knowledge, 
selecting a set of molecules that exactly minimizes the WDUD value reduces to mixed integer programming, 
which is computationally hard in general. Instead, we select molecules with small WDUD values by using a 
simple greedy heuristic, which starts with the empty set and repeatedly selects a molecule that yields the largest 
decrease in the WDUD value. When considering the WDUD of multiple molecular properties, we normalize the 
property values to [0, 1] and use the mean WDUD value. In the experiments, property values are known only for 
a training dataset, while we have to select molecules from a test dataset. Therefore, we compute WDUD values 
by using property values predicted by the trained GNN (without the normalization technique). Compared with 
our proposed method, this benchmark method is specialized for achieving small WDUD values (i.e., diversity of 
molecular property values), while it does not explicitly use information on molecular structures.

Existing structure-based selection methods and evaluation criterion. We also use MaxMin and 
MaxSum as baseline methods, which greedily select molecules based on dissimilarities of molecular descriptors. 
We use MACCS keys and ECFP as descriptors and define the dissimilarity of those descriptors based on the 
Tanimoto coefficient, i.e., given the ith and jth descriptors, we compute the Tanimoto similarity of them and 
subtract it from 1 to obtain dissimilarity values di,j . Given dissimilarity values di,j , MaxSum and MaxMin oper-
ate as with the greedy algorithm; formally, MaxMin (resp. MaxSum) sequentially adds i ∈ N \ S with the largest 
minj∈S di,j (resp. 

∑

j∈S di,j ) value to S whlie |S| < k holds, where the first molecule i ∈ N is set to the one with the 
largest 

∑

j  =i di,j value. We denote MaxMin and MaxSum methods by MM and MS, respectively, and MACCS 

x̂ =
x

�x�
.
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keys and ECFP by MK and EF, respectively, for short. We use, for example, MS-MK to represent the MaxSum 
method that uses MACCS-keys as descriptors.

When evaluating selection methods in the experiments, we also use the mean pairwise dissimilarity (MPD), 
the existing structure-based criterion, in addition to WDUD. Specifically, given dissimilarity values di,j for all 
pairs in n molecules, we compute an MPD value as 1

(

n
2

)

∑

i<j di,j . We define the dissimilarity values by the 

Tanimoto dissimilarity of MACCS keys or ECFP. Depending on the choice of descriptors, we denote the diversity 
criterion by MPD-MK or MPD-EF, respectively.

Details of computaitonal experiments. We conducted computational experiments with the QM9 data-
set in  MoleculeNet57,58, which is a quantum mechanical dataset with labels of energetic, electronic, and ther-
modynamic properties computed based on the density functional theory (DFT). Each molecule in the dataset 
is associated with 12 property values: dipole moment in Debye (mu), isotropic polarizability in Bohr3 (alpha), 
highest occupied molecular orbital energy in Hartree (HOMO), lowest unoccupied molecular orbital energy 
in Hartree (LUMO), gap between HOMO and LUMO in Hartree (gap), electronic spatial extent in Bohr2 (R2), 
zero-point vibrational energy in Hartree (ZPVE), internal energy at 0 K in Hartree (U0), internal energy at 
298.15 K in Hartree (U), enthalpy at 298.15 K in Hartree (H), free energy at 298.15 K in Hartree (G), and heat 
capacity at 298.15 K in cal/(mol K) (Cv). Following the previous  work41, we used all the 12 properties to train 
GNNs. The QM9 dataset contains 133,885 molecules, and we randomly divided them into three datasets as is 
done in the previous  study41: 80% (107,108 molecules) for training a GNN, 10% (13389 molecules) for validating 
prediction accuracy of the trained GNN, and 10% (13388 molecules) for a test dataset, from which we selected 
molecules. Each method selected 133 molecules (1% of the test data) from the test data. Note that when training 
GNNs, we did not use the test data. We thus created the situation where we select molecules whose property 
values are unknown in advance.

The diversity of property values of selected molecules was evaluated by computing WDUD values for each 
molecular property. In this evaluation, we used the above 12 properties in the QM9 dataset. However, among the 
12 properties, the use of U0, U, H, and G would be inappropriate for evaluating the chemical diversity because 
their magnitudes depend mostly on the system size. For example, these values are more similar between acetone 
and acetamide, isoelectronic molecules, than between acetone and methyl–ethyl–ketone, even though most 
chemists would say that acetone and methyl–ethyl–ketone are both alkyl ketones and chemically more similar. 
Therefore, we additionally used molecular energy values divided by the number of electrons (denoted by Nelec ) 
in the evaluation to weaken the system-size dependence and focus more on chemical diversity. These values for 
U0, U, H, and G are denoted by U0/Nelec , U/Nelec , G/Nelec , and H/Nelec , respectively. Similarly, we used variants 
of the two values, ZPVE and Cv, divided by Nmode = 3Natom − 6 , where Natom is the number of atoms. These 
values for ZPVE and Cv are denoted by ZPVE/Nmode and Cv/Nmode , respectively. Consequently, for evaluating 
molecular diversity based on WDUD values, we used 18 properties in total: the 12 properties of the QM9 dataset 
and the additional six properties, ZPVE/Nmode , U0/Nelec , U/Nelec , G/Nelec , H/Nelec , and Cv/Nmode.

We also conducted computational experiments on the out-of-domain setting. That is, while the GNN is 
trained with the QM9 dataset, we select molecules from other test datasets than QM9, where we know nothing 
about the target property labels. This setting is more challenging than the previous one since the test datasets are 
completely different from QM9; in particular, the target property labels are different from the aforementioned 

(a) (b)

Figure 3.  Graphical explanation of why the (a) variance and (b) Kullback–Leibler (KL) divergence are 
inappropriate. In (a), the variance of a diverse set (red) is smaller than that of a non-diverse set (blue), which 
does not suit our idea of diversity. In (b), the KL divergence of a diverse set (red) is equal to that of a non-diverse 
set (blue).
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12 properties of QM9. On the other hand, this setting is more realistic since GNNs are usually trained on some 
large datasets, while we often want to select molecules from new test datasets that belong to other domains 
than those of training datasets. In the experiments, we used three test datasets obtained from MoleculeNet: the 
Delaney dataset (ESOL)59, the free solvation database (FreeSolv)60, and the lipophilicity dataset (Lipop)61. ESOL 
contains 1128 molecules labeled by log-scale water solubility in mol/L. FreeSolv contains 642 molecules labeled 
by experimentally measured hydration free energy in water in kcal/mol. Lipop contains 4200 molecules labeled 
by experimentally measured octanol/water distribution coefficient (logD). These property labels were used only 
when computing WDUD values for evaluation. For each of the three datasets, we selected 100 molecules and 
evaluated their diversity. Note that unlike the previous case, we select molecules without knowing what properties 
are used when evaluating WDUD values. Thus, this setting models a situation where we want to select molecules 
that are diverse regarding some unknown properties.

Results and discussion
We present the results obtained by the following molecular selection methods:

• SubMo-GNN (Submodularity-based Molecular selection with GNN-based molecular vectors) is our proposed 
method, which greedily maximizes the log-determinant  function55 defined with GNN-based molecular vec-
tors.

• WG-GNN (Wasserstein Greedy with GNN-based prediction) is our new benchmark method. It selects mol-
ecules by greedily minimizing the WDUD values, where molecular property values are predicted by the 
trained GNN.

• MS-MK is the existing MaxSum  algorithm33 that uses MACCS  keys24 as molecular descriptors.
• MM-MK is the existing MaxMin  algorithm34,35 that uses MACCS  keys24 as molecular descriptors.
• MS-EF is the existing MaxSum  algorithm33 that uses  ECFP23 as molecular descriptors.
• MM-EF is the existing MaxMin  algorithm34,35 that uses  ECFP23 as molecular descriptors.
• Random selects molecules randomly according to the distribution of a test dataset.

We briefly mention the position of each method. WG-GNN is a benchmark method that is specialized for the 
diversity of property values, while the structure-based baseline methods, MS-MK, MM-MK, MS-EF, and MM-EF, 
focus on the diversity of molecular structures. Our SubMo-GNN is an intermediate of the two kinds of methods 
and can leverage information of both molecular structures and properties, since the GNN-based molecular vec-
tors are generated by taking molecular graphs as input and training the GNN with property-prediction tasks.

Property-based diversity evaluation with WDUD. We evaluated the diversity of property values of 
selected molecules by the Wasserstein distance to uniform distribution (WDUD). Note that a smaller WDUD 
value is better since it means the distribution of selected molecules is closer to being uniform.

Table 1 shows the WDUD values attained by the six methods for the aforementioned 18 properties. Since 
the results of SubMo-GNN and WG-GNN fluctuate due to the randomness caused when training GNNs, we 

Table 1.  WDUD values for each property in QM9 dataset. Since SubMo-GNN, WG-GNN, and Random have 
randomness, their results are shown by means and standard deviations over five trials.

SUBMO-GNN WG-GNN MS-MK MM-MK MS-EF MM-EF Random

mu (Debye) 10.65± 0.06 11.26± 0.12 12.62 12.18 11.85 11.89 12.06± 0.19

alpha (Bohr3) 37.03± 0.07 40.65± 0.13 38.50 41.01 39.30 43.30 45.28± 0.60

HOMO (Hartree) 0.02786± 0.00049 0.03764± 0.00091 0.04452 0.04599 0.03797 0.04473 0.05075± 0.00197

LUMO (Hartree) 0.02905± 0.00133 0.02208± 0.00079 0.03331 0.03879 0.03898 0.03502 0.04213± 0.00329

gap (Hartree) 0.03541± 0.00138 0.03844± 0.00186 0.05092 0.05614 0.04668 0.05788 0.06051± 0.00264

R2 (Bohr2) 359.0± 7.8 310.9± 12.1 487.3 513.8 477.3 519.5 583.9± 27.4

ZPVE (Hartree) 0.02320± 0.00118 0.02391± 0.00120 0.02907 0.03093 0.02986 0.03282 0.03760± 0.00219

U0 (Hartree) 85.09± 1.47 36.14± 1.14 73.39 92.80 83.92 109.4 114.2± 3.8

U (Hartree) 85.09± 1.47 36.13± 1.14 73.39 92.80 83.92 109.3 114.2± 3.8

H (Hartree) 85.09± 1.47 36.13± 1.14 73.39 92.80 83.92 109.3 114.2± 3.8

G (Hartree) 85.10± 1.47 36.14± 1.14 73.39 92.81 83.93 109.4 114.2± 3.8

Cv (cal/(mol K)) 5.593± 0.129 3.072± 0.118 4.950 7.011 4.785 6.613 7.984± 0.226

ZPVE/Nmode 
(Hartree) 0.001533± 0.000006 0.001472± 0.000007 0.001531 0.001557 0.001561 0.001598 0.001604± 0.000004

U0/Nelec (Hartree) 0.3848± 0.0087 0.3757± 0.0129 0.5770 0.6961 0.4257 0.5780 0.7529± 0.0536

U/Nelec (Hartree) 0.3848± 0.0087 0.3757± 0.0129 0.5770 0.6961 0.4257 0.5780 0.7529± 0.0536

H/Nelec (Hartree) 0.3848± 0.0087 0.3757± 0.0129 0.5770 0.6961 0.4257 0.5780 0.7529± 0.0536

G/Nelec (Hartree) 0.3848± 0.0087 0.3757± 0.0129 0.5770 0.6961 0.4257 0.5780 0.7529± 0.0536

Cv/Nmode (cal/(mol 
K)) 0.4681± 0.0031 0.4715± 0.0031 0.4905 0.5328 0.4936 0.5109 0.5674± 0.0106
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performed five independent runs and calculated the mean and standard deviation. The results of Random also 
vary from trial to trial, and thus we present the mean and standard deviation of five independent trials. Figure 4 
visualizes the results in Table 1, where the WDUD values are rescaled so that those of Random become 1 for 
ease of comparison.

In this experiment, each method obtains a single set of molecules, for which we calculate the 18 WDUD 
values. Therefore, choosing a set of molecules that attains small WDUD values for some properties may result 
in large WDUD values for other properties. Such a choice of molecules does not meet our purpose, and it is bet-
ter to balance the trade-off so that none of the 18 WDUD values become too large. A reasonable way to check 
whether this is achieved is to compare the results with those of Random. If WDUD values of some properties 
become larger than those of Random, it is probable that selected molecules are biased; that is, the diversity of 

(a)

(b)

(c)

Figure 4.  Bar charts of WDUD values. All the values are rescaled so that those of Random become 1. (a) Shows 
the results on the first six properties. (b) is the results on the six properties correlated with Nelec or Nmode (the 
WDUD values are computed with the raw property values). (c) is a modified version of (b), where the property 
values are divided by Nelec or Nmode for making those values capture subtle molecular characteristics such as 
connectivity patterns.
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some properties is sacrificed for achieving small WDUD values of other properties. On the other hand, WG-
GNN is expected to achieve almost the best WDUD values since it aims to minimize WDUD values directly 
(this, however, can result in non-diverse selection regarding other aspects than WDUD, as we will discuss later). 
Therefore, we below discuss the results regarding the WDUD values of WG-GNN as benchmarks that are close 
to the best possible ones.

We first discuss the results of SubMo-GNN and the existing structure-based methods in comparison with 
Random and WG-GNN. Figure 4 shows that SubMo-GNN, MS-EF, and MM-EF attained smaller WDUD values 
than Random for all molecular properties. This indicates that both our method and the ECFP-based methods 
were able to choose diverse molecules in terms of WDUD, even though they do not explicitly minimize WDUD. 
Since we did not feed the test dataset when training GNNs, the results suggest that GNNs well generalized to 
unknown molecules and achieved diverse selection from the test dataset consisting of unknown molecules. In 
contrast to SubMo-GNN and the ECFP-based methods, MS-MK and MM-MK resulted in larger WDUD values 
in mu than Random as in Fig. 4a. That is, the selection methods based on MACCS keys failed to select diverse 
molecules with respect to mu values. This suggests that selection methods that use only structural information 
can sometimes result in non-diverse selection in terms of molecular property values. On the other hand, as 
expected, WG-GNN achieved the smallest WDUD values in 12 out of the 18 properties. Surprisingly, however, 
SubMo-GNN achieved better WDUD values than WG-GNN in six properties, demonstrating the effectiveness 
of SubMo-GNN for selecting molecules with diverse property values.

We then compare our SubMo-GNN with the existing structure-based selection methods. Compared to 
MaxMin-based methods (MM-MK and MM-EF), SubMo-GNN achieved smaller WDUD values for all proper-
ties. SubMo-GNN also outperformed MaxSum-based methods (MS-MK and MS-EF) for all but six properties 
(U0, U, H, G, Cv, and ZPVE/Nmode ). Note that U0, U, H, and G are related to molecular energies and their 
values are strongly correlated with each other; previous studies have reported that property prediction methods 
applied to the QM9 dataset exhibited almost the same performances as regards the four  properties41. This is 
consistent with our results in Fig. 4b, where each method attained almost the same performance regarding the 
four properties. Furthermore, when the energy-related properties are divided by Nelec , MS-MK and MS-EF are 
outperformed by SubMo-GNN (see the results on U0/Nelec , U/Nelec , H/Nelec , and G/Nelec in Fig. 4c). In view of 
this, the MaxSum-based methods seem to have put too much weight on the diversity of properties correlated with 
Nelec , which resulted in biased selections and degraded the WDUD values of mu. In summary, in terms of WDUD 
values, the overall performance of SubMo-GNN is better than those of the existing structure-based methods.

Figure 5 shows property-value distributions of all molecules in the dataset (blue) and molecules selected 
by each method (red). The horizontal and vertical axes represent property values and frequency, respectively. 
For ease of comparison, the histogram height is normalized to indicate the density rather than the count. We 
regard a set of molecules as diverse if its distribution is close to being uniform. As expected, the distribution of 
molecules selected by Random is close to the distribution of the original dataset. By contrast, SubMo-GNN and 
MS-MK selected molecules that did not appear so frequently in the dataset, particularly for HOMO, R2, U0, 
and U0/Nelec . As a result, the distributions of selected molecules became closer to being uniform than Random. 
Regarding the results of mu, both SubMo-GNN and MS-MK chose many molecules with near-zero mu values; 
this seems to be necessary for selecting diverse molecules regarding other properties than mu due to the afore-
mentioned trade-off between properties. Nevertheless, MS-MK chose too many molecules with near-zero mu 
values, resulting in a biased distribution. This visually explains why the WDUD value of MS-MK in mu is larger 
than that of Random. Compared with MS-MK, SubMo-GNN selected more molecules with large mu values, 
which alleviated the bias and led to diverse selection in all properties. SubMo-GNN selected more molecules 
with large R2 and high HOMO values than MS-MK, and consequently SubMo-GNN ’s distributions were closer 
to being uniform. In U0, however, MS-MK selected more molecules with high U0 values than SubMo-GNN and 
MS-MK ’s distribution was closer to being uniform than SubMo-GNN. By contrast, as regards U0/Nelec , MS-MK 
selected too many molecules with high Nelec values compared with SubMo-GNN, resulting in a distribution that 
is farther from being uniform.

To conclude, by incorporating supervised learning of GNNs into the system of diverse molecular selection, 
our method can select diverse molecules regarding target molecular properties in the sense that their distribu-
tions are close to being uniform. On the other hand, if we use standard molecular descriptors (e.g., MACCS 
keys and ECFP) that encode only structural information of molecules, selected molecules can be non-diverse 
regarding some molecular properties.

Structure-based diversity evaluation with MPD. We then evaluated selection methods in terms of the 
diversity of molecular substructures. As a criterion for evaluating the diversity of molecular substructures, we 
used the mean pairwise dissimilarity (MPD), where molecular descriptors were given by MACCS keys or ECFP. 
We denote those criteria by MPD-MK and MPD-EF for short. A larger MPD value is better since it implies that 
selected molecules are more dissimilar to each other. It should be noted that MS-MK and MS-EF greedily maxi-
mize MPD-MK and MDP-EF, respectively, and thus they are inherently advantageous in this setting. MM-MK 
and MM-EF also explicitly maximize the diversity calculated with MACCS keys and ECFP, respectively, and thus 
this setting is also favorable for them. By contrast, SubMo-GNN and WG-GNN use neither MACCS keys nor 
ECFP, and thus it has no inherent advantage as opposed to the structure-based methods.

Table 2 shows the results. As expected, MS-MK and MM-MK, which explicitly aim to maximize the diversity 
calculated with MACCS keys, achieved high MPD-MK values. In particular, MS-MK attained a far higher MPD-
MK value than the others. This result is natural since MS-MK has the inherent advantage of greedily maximizing 
MPD-MK. As regards MPD-EF, all methods achieved high MPD values. Note that although SubMo-GNN and 
WG-GNN used neither MACCS keys nor ECFP, they attained higher MPD values than Random and performed 
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Figure 5.  Property-value distributions of selected molecules (red) and all molecules in the test dataset (blue). 
The horizontal axis indicates property values, which are partitioned into 30 bins. We let the height show the 
probability density for ease of comparison. Results of the same property and method are aligned in a row and a 
column, respectively.

Table 2.  MPD values with MACCS keys and ECFP. For SubMo-GNN, WG-GNN, and Random, means and 
standard deviations over five trials are shown.

SUBMO-GNN WG-GNN MS-MK MM-MK MS-EF MM-EF Random

MPD-MK 0.8423± 0.0029 0.8536± 0.0018 0.9102 0.8592 0.8565 0.7924 0.7734± 0.0129

MPD-EF 0.9518± 0.0017 0.9435± 0.0006 0.9558 0.9427 0.9733 0.9520 0.9247± 0.0063
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comparably to (sometimes outperformed) the structure-based methods. These results imply that selecting mol-
ecules with diverse property values is helpful in selecting molecules with diverse structures.

At this point, the effectiveness of selecting molecules with diverse predicted property values has been con-
firmed for the case where GNNs are trained on a training QM9 dataset and molecules are selected from a test 
QM9 dataset, i.e., training and test datasets are in the same domain. In practice, however, we often encounter a 
situation where GNNs are trained on some large datasets, while we select molecules from new datasets whose 
domains are different from those of training datasets. In such cases, the diversity of properties registered in the 
training datasets does not always imply the diversity of molecules in test datasets. Below we experimentally study 
such out-of-domain settings.

Experiments on out-of-domain setting. We performed experiments on the out-of-domain setting. 
Specifically, while we trained GNNs on the QM9 dataset as with the previous section, we selected molecules 
from other test datasets: ESOL, FreeSolv, and Lipop. SubMo-GNN used molecular vectors generated by the 
trained GNN, and WG-GNN selected molecules greedily to minimize WDUD values of the QM9 properties 
predicted by using the trained GNN. Note that we cannot train GNNs to predict ESOL, FreeSolv, and Lipop val-
ues since nothing about those properties is available. In other words, we consider training GNNs without know-
ing that they are used for selecting diverse molecules from ESOL, FreeSolv, and Lipop datasets. On the other 
hand, the structure-based descriptors, ECFP and MACCS keys, have nothing to do with the property labels of 
test datasets. Therefore, the existing structure-based methods select molecules in the same way as in the previous 
section. Unlike the previous QM9 case, we selected 100 molecules independently for each of ESOL, FreeSolv, and 
Lipop since the three datasets consist of different molecules.

In this setting, since target property labels and structures of molecules in test datasets are unavailable in 
advance, we want to select diverse molecules regarding a wide variety of unknown molecular characteristics. To 
this end, selection methods should not overfit to certain molecular characteristics; they should select molecules 
that are diverse regarding various aspects, including both property values and structures.

Table 3 shows the WDUD values achieved by each method for ESOL, FreeSolv, and Lipop, and Fig. 6 visual-
izes the results. SubMo-GNN and WG-GNN selected molecules more diversely than Random, even though the 
GNN was feeded no information on ESOL, FreeSolv, and Lipop. From the fact that WG-GNN achieved small 
WDUD values, we can say that molecules with diverse ESOL, FreeSolv, and Lipop values can be obtained by 
selecting molecules with diverse QM9 property values. On the other hand, although the structure-based meth-
ods achieved small WDUD values for FreeSolv and Lipop, they selected less diverse molecules than Random in 
ESOL. This implies that, as with the case of mu values in the QM9 dataset, structure-based methods can result 
in non-diverse selection regarding some property values.

Table 4 and Fig. 7 present MPD-MK and MPD-EF values for each dataset. SubMo-GNN achieved higher MPD 
values in all cases than WG-GNN and Random, and it performed comparably to the structure-based methods. On 
the other hand, WG-GNN failed to outperform Random in ESOL-MPD-MK and Lipop-MPD-MK. These results 
suggest that WG-GNN does not always perform well regarding the diversity of structures in the out-of-domain 
setting. By contrast, the results of SubMo-GNN imply that the GNN-based molecular vectors learned on the 
QM9 dataset well generalize to out-of-domain datasets and successfully convey information on both molecular 

Table 3.  WDUD values in the out-of-domain setting. For SubMo-GNN, WG-GNN, and Random, means and 
standard deviations over five trials are shown.

SUBMO-GNN WG-GNN MS-MK MM-MK MS-EF MM-EF Random

ESOL 0.7544± 0.0663 0.7213± 0.0260 1.638 1.364 1.428 1.180 0.9726± 0.1046

FreeSolv 2.180± 0.113 2.069± 0.045 2.354 2.130 2.060 1.991 2.201± 0.084

Lipop 0.3077± 0.0739 0.5349± 0.1040 0.1906 0.3488 0.2497 0.2145 0.6922± 0.0758

Figure 6.  Bar charts of WDUD values in the out-of-domain setting. All the values are rescaled so that those of 
Random become 1.
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properties and structures, thus enabling SubMo-GNN to select diverse molecules regarding both properties and 
structures even in the out-of-domain setting.

Note that in the above QM9 and out-of-domain experiments, only SubMo-GNN achieved better perfor-
mances than Random in all criteria. This suggests that the proposed combination of the log-determinant func-
tion maximization and the GNN-based descriptors, which are designed to represent both molecular properties 
and structures, is effective for delivering stable performances in diverse molecular selection regarding various 
aspects of molecules.

Discussion on MaxSum and MaxMin with GNN vectors and effects of normalization. The pre-
vious experiments confirmed that GNN-based molecular vectors can capture both properties and structures of 
molecules, which enabled our SubMo-GNN to select diverse molecules. In this additional experiment, we again 
use the QM9 training and test datasets and present an ablation study to see how the choice of selection methods 
affects outputs if GNN-based molecular vectors are used as descriptors. Moreover, as an attempt to elucidate how 
the black-box GNN-based vector generation affects the molecular selection phase, we take a closer look at norms 
of molecular vectors generated by GNNs and examine how the normalization procedure changes the behavior 
of selection methods.

In this section, all selection methods use GNN-based molecular vectors, and thus we denote our SubMo-
GNN simply by SubMo. We use the three selection methods: SubMo, MaxSum (MS), and MaxMin (MM). Each 
method employs GNN-based molecular vectors with and without normalization, denoted by “w/N” and “w/o 
N”, respectively, as molecular descriptors. Regarding MaxSum and MaxMin, the pairwise dissimilarity between 
two vectors is given by their Euclidian distance.

Table 5 presents WDUD values achieved by each method. SubMo and MS tended to achieve smaller WDUD 
values than MM. It also shows that normalization did not always yield better WDUD values. Only from the 
results of WDUD values, it may seem that MaxSum without normalization (MS w/o N) performs as well as (or 
better than) SubMo w/ and w/o N. As discussed below, however, the superiority of MS w/o N is brittle and it can 
result in non-diverse selection in some cases.

Figure 8 illustrates the relationship between property values and the norms of molecular vectors generated 
by a GNN without normalization. The vertical and horizontal axes indicate norms and property values, respec-
tively. The blue and red points correspond to all molecules in the test dataset and selected molecules, respectively. 
The green vertical lines show the means of property values in the test dataset. The figures imply the correlation 
between the norm and deviation of property values from their means. That is, GNNs tend to assign large norms 
to molecules whose property values are far from the means, and molecules with small norms tend to have prop-
erty values that are close to the means. This tendency suggests that GNNs convey the information of how far 
molecular property values are from the means by using norms of molecular vectors.

Since MS greedily maximizes the sum of pairwise dissimilarity values, it prefers selecting molecular vectors 
that are distant to each other. As a result, MS tend to select molecular vectors with large norms, as we can confirm 

Table 4.  MPD values in the out-of-domain setting. For SubMo-GNN, WG-GNN, and Random, means and 
standard deviations over five trials are shown.

SUBMO-GNN WG-GNN MS-MK MM-MK MS-EF MM-EF Random

ESOL-MPD-MK 0.8736± 0.0074 0.8153± 0.0087 0.9293 0.8854 0.9149 0.8617 0.8321± 0.0061

ESOL-MPD-EF 0.9590± 0.0032 0.9222± 0.0041 0.9690 0.9455 0.9791 0.9590 0.9204± 0.0036

FreeSolv-MPD-MK 0.8853± 0.0033 0.8541± 0.0034 0.9305 0.8982 0.9162 0.8991 0.8442± 0.0066

FreeSolv-MPD-EF 0.9570± 0.0030 0.9357± 0.0028 0.9693 0.9494 0.9775 0.9627 0.9226± 0.0056

Lipop-MPD-MK 0.7188± 0.0097 0.5860± 0.0127 0.8038 0.7519 0.7310 0.6764 0.5949± 0.0144

Lipop-MPD-EF 0.9056± 0.0038 0.8600± 0.0054 0.8843 0.8686 0.9362 0.9119 0.8401± 0.0048

Figure 7.  Bar charts of MPD values in the out-of-domain setting.
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in the rightmost column of Fig. 8. In the case of the QM9 dataset, GNNs assigned large norms to some molecules 
whose property values were close the means. Therefore, by simply selecting molecules with large norms as MS 
did, molecules with diverse property values can be obtained. However, depending on datasets and how GNNs 
are trained, the correlation between norms and property values can become much stronger. In such cases, MS 
cannot select molecules whose property values are close to the means, resulting in biased selection.

Compared with MS, SubMo selected molecular vectors with various norms. Therefore, even if norms and 
property values are strongly correlated, SubMo is expected to select molecules with more diverse property values 
than MS. As regards normalization, norms of vectors selected by SubMo w/ N were almost the same as those 
selected by SubMo w/o N, while there is a clear difference between MS w/ N and MS w/o N.

To conclude, no single selection method outperforms in all cases, and thus we should employ appropriate 
selection methods that are suitable for datasets at hand. Nevertheless, MaxSum seems to rely too much on norms 
of molecular vectors relative to SubMo, and thus we are required to carefully examine molecular vectors when 
using MaxSum. We finally emphasize that a notable advantage of SubMo is its theoretical guarantee. That is, the 
log-determinant function values achieved by the greedy algorithm is always at least 63% of optimal function 
values.

Table 5.  WDUD values in the ablation study. Since the GNN-based vector-generation process has 
randomness, the results of all methods are shown by means and standard deviation over five trials.

SUBMO w/o N SUBMO w/ N MS w/o N

mu (Debye) 10.47± 0.10 10.65± 0.06 11.88± 0.06

alpha (Bohr3) 38.76± 0.47 37.03± 0.07 37.64± 0.49

HOMO (Hartree) 0.02931± 0.00194 0.02786± 0.00049 0.04135± 0.00115

LUMO (Hartree) 0.02243± 0.00212 0.02905± 0.00133 0.03360± 0.00058

gap (Hartree) 0.03542± 0.00181 0.03541± 0.00138 0.05428± 0.00086

R2 (Bohr2) 373.4± 18.6 359.0± 7.8 211.2± 4.2

ZPVE (Hartree) 0.02800± 0.00125 0.02320± 0.00118 0.01542± 0.00097

U0 (Hartree) 93.39± 2.08 85.09± 1.47 68.82± 0.62

U (Hartree) 93.39± 2.08 85.09± 1.47 68.82± 0.62

H (Hartree) 93.39± 2.08 85.09± 1.47 68.82± 0.62

G (Hartree) 93.40± 2.08 85.10± 1.47 68.83± 0.62

Cv (cal/(mol K)) 5.788± 0.155 5.593± 0.129 4.893± 0.091

ZPVE/Nmode (Hartree) 0.001572± 0.000008 0.001533± 0.000006 0.001547± 0.000004

U0/Nelec (Hartree) 0.3956± 0.0293 0.3848± 0.0087 0.2163± 0.0139

U/Nelec (Hartree) 0.3956± 0.0293 0.3848± 0.0087 0.2163± 0.0139

H/Nelec (Hartree) 0.3956± 0.0293 0.3848± 0.0087 0.2163± 0.0139

G/Nelec (Hartree) 0.3955± 0.0293 0.3848± 0.0087 0.2163± 0.0139

Cv/Nmode (cal/(mol K)) 0.4419± 0.0068 0.4681± 0.0031 0.4521± 0.0016

MS w/ N MM w/o N MM w/ N

mu (Debye) 11.21± 0.21 11.15± 0.14 10.69± 0.18

alpha (Bohr3) 36.63± 0.36 38.86± 0.59 39.05± 0.73

HOMO (Hartree) 0.03101± 0.00128 0.03375± 0.00147 0.03067± 0.00100

LUMO (Hartree) 0.03385± 0.00228 0.02422± 0.00046 0.03140± 0.00151

gap (Hartree) 0.04084± 0.00300 0.04108± 0.00159 0.04061± 0.00267

R2 (Bohr2) 316.2± 20.9 342.0± 15.3 361.9± 12.6

ZPVE (Hartree) 0.01677± 0.00088 0.02501± 0.00176 0.02896± 0.00076

U0 (Hartree) 71.93± 2.06 89.49± 2.91 87.40± 2.20

U (Hartree) 71.93± 2.06 89.49± 2.91 87.40± 2.20

H (Hartree) 71.93± 2.06 89.49± 2.91 87.40± 2.20

G (Hartree) 71.94± 2.06 89.50± 2.91 87.40± 2.20

Cv (cal/(mol K)) 5.299± 0.135 6.124± 0.110 5.877± 0.132

ZPVE/Nmode (Hartree) 0.001497± 0.000006 0.001565± 0.000011 0.001553± 0.000006

U0/Nelec (Hartree) 0.3487± 0.0407 0.3785± 0.0194 0.4525± 0.0141

U/Nelec (Hartree) 0.3487± 0.0407 0.3785± 0.0194 0.4525± 0.0141

H/Nelec (Hartree) 0.3487± 0.0407 0.3785± 0.0194 0.4525± 0.0141

G/Nelec (Hartree) 0.3487± 0.0407 0.3784± 0.0194 0.4525± 0.0141

Cv/Nmode (cal/(mol K)) 0.4812± 0.0013 0.4632± 0.0051 0.4777± 0.0036
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Detailed experimental settings and running times. We trained Attentive FP with the following 
hyperparameters: radius = 2, T = 2, fingerprint dimension = 280, dropout = 0.5, weight decay = 0, learning rate 
= 0.0004, and epoch = 300, where radius and T are the number of times the hidden states are updated in the 
message passing and readout phases, respectively. In the QM9 experiment, the size of the matrix X in the log-
determinant function is 13388× 280 (the number of candidates × the dimension of molecular vectors). In the 
ESOL, FreeSolv, and Lipop experiments, the sizes of X are 1128× 280 , 642× 280 , and 4200× 280 , respectively.

Figure 8.  Scatter plots of norms vs. property values. Blue points correspond to all molecules in the test dataset, 
and red points indicate molecules selected by each method.
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We performed computational experiments on Amazon EC2 P3.2xlarge. It has a single Tesla V100 GPU 
(16GB) and 8 vCPUs (61GB). In the QM9 experiments, training of GNN took 2900 seconds. For selecting mol-
ecules, SubMo-GNN, WG-GNN, MS-MK, MM-MK, MS-EF, and MM-EF took 5.1, 5700, 240, 240, 200, and 
200 s, respectively. In the ESOL experiments, SubMo-GNN, WG-GNN, MS-MK, MM-MK, MS-EF, and MM-EF 
took 0.56, 650, 1.7, 1.7, 1.3, and 1.3 s, respectively. In the FreeSolv experiments, they took 0.51, 420, 0.57, 0.57, 
0.40, and 0.40 s, respectively, in the same order. In the Lipop experiments, they took 0.58, 2600, 26, 26, 35, and 
36 s, respectively, in the same order. Note that while the greedy algorithm in SubMo-GNN used a specialized 
implementation  technique56, the other algorithms are implemented in a naive manner and thus have room for 
acceleration. Therefore, the presented running times are only for reference. Faster implementation of the baseline 
algorithms is beyond the scope of this paper.

Conclusion
We addressed the problem of selecting diverse molecules for facilitating chemical space exploration. Our method 
consists of two steps: construction of molecular vectors using the GNN and selection of molecules via maximizing 
submodular functions defined with molecular vectors. Owing to the use of GNNs trained with property predic-
tion tasks, we can take both molecular structures and properties into account for selecting diverse molecules. 
Moreover, the submodular function maximization framework enables the greedy algorithm to return subsets of 
molecules that are mathematically guaranteed to be nearly optimal. We also introduced a new evaluation crite-
rion, the Wasserstein distance to uniform distributions (WDUD), to measure the diversity of sets of molecules 
based on property values. Computational experiments on the QM9 dataset showed that our method could suc-
cessfully select diverse molecules as regards property values. Regarding the diversity of molecular structures, it 
performed comparably to the existing structure-based methods (MaxSum and MaxMin with MACCS keys and 
ECFP). Experiments with out-of-domain settings demonstrated that our method with the GNN trained on the 
QM9 dataset could select molecules with diverse property values and structures from out-of-domain datasets: 
ESOL, FreeSolv, and Lipop. To conclude, our diverse selection method can help researchers efficiently explore 
the chemical space, which will bring great advances in searching for novel chemical compounds and reactions.

We finally mention some future directions. In this study, we evaluated the diversity of molecular properties 
using the 12 properties of the QM9 dataset, ESOL, FreeSolv, and Lipop. On the other hand, molecular proper-
ties used in medicinal chemistry, e.g., Pharmacokinetic properties (logP), drug-likeness (QED), and biological 
activities, are important in the field of virtual screening. Although the goal of diverse selection is different from 
that of virtual screening, evaluating diverse selection methods based on properties such as logP and QED may 
offer an interesting direction of study. Mathematically, studying the relationship between the log-determinant 
function value and the WDUD value is interesting future work.

Data availability
Source codes of our method are available at https:// github. com/ tomot omona kanaka/ SUBMO. git, which were 
implemented in Python 3.7.10. We converted SMILES into MACCS key, ECFP, and molecular graphs by using 
RDKit 2018.09.1, which is available at https:// www. rdkit. org/. The QM9 dataset was downloaded from Xiong’s 
GitHub repository (https:// github. com/ OpenD rugAI/ Atten tiveFP). The ESOL, FreeSolv, and Lipop datasets were 
downloaded through  DeepChem62. GNNs were implemented using PyTorch 1.8.063, DGL 0.5.364, and DGL-
LifeSci 0.2.6 (available at https:// github. com/ awsla bs/ dgl- lifes ci).
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