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In the field of insect endocrinology, juvenile hormone (JH) is one of the most wondrous
entomological terms. As a unique sesquiterpenoid hormone produced and released
by the endocrine gland, corpus allatum (CA), JH is a critical regulator in multiple
developmental and physiological processes, such as metamorphosis, reproduction, and
behavior. Benefited from the precise genetic interventions and simplicity, the fruit fly,
Drosophila melanogaster, is an indispensable model in JH studies. This review is aimed
to present the regulatory factors on JH biosynthesis and an overview of the regulatory
roles of JH in Drosophila. The future directions of JH studies are also discussed, and a
few hot spots are highlighted.

Keywords: juvenile hormone, corpus allatum, methoprene-tolerant, Drosophila melanogaster, metamorphosis,
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INTRODUCTION

Juvenile hormone (JH) primarily produced and secreted from the corpus allatum (CA),
fulfills essential roles in many aspects of insect physiology. JH was originally discovered by
Wigglesworth (1934) in the triatomine bug, Rhodnius prolixus, to be associated with regulating
metamorphosis. Subsequently, JH has been extensively studied in insects, where multiple
physiological processes are demonstrated to be controlled by JH, such as reproduction, caste
determination and differentiation, diapause, immunity, aging, and behavior (Goodman and
Cusson, 2012; Rivera-Perez et al., 2020).

Unlike some holometabolous insects, the application of JH or JH analogs to the fruit fly,
Drosophila melanogaster (D. melanogaster), exhibits prolongation of the final larval instar or
lethality during pupal-adult transition instead of causing extra larval molting (Bryant and Sang,
1968; Ashburner, 1970; Madhavan, 1973; Postlethwait, 1974; Riddiford and Ashburner, 1991).
Despite the disadvantage of studying JH on metamorphosis, Drosophila has been developed as a
powerful model system to investigate molecular mechanisms of JH action on a diverse range of
biological processes, by capitalizing on a vast array of powerful genetic and molecular approaches
(Noriega, 2014; Li K. et al., 2019; Riddiford, 2020). This review attempts to provide an overview
of JH research in Drosophila and outline the potential of this organism to understand hormonal
regulation of insect development.
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JUVENILE HORMONE METABOLISM

Corpus Allatum
The Drosophila CA, which originates from the migration of
ectodermal cells in the maxilla and labium during embryogenesis
controlled by Hox proteins (Sánchez-Higueras et al., 2014), is
an anteromedial subtissue of the ring gland adjacent to the
prothoracic gland (PG) and corpora cardiac (CC) during the
larval stage (King et al., 1966). CA cells are maintained to be the
progenitor of the adult CA, whereas PG is broken down during
metamorphosis (Dai and Gilbert, 1991). The mitochondria
and smooth endoplasmic reticulum (SER) in the CA cells are
considered to be major organelles involved in JH biosynthesis
(King et al., 1966; Dai and Gilbert, 1991). CA cell size is
proportional to the number of cellular components, which are
likely correlated with the production capacity of JH, but the only
increase of CA size might not be the principal factor for JH
biosynthesis (Zhang J. et al., 2021).

Studies have reported that JH production by the CA
maximizes at the larval stage, then declines dramatically after
pupariation, sustains a low level in the inactive CA cells of pupa,
and increases again after adult emergence (Richard et al., 1989a,b;
Altaratz et al., 1991; Dai and Gilbert, 1991). Over 2 days after
eclosion, the JH titer appears to be decaying once again (Zhang
S. X. et al., 2021). Even so, it is also necessary to perform more
accurately qualitative analysis to study the JH biosynthesis in the
CA at the different timeline that relies on the development of
new technologies (Rivera-Perez et al., 2012). The Aug21-Gal4 is a
CA-specific driver (Siegmund and Korge, 2001), which was used
for either complete (Liu et al., 2009; Riddiford et al., 2010) or
incomplete genetic ablation (Gruntenko et al., 2010, 2012; Bilen
et al., 2013; Yamamoto et al., 2013), that impaired JH biosynthesis.
The destruction of the CA for manipulating endogenous JH
allowed us to examine the role of JH during different stages.

Juvenile Hormone Biosynthesis
In Drosophila, three sesquiterpenoid products, methyl farnesoate
(MF), JH III, and the principal form JH bisepoxide (JHB3),
are produced in the CA via the mevalonate pathway (Richard
et al., 1989a,b; Bellés et al., 2005; Harshman et al., 2010; Jones
et al., 2010; Wen et al., 2015). To date, though the entire JH
biosynthetic pathway in Drosophila has not been fully defined,
the majority of enzymes have been characterized in the steps from
acetyl-CoA to JHs.

Juvenile hormone biosynthesis involves multiple enzymatic
catalytic reactions and is conventionally divided into early
and late steps (Bellés et al., 2005). The early steps follow
the mevalonate pathway to form farnesyl pyrophosphate
(FPP). The 3-hydroxy-3-methylglutaryl-CoA synthase (HMG-
S), 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR), and
Farnesyl diphosphate synthase (FPPS) are important regulatory
enzymes in the steps of FPP formation (Bellés et al., 2005). In
the late steps, farnesoic acid (FA) is converted to MF, JH III,
and JHB3. JH acid methyltransferase (JHAMT) is identified as
a rate-limiting enzyme that converts FA and JH acid to MF and
JH III in insects via in vitro assays (Shinoda and Itoyama, 2003;

Niwa et al., 2008; Defelipe et al., 2011). Interestingly, knockout
or overexpression of Jhamt in the Drosophila CA has no
effect on MF or JH III biosynthesis but alters JHB3 titer
in vivo (Bendena et al., 2011; Wen et al., 2015), suggesting that
JHAMT is only responsible for JHB3 biosynthesis in Drosophila.
Alternately, JHB3 is synthesized by a P450-mediated epoxidation
reaction (Moshitzky and Applebaum, 1995). Cytochrome P450
6g2 (Cyp6g2) has emerged as a promising candidate owing to
the performance of in situ hybridization and RNAi experiments
(Chung et al., 2009; Christesen et al., 2017), while a Cyp6g2 null
allele and a Jhamt Cyp6g2 double mutant are urgently required
for the understanding JH biosynthesis in Drosophila.

Regulation of Juvenile Hormone
Biosynthesis
Nowadays, compared to the classical insect model in JH earlier
research, Drosophila with powerful genetic manipulation has
become the leader in the search for the regulatory mechanism
of JH biosynthesis (Noriega, 2014). In the past 20 years, much
progress has been made in understanding the regulation of
JH biosynthesis, and various factors have been identified in
Drosophila, such as insulin (Tatar et al., 2001; Tu et al., 2005;
Belgacem and Martin, 2007), ecdysteroids (Liu et al., 2018),
miRNAs (Qu et al., 2017; Zhang J. et al., 2021), biogenic amines
(Chiang et al., 2002; Gruntenko et al., 2005, 2007; Huang et al.,
2011), Decapentaplegic (Dpp) (Huang et al., 2011), Ecdysis-
triggering hormone (ETH) (Meiselman et al., 2017, 2018), and
sex peptide (SP) (Moshitzky et al., 1996; Bontonou et al., 2015;
Schwenke and Lazzaro, 2017). In essence, JH biosynthesis by
the CA is considered to be controlled at the level of the
expression of JH biosynthetic enzymes (Hiruma and Kaneko,
2013). Nevertheless, the transcriptional regulatory mechanism of
JH biosynthesis is nearly unknown in other insects, Drosophila
might be a useful tool to make breakthroughs in this direction.

In insects, nutrition, via the insulin/insulin-like growth factor
(IIS)/target of rapamycin (TOR) signaling pathway, mediates
its effect on body size partially by regulating JH biosynthesis
at specific points during development (Koyama et al., 2013;
Zhu et al., 2020). Mutation of Drosophila insulin receptor
(InR) decreases JH biosynthesis (Tatar et al., 2001; Tu et al.,
2005). Likewise, CA-specific silencing of InR suppresses Hmgcr
expression (Belgacem and Martin, 2007), while ectopic activation
of the PI3K is sufficient to promote Jhamt expression and CA cell
growth (Zhang J. et al., 2021). In response to starvation, increased
levels of ecdysteroids, especially 20-hydroxyecdysone (20E),
have been demonstrated to negatively regulate JH biosynthesis
(Terashima et al., 2005; Meiselman et al., 2017, 2018). Moreover,
inhibition of 20E signaling in the CA leads to elevated JH
biosynthesis by upregulating Jhamt and Hmgcr, which, in turn,
prevents ecdysone biosynthesis in the PG and 20E-induced
metamorphosis (Liu et al., 2018; Zhang et al., 2018).

MicroRNAs are a major group of small endogenous non-
coding RNAs that act as post-transcriptional regulators of JH
biosynthesis and subsequent JH signaling (Qu et al., 2017, 2018).
By using high-throughput sequencing, the expression profiles of
Drosophila microRNAs have been identified in the ring gland.
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In combination with the performance of a two-tiered screening
approach, miR-8 has been identified as a positive regulator of CA
growth and JH biosynthesis (Zhang J. et al., 2021). In addition,
over-expression of Bantam using the CA-specific drivers results
in the inhibition of Jhamt expression, a decrease of JH titer, and
pupal lethality (Qu et al., 2017; Zhang J. et al., 2021). The research
studies on JH biosynthesis regulated by microRNAs are still in the
initial stage and worth exploring in the future.

Neurons can directly innervate the CA to affect JH
biosynthesis by releasing neurotransmitters, in particular,
biogenic amines (Siegmund and Korge, 2001; Chiang et al., 2002;
Bendena et al., 2020). For example, dopamine influences JH
production (Gruntenko et al., 2005, 2007). Moreover, glutamate
binds to and activates N-methyl-D-aspartate (NMDA) receptors
in the Drosophila CA (Chiang et al., 2002), and activation of the
NMDA signaling in the CA indirectly stimulates JH biosynthesis
through Dpp signaling-mediated Jhamt expression (Huang et al.,
2011). The regulation of JH production also occurs through the
actions of neuropeptides (Bendena et al., 2020). Allatostatin-C
(AST-C) acts on its receptor (AST-CR1 and AST-CR2) in the CA
to inhibit JH biosynthesis (Wang et al., 2012). Alternatively, the
neuropeptide ETH, released by endocrine Inka cells, stimulates
JH biosynthesis through action on CA in which the ETH receptor
gene is expressed (Meiselman et al., 2017). At the adult stage, the
male SP with sperm is transferred to the female during mating,
and then SP activates JHB3 production in the CA (Moshitzky
et al., 1996; Bontonou et al., 2015; Schwenke and Lazzaro, 2017).
However, it should be noted that a subset of neurons directly
projected to the adult CA might not participate in the regulation
of JH biosynthesis, such as hugin neurons (Mizuno et al., 2021).

Over the years, we have learned nothing about how
the expression of JH biosynthetic enzymes is regulated by
transcription factor (TF) in Drosophila except for apterous (ap)
(Postlethwait and Weiser, 1973; Postlethwait and Jones, 1978;
Tompkins, 1990; Altaratz et al., 1991; Ringo et al., 1992; Shtorch
et al., 1995). Mutation of ap leads to a decrease in JH titer,
delayed maturation of adult fat body, and male courtship defects
(Tompkins, 1990; Ringo et al., 1992; Shtorch et al., 1995). For
further research, integrative approaches, such as transcriptomics,
proteomics, and large-scale genetic screens, are promising to
identify more TFs implicated in direct the regulation of JH
biosynthetic enzymes.

Juvenile Hormone Degradation
Two JH metabolizing enzymes, JH esterase (JHE), largely present
in the hemolymph, and JH epoxide hydrolase (JHEH), found in
tissues, have been identified in Drosophila (Campbell et al., 1992;
Kethidi et al., 2005; Crone et al., 2007). JHE or JHEH causes
hydrolysis of the methyl ester or epoxide moiety of JH resulting in
the conversion of JH into JH acid or JH diol, respectively (Kamita
and Hammock, 2010). The developmental expression levels are
quantified and found that JHE mRNA levels increase during JH
III peaks in the hemolymph and decrease during ecdysteroid
peaks in the hemolymph (Kethidi et al., 2005), suggesting JHE
is also controlled by these hormones. Over-expression of a JHE-
binding protein resulted in adult phenotypes is associated with
decreased JH (Liu et al., 2008). Thus, the balance between JH

biosynthesis and degradation is contributed to the stringent
regulation of JH, which is essential for normal insect development
and metamorphosis.

JUVENILE HORMONE SIGNALING
TRANSDUCTION

Intracellular Receptor
The discovery of gene Methoprene-tolerant (Met) by Wilson and
Fabian nearly 35 years ago in Drosophila (Wilson and Fabian,
1986) was a milestone event for understanding JH signaling
transduction, although the key features of Met as the JH receptor
were underscored in a non-fruit fly model (Konopova and Jindra,
2007). In 1986, the mutation at this locus was obtained by
Wilson lab using mutagenesis screen, and they showed that
Drosophila with loss of Met is highly resistant to the toxic effects
of JH analog methoprene (Wilson and Fabian, 1986). Unlike the
lethality by CA ablation (Liu et al., 2009; Riddiford et al., 2010),
Met null mutation was viable with subtle defects in phenotypes
(Wilson and Fabian, 1986; Ashok et al., 1998; Wilson and Ashok,
1998). It seemed that Met encodes a non-vital protein and
another gene appears to function redundantly in JH reception
(Wilson and Ashok, 1998).

As the members of the basic helix-loop-helix (bHLH)-Per-
Arnt-Sim (PAS) family of TFs, Met is derived from the ancestral
gene germ cell-expressed (Gce) (Baumann et al., 2010). Both Met
and Gce bind to JH III and MF and JH analogs with high
affinity in the PAS-B domain (Shemshedini and Wilson, 1990;
Ashok et al., 1998; Miura et al., 2005; Charles et al., 2011; Jindra
et al., 2015b; Bittova et al., 2019). They form homodimers or
heterodimers and JH reduces this dimerization (Godlewski et al.,
2006). Defective phenotypes, such as precocious and enhanced
programmed cell death (PCD) and pupal lethality in Met/Gce
double mutant, are similar to those found in JH-deficient flies
(Liu et al., 2009; Abdou et al., 2011). Importantly, they could
be rescued by exogenous JH analog pyriproxyfen in JH-deficient
flies but not in Met/Gce double mutant (Abdou et al., 2011). The
requirement of direct JH-binding capacity to Met/Gce in vivo
for JH action is required for the fly normal development (Jindra
et al., 2015b). All findings together demonstrate that Met and Gce
mediate the effects of JH as the intracellular JH receptor.

Signaling Transduction
Identification of JH receptor accelerates the research studies on
JH intracellular signaling transduction in Drosophila. In detail,
Met heterodimerizes with another bHLH-PAS protein Taiman
(Tai; steroid response coactivator, SRC or βFtz-F1 Interacting
Steroid Receptor Coactivator, FISC) after binding of JH (Li
et al., 2011). βFTZ-F1 is also an essential binding protein of
Met/Gce for JH signaling (Dubrovsky et al., 2011; Bernardo and
Dubrovsky, 2012). As a TF, Met is predominantly localized in
the nuclei of cultured cells (Miura et al., 2005; Greb-Markiewicz
et al., 2011) and tissues (Pursley et al., 2000). The chaperone
heat shock protein 83 (Hsp83) facilitates this Met nuclear import
by physically interacting with its PAS-B and bHLH domains
(He et al., 2014). Subsequently, Nucleoporin 358 kD (Nup358)
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promotes the JH-Met-Hsp83 complex to transport into the
nucleus dependent on importin β (He et al., 2017). Finally, the
Met-cofactors complex binds to the JH response region (JHRR)
directly and regulates the expression of JH response genes (He
et al., 2014, 2017). The zinc-finger TF Krüppel-homolog 1 (Kr-
h1) acts as an early JH-response gene and is recognized as the
anti-metamorphosis factor (Minakuchi et al., 2008; Huang et al.,
2011; Liu et al., 2018).

PHYSIOLOGICAL ACTIONS OF
JUVENILE HORMONE INTRACELLULAR
SIGNALING

Metamorphosis
Juvenile hormone was originally discovered for its capacity to
prevent metamorphosis (Wigglesworth, 1934; Riddiford, 2020).
The prominent metamorphic events in Drosophila include the
destruction of most larval structures and tissue remodeling. 20E
orchestrates these diverse cellular events, and JH prevents 20E-
induced metamorphosis via the JH receptor and Kr-h1, both of
which are critical for the normal development of insects (Jindra
et al., 2013, 2015a). As the main organ of the intermediate
metabolism of insects, the fat body plays a central role in
the integration of hormonal signals to regulate metamorphosis
(Li S. et al., 2019). For example, Kr-h1 transduces the JH
intracellular signal to repress 20E responsive genes, namely,
Broad-complex (Br-C) and ecdysone-inducible proteins E93 (E93),
which subsequently inhibit 20E-induced precocious program cell
death of the larval fat body (Minakuchi et al., 2008; Abdou
et al., 2011; Belles and Santos, 2014; Liu X. et al., 2015).
Moreover, precocious fat body cell dissociation was observed in
both JH-deficient animals and Met/Gce double-mutant animals
(Liu et al., 2009; Abdou et al., 2011). Kr-h1 represses matrix
metalloproteinases (Mmps) expression and thus prevents fat
body cell dissociation during the larval-prepupal transition (Jia
et al., 2017). Likewise, JH signaling prevents the precocious
formation of adult organs, such as the optic lobe. JH removal
by CA ablation resulted in precocious optic lobe development
during the prepupal period whereas JH application suppressed
this visual system defect (Riddiford et al., 2010, 2018). The direct
and transient repression of Kr-h1 by Orthodenticle (Otd) and
Ecdysone receptor (EcR) is required for correct photoreceptor
maturation, also exhibiting the anti-metamorphosis activity of
Kr-h1 in remodeling neurons (Fichelson et al., 2012). With the
generation of genetic tools for JH research (He et al., 2014;
Baumann et al., 2017), more functions of JH in target tissues
during metamorphosis or other processes will be uncovered.

On the other hand, JH can suppress ecdysone synthesis of
the PG in vitro and in vivo (Richard and Gilbert, 1991; Liu
et al., 2018; Zhang et al., 2018). Knockdown of Kr-h1 in the
PG results in precocious metamorphosis and pupal lethality,
implying the direct regulatory function on ecdysone synthesis
(Danielsen et al., 2016; Liu et al., 2018). Indeed, JH directly targets
PG to inhibit ecdysone biosynthesis by reducing steroidogenesis
autoregulation, PG size, and expression of the steroidogenic
enzymes (Liu et al., 2018; Zhang et al., 2018). At the epigenetic

level, JH impairs polycomb repressive complex 2 (PRC2)-
mediated histone H3 lysine 27 (H3K27) methylation and thereby
induces hairy expression, and thus inhibits ecdysone biosynthesis
by repressing expression of the steroidogenic enzyme to regulate
metamorphosis (Yang et al., 2021). The epigenetic regulatory
mechanism of JH action will certainly shed light on hormone
regulation in animals.

Reproduction
Juvenile hormone evolves as a gonadotrophic hormone
(Dubrovsky et al., 2002; Riddiford, 2012; Santos et al., 2019),
which has been implicated in vitellogenesis and yolk protein
uptake in Drosophila females (Postlethwait and Weiser, 1973;
Bownes, 1989; Saunders et al., 1990; Soller et al., 1999; Riddiford,
2012), larval fat body histolysis (Postlethwait and Jones, 1978;
Yamamoto et al., 2013), and male accessory gland protein
synthesis (Yamamoto et al., 1988; Shemshedini et al., 1990;
Wolfner et al., 1997; Wilson et al., 2003).

Previous studies have shown that incomplete ablation of the
CA or mutation of Jhamt results in the reduction of JH level with
an associated reduction in fecundity and ovary size (Gruntenko
et al., 2010; Wen et al., 2015). These reproductive deficiencies
are caused by decreases of JH-induced Vg production in the fat
body and Vg uptake by the oocytes (Luo et al., 2021) or probably
due to reduced germline stem cells (Luo et al., 2020). A recent
study reports that the single null mutant of JH receptors, Met27

or Gce2.5K , also shows decreased fecundity but with abnormal
egg shape and ovary size gradually increase. Subsequently, a
novel mechanism for JH-regulated Drosophila reproduction is
uncovered that JH intracellular signaling induces Laminin or
Collagen IV gene expressions in ovarian muscle or fat body
cells, respectively, which are contributed to the assembly of
ovarian muscle extracellular matrix (ECM) that is indispensable
for ovarian muscle contraction, then ovarian muscle contraction
externally generates a mechanical force to promote ovulation and
maintain egg shape (Luo et al., 2021).

Behavior
Besides the roles in metamorphosis and reproduction, JH is also
known to play roles in the behaviors of Drosophila. After eclosion,
JH regulates the maturation of female receptivity by promoting
the production of sex pheromone (Manning, 1966; Ringo et al.,
1991; Bilen et al., 2013). As for mature males, knockdown of
Jhamt significantly reduced courtship that could be rescued
by the application of JH analogs, suggesting the physiological
role of JH in male courtship behavior (Wijesekera et al., 2016).
Moreover, JH potentiates the sensitivity of a pheromone sensing
olfactory receptor OR47b to maximize courtship success (Lin
et al., 2016). The activation of Ca2+/calmodulin-dependent
protein kinase I (CaMKI) and CREB-binding protein (CBP)
enhances the efficacy of JH in male Or47b neurons to modulate
pheromone detection and thereby regulate courtship behavior
(Sethi et al., 2019). Interestingly, there is a piece of evidence that
JH suppresses mating behavior by activating TF cyclic adenosine
3’,5’-monophosphate (cAMP) response element-binding protein
2 (CREB2) in juvenile males (Zhang S. X. et al., 2021), suggesting
the complex regulatory function of JH on courtship behavior.
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Additionally, JH signaling influences the short-term and long-
term courtship memory of males by acting on diverse neural
circuits (Lee et al., 2017; Lee and Adams, 2021). Furthermore,
JH signaling controls sexual dimorphic behaviors, such as
locomotion and sleep (Belgacem and Martin, 2007; Wu et al.,
2018; Wu B. et al., 2021). Investigating the JH-regulated sexually
dimorphic behaviors emerges as a promising direction in JH
studies in Drosophila.

Conceivably, the known JH intracellular receptors, Met and
Gce, mediate the action of JH on different behaviors but their
functions are not fully redundant. For females, JH regulates
mating and pheromone production primarily via Met (Bilen
et al., 2013). For males, on the one hand, Met is necessary
for both normal fertility and courtship behavior through
modulating Or47b sensitivity (Wilson et al., 2003; Lin et al.,
2016). On the other hand, Met expression in dopaminergic
(DA) neurons and mushroom body (MB) γ lobe neurons
is essential for courtship short-term and long-term courtship
memory, respectively (Lee et al., 2017; Lee and Adams, 2021).
However, Gce is dispensable for long-term courtship memory
(Lee and Adams, 2021). In addition, Met mutant increases sleep

in both males and females, but Gce deletion mutant exhibits
sexually dimorphic effects on sleep (Wu et al., 2018; Wu B.
et al., 2021). There are lots of possible factors for their different
functions, for example, the differentiated subcellular and tissue
distribution (Baumann et al., 2017; Kolonko et al., 2020) or the
disruption of Met-Gce dimerization by JH (Godlewski et al.,
2006; Zhang S. X. et al., 2021).

JUVENILE HORMONE MEMBRANE
SIGNALING AND ACTION

Juvenile hormone might rapidly exert non-genomic actions
through putative plasma membrane receptors in a wide range
of insects’ studies (Jindra et al., 2015a). For example, a potential
member(s) of the receptor tyrosine kinase (RTK) family might
function as the membrane receptor of JH in Diptera insects,
namely, Drosophila (Liu P. et al., 2015). This JH-RTK pathway
activates the phospholipase C (PLC) pathway, leading to the
phosphorylation and activation of calcium/CaMKII and protein
kinase C (PKC), which subsequently induce phosphorylation

FIGURE 1 | Recent studies on JH studies in Drosophila. Examples of various factors affecting JH biosynthesis in corpus allatum (CA) cells at the larval or adult stage.
JH employees both intracellular and membrane receptors for signal transduction. JH signaling plays an essential role in multiple physiological processes. JH, juvenile
hormone.
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of Met and Tai, thus regulating the activity of JH intracellular
signaling (Liu P. et al., 2015; Ojani et al., 2016). However, the
study on the JH membrane pathway in Drosophila is very limited.
About three decades ago, Yamamoto et al. (1988) showed that
JH regulates protein synthesis in the male accessory glands
by activating the PKC pathway, implying the existence and
importance of JH membrane signaling (Yamamoto et al., 1988).
Until 2021, using genetics and quantitative phosphoproteomics
methods, Gao et al. (2021) discovered that JH phosphorylated
ultraspiracle protein (USP) at Ser35 through the RTK-PLC-
PKC pathway to maximize 20E signal transduction even in the
absence of JH intracellular signaling (Gao et al., 2021). It will be
beneficial to identify the JH membrane receptors and advance our
understanding of the complex JH signaling network.

CONCLUDING REMARKS

Given that the roles of JH are multidirectional and complex,
model organisms, such as Drosophila and other insects, provide
an ideal framework to understand the molecular and cellular
mechanisms of JH action regulating insect physiology in
response to diverse environmental cues. In this review, we have
summarized the knowledge that known factors controlling JH
biosynthesis, JH signaling transduction, and its essential impacts
on physiological outputs focus on its roles in metamorphosis,
reproduction, and behaviors (Figure 1). Based on the accessibility
of genetic tools and simplicity of genome, the fruit fly D.
melanogaster has made great contributions to the field of JH,
particularly in the discovery of JH intracellular receptors. Despite
that, some questions still need to address in the future.

Although JH action has been investigated mostly in the
postembryonic development, its embryonic functions remain
unclear. Suppression of JH biosynthesis or JH signaling
in Bombyx mori or Tribolium castaneum results in minor
embryonic developmental defects (Shinoda and Itoyama, 2003;
Daimon et al., 2015). Conversely, JH signaling is necessary
for embryogenesis in some hemimetabolous species, namely,
Blattella germanica (Fernandez-Nicolas and Belles, 2017). It
reveals the complexity of JH action on embryonic development
in different species. In Drosophila, the larvae can survive up to the
end of the larval stage whether they are genetically allatectomized,
Met/Gce double mutant, or Jhamt mutant (Liu et al., 2009;
Riddiford et al., 2010; Abdou et al., 2011; Wen et al., 2015). It

seems that JH signaling is unimportant for embryonic or even
early larval development in this species. However, a recent study
reports that JH signaling is activated in mid-embryogenesis prior
to CA development, and JH is required for migrating germ cells
to reach the somatic gonad via a non-canonical pathway (Barton
et al., 2021). Despite JH embryonic functions are relatively minor,
Drosophila is still a powerful model to explore how JH affects
embryonic development.

Our current understanding of JH actions is largely based
on phenotypic defects induced by JH treatment or removal,
and mutations or RNAi of JH signaling, which have limitations
to analyze the JH functions in detail since more putative
components of the JH signaling cascades, such as binding
proteins and novel targets of JH intracellular receptors, putative
JH membrane receptor, and targets of Kr-h1, need to be
identified and characterized. Moreover, in Drosophila, Kr-h1 is
mainly considered as the transcriptional repressor to antagonize
20E signaling, whereas it also functions as a transcriptional
activator in the adult Locusta migratoria by recruiting CBP
after phosphorylation (Wu Z. et al., 2021). The evolutionary
conservation and more detailed analysis of transcriptional
activation activity of Kr-h1 in Drosophila, and post-translational
modification (Kim et al., 2021; Wu Z. et al., 2021), will further
dissect the JH functions in directing insect development.
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