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Abstract Uncovering the functionally essential variations related to tumorigenesis and tumor pro-

gression from cancer genomics data is still challenging due to the genetic diversity among patients,

and extensive inter- and intra-tumoral heterogeneity at different levels of gene expression regulation,

including but not limited to the genomic, epigenomic, and transcriptional levels. To minimize the

impact of germline genetic heterogeneities, in this study, we establish multiple primary cultures from

the primary and recurrent tumors of a single patient with hepatocellular carcinoma (HCC). Multi-

omics sequencing was performed for these cultures that encompass the diversity of tumor cells from

the same patient. Variations in the genome sequence, epigenetic modification, and gene expression

are used to infer the phylogenetic relationships of these cell cultures. We find the discrepancy among

the relationships revealed by single nucleotide variations (SNVs) and transcriptional/epigenomic pro-

files from the cell cultures. We fail to find overlap between sample-specific mutated genes and differ-

entially expressed genes (DEGs), suggesting that most of the heterogeneous SNVs among tumor

stages or lineages of the patient are functionally insignificant. Moreover, copy number alterations

(CNAs) and DNAmethylation variation within gene bodies, rather than promoters, are significantly

correlated with gene expression variability among these cell cultures. Pathway analysis of CNA/DNA

methylation-related genes indicates that a single cell clone from the recurrent tumor exhibits distinct

cellular characteristics and tumorigenicity, and such an observation is further confirmed by cellular

experiments both in vitro and in vivo. Our systematic analysis reveals that CNAs and epigenomic

changes, rather than SNVs, are more likely to contribute to the phenotypic diversity among subpop-

ulations in the tumor. These findings suggest that new therapeutic strategies targeting gene dosage and

epigeneticmodification should be considered in personalized cancermedicine. This culturemodelmay

be applied to the further identification of plausible determinants of cancer metastasis and relapse.
Introduction

Most large-scale cancer omics studies aim to discover function-

ally significant alterations that contribute to cancer pheno-
types, or to characterize cancer evolution during
tumorigenesis and progression before or after treatment, for

potential personalized medicine [1–3]. The integration of
multi-omics data and large cohorts become necessary due to
the emerging cancer hallmarks based on in-depth multiple

genetic and epigenetic studies on somatic tumor cells [4–7].
However, it appears that when larger sample population is
interrogated and massive data are produced, the number of
false positive genes, which often lead to enormous complexity

in interpreting molecular mechanisms, also increases remark-
ably [1,8]. Therefore, although tumorigenesis is a process of
phenotypic convergence, it remains challenging to identify its

common drivers due to high levels of heterogeneity within
and among cancer patients [2,9].

One of the explanations is that a complex, patient-

specific, genetic interplay between somatic alterations and
germline background participates in tumor progression
[10,11]. For example, patients with bladder cancer that

carry a germline SNP (rs2853669) have a higher survival
rate when acquiring somatic mutations in the TERT pro-
moter [12]. In addition, high intratumoral heterogeneity in
somatic mutations leads to complicated clonal structure of

tumors. Such a phenomenon has been regarded as one of
plausible determinants of cancer metastasis, relapse. and
treatment failure, and thus, poses challenges to personalized

cancer medicine [13]. Since diversity in tumors has not been
sophisticatedly considered in most drug development pro-
grams employing artificial tumor models, empirical systems

that can distinguish impacts of causative intratumoral alter-
ations from genetic background and reflect the diversity
within a tumor are of essence for better prognostics and
treatment.

Primary cultures of tumor cells and patient-derived tumor

xenografts for cancer patients emerge as an innovative technol-
ogy in preclinical tumor models and functional response assays
[14,15]. And the practice to directly characterize tumors in vivo

and in vitro at multi-omics levels using patient-derived cells has
been emphasized in most studies [16–18]. Due to the technical
challenges in culturing cells of solid tumors, only limited num-

ber of cell clones of solid tumors can be isolated and main-
tained. To commendably represent the diversity and
heterogeneity of tumor cell types and states (such as metastasis
and drug resistance), parallel primary cultures from one or

multiple tumors from a single patient are of necessity.
Two primary cultures from a primary tumor and a recurrent

tumor of a patient with hepatocellular carcinoma (HCC) have

been established and reported, demonstrating their clinical sig-
nificance in identifying novel biomarkers and facilitating
immunotherapy [19–23]. The high expression levels of PBX3

and CACNA2D1 have been validated to be associated with
tumor-initiating-cell (TIC) properties in the cell clone from
the recurrent tumor [22,23]. It remains unclear whether all cells
from in each of the tumors are homogeneous or possess the same

characteristics, whether the phenotypic differences among the
cell clones can be distinguished based on genomic alterations,
and what the discriminative genomic alterations are.

In this study, we successfully established two additional cell
cultures, one from primary tumor and the other from recurrent
tumor. Multi-omics sequencing and cellular phenotypic char-

acterization were performed to investigate variations in genet-
ics, epigenetics, gene expression, cell morphology, and
tumorigenicity in the four cell cultures with the same germline

genetic background. We then analyzed the variations that may
lead to differences in malignant behavior of tumor cells.



Figure 1 Genetic and gene expression divergence of primary cell cultures

A. The four primary cell cultures from primary and recurrent tumors of an HCC patient. Primary and recurrent tumor tissues were

mechanically dissociated. Primary tumor cells were initially cultured with 20% autologous serum and 10% FBS to obtain Pa and Pb,

respectively. Recurrent tumor cells were initially cultured with 20% autologous serum and 10% FBS to obtain Ra and Rb, respectively.

B. Phylogenetic tree based on SNVs calling from WGS data. The tree was anchored using a germline DNA sequence from TILs cultured

from the recurrent tumor sample. Blue and red lines represent primary and recurrent tumors, respectively. The branch length from the

(TILs) to the common ancestor is not shown to scale because of the great distance. The SNVs located in LOH regions were excluded in this

analysis. C. Divergence of transcriptional profiles of cell cultures. Hierarchical clustering of the four cell cultures was performed based on

normalized mean read counts (log2-transformed) for genes that were expressed (read count > 1) in at least one sample. The heatmap

depicts the expression of genes on the log2 scale (rows) from each sample (columns). D. Heatmap of the Spearman correlation coefficients

(q) of transcriptomes between any two of the four samples. Genes expressed (read count > 1) in at least one sample were used. HCC,

hepatocellular carcinoma; FBS, fetal bovine serum; SNV, single nucleotide variation; WGS, whole-genome sequencing; TIL, tumor-

infiltrating lymphocyte; LOH, loss of heterozygosity.
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Results
Phylogeny of four cultured primary cell populations revealed by

single nucleotide variations
Primary cell cultures from primary (Pa) and recurrent (Ra)
tumors of an HCC patient have been described previously

[19–23]. To further characterize the potential heterogeneity
and clonal diversity between cell populations from these
tumors, two replicates, one from primary tumor (Pb) and the

other from the recurrent tumor (Rb), were successfully
obtained in the present study (Figure 1A, see Materials and
methods). To examine the genetic divergence among these cell

cultures, Pa, Pb, Ra, Rb and tumor-infiltrating lymphocytes
(TILs, from recurrent tumor) were subjected to whole-
genome sequencing (WGS), reaching > 60 � coverage, and

whole-exome sequencing (WES) was also performed for Pa,
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Pb, Ra, and Rb, reaching > 100 � coverage. The TILs were
used as a matched normal control of this patient for somatic
variation calling from both WGS and WES data.

Genome ploidy, copy number alterations (CNAs), and
losses of heterozygosity (LOHs) were detected based on the
WGS data (see Materials and methods). The ploidy of these

cells was estimated as triploid and further validated using flow
cytometry DNA ploidy analysis (Figure S1), which is consis-
tent with previous observations based on karyotyping of Pa

and Ra [20]. The CNA profiles revealed a high level of genetic
divergence among the four cell cultures. Almost all chromo-
somes were subject to copy number gain or loss in these cells
(Figure S2). Among all 14,813 CNAs and LOHs, 22 variations

(0.15%) on chromosomes 1, 3, 4, 7, 9, 10, 14, 16, 17, and 18
were shared (with the same breakpoint and the same absolute
copy number) among all cell cultures (Table S1).

We performed single nucleotide variation (SNV) calling in
both of the WES and WGS data from the four cell cultures
(see Materials and methods). Among the total 41,484 SNVs

that were identified from WGS data, 30,937 SNVs were com-
monly shared and 10,545 SNVs were polymorphic (Table S2).
Based on the validation data from Sequenom genotyping, we

identified 341 commonly shared SNVs and 103 polymorphic
variations in WES data (Table S3, see Materials and meth-
ods). About 94.6% SNVs that were identified in WES data
can be detected in WGS data. The presence of shared CNAs

and SNVs indicates that these four cell cultures represent
four subclones originating from a common ancestor. Consid-
ering that LOH events may result in loss of mutant alleles, we

further used the SNVs located out of LOH regions to con-
struct a phylogenetic tree. Based on the WGS data, the phy-
logenetic tree of Pa, Pb, Ra, and Rb was consistent with the

origin of the primary cell cultures. Two groups derived from
a common ancestor were observed. One group included Pa
and Pb, which were cultured from the primary tumor,

whereas the other included Ra and Rb from the recurrent
tumor (Figure 1B). Eleven known driver genes in HCCs,
RPS6KA3, NTRK3, TERT, TSC2, ARID1A, KMT2D,
KMT2B, KMT2C, IL6ST, NFE2L2, and EPHA4 [24] were

identified in the trunk of the tree, whereas only two genes,
NFE2L2 and EPHA4, were detected on the branches shared
by Pa and Pb. These data indicate that in this case, mutations

in functionally significant genes in HCC might have con-
tributed to the progression of carcinogenesis in the common
ancestor of these cell populations rather than account for

their phenotypic differences. Additionally, the phylogeny
based on the WES data showed the same pattern as the
WGS data (Figure S3).

Discrepancy between the phylogenetic tree and the divergence

revealed by the transcriptional profiles

Previous studies have shown that the Ra cells from the recur-

rent tumor were largely tumor-initiating cells (TICs), while the
Pa cells from the primary tumor were not [19,22,23]. Since
both Ra and Rb were derived from the recurrent tumor after

the patient underwent combination chemotherapy [19], they
were supposed to be more aggressive and malignant than Pa
and Pb due to the treatment selection pressure, as suggested

by the previous studies [25]. It could be inferable that cellular
characteristics might be similar in Ra and Rb, which were
genetically clustered together, and might be distinguished from
that of Pa and Pb at the transcriptional level.

RNA-seq was performed in the four cell cultures with two

biological replicates for each (Pearson correlation coefficients
are �0.95 between the replicates of each sample), followed
by the detection of differentially expressed genes (DEGs)

among the samples (see Materials and methods; Table S4).
Notably, we observed that the divergence of the transcriptional
profiles in the four cell populations exhibited significant dis-

parity from the genetic phylogeny (Figure 1C, see Materials
and methods). Pa was closely clustered with Rb, rather than
with Pb, whereas Ra diverged markedly from the other three
cell cultures. The Spearman correlation coefficient (q) between
Ra and Pb (q= 0.72) was the lowest in the comparisons
between the four cultures (Figure 1D).

Furthermore, we tested whether genes with sample-specific

mutations showed significant changes in gene expression com-
pared with other samples. Among the overlap between sample-
specific mutated genes and DEGs, mutations were detected in

non-coding regions, including introns, untranslated regions
(UTRs), and flanking regions. Mutations in these regions
can influence transcription, splicing, or stability of mRNAs

[26–30]. Therefore, our results suggest that sample-specific
gene expression might result from the mutations in the corre-
sponding non-coding elements. However, there is no evidence
showing significant overlaps between sample-specific mutated

genes and DEGs for all the samples (Binomial test,
P < 2.2E�16, Figure S4), suggesting that most of the hetero-
geneous SNVs among the lineages within the patient are func-

tionally insignificant, which is consistent with previous studies
[31–33].

Consistency between the divergence revealed by DNA

methylation and transcriptional profiles

Heterogeneity of DNA methylation can reflect tumor clonal

evolution, and a high correlation coefficient has been observed
between genetic and epigenetic distance matrices for all speci-
mens within tumors [34,35]. Additionally, DNA methylation
plays a critical role in the regulation of gene expression, and

its variation is correlated with corresponding gene expression
variations across compared samples [36]. To examine the dis-
crepancy between the lineage relationship and the transcrip-

tional divergence of the cell cultures, we investigated the
divergence pattern of DNA methylation. Based on the tran-
scriptional profiles, differentially originating Pa and Rb were

closely clustered; meanwhile, both Pb and Ra were separated
from their respective same-origin clones. Hence, besides Pa
and Rb, either Ra or Pb was required to interpret the inconsis-
tence between phylogenetic tree and transcriptional diver-

gence. Compared to Pb, Ra was more divergent from Pa and
Rb at expression level. Therefore, we performed whole genome
bisulfite sequencing (WGBS) for Pa, Ra, and Rb, which exhib-

ited discrepancy between phylogenetic relationship and tran-
scriptional pattern. That is, Ra and Rb clustered together in
the phylogenetic tree but the hierarchical clustering of their

transcriptional profiles was separated; in contrast, Pa and Rb
were separated in the phylogenetic analysis but clustered
together in the transcriptomic analysis.

Analysis of genome-wide CpG methylation showed that the
average methylation levels for Pa, Ra, and Rb were 0.460,



Figure 2 Characterization of DNA methylation in Pa, Ra, and Rb

A. Circos representation of the whole-genome DNA methylation levels of the cell cultures. The outermost circle represents the

chromosome locations. Different shades of red represent methylation levels averaged in 10-Mb genomic windows, and different shades of

blue represent the difference in methylation levels between inner and outer layers. Inner heatmaps indicate changes in DNA methylation

shown in color gradients. A gradual loss of methylation compared with that in Pa is observed (from outer to inner, Pa, Ra, and Rb). B.

Boxplot of common CpG site methylation levels in cell cultures. ** indicates highly significant differences between any two samples

(P< 2.2E � 16, Wilcoxon test). C. Boxplot of DNA methylation levels for multiple functional genomic categories in cell cultures. D.

Divergence of the methylomes of the cell cultures. Hierarchical clustering was based on the methylation levels of differentially methylated

CpG sites (� 10 �) among samples. The heatmap depicts the CpG site methylation level (rows) in each sample (columns). E. Density plot

of DMPs/DMGBs with the changes in the expression of associated genes between the compared samples. The horizontal and vertical axes

represent differences in methylation levels (DML) and expression changes (FC), respectively. Density is color-coded; red indicates a higher

density and blue indicates a lower density. CGI, CpG island; LINE, long interspersed nuclear element; SINE, short interspersed nuclear

element; LTR, long terminal repeat; FC, fold change; DMP, differentially methylated promoter; DMGB, differentially methylated gene

body .

580 Genomics Proteomics Bioinformatics 17 (2019) 576–589



Liu S et al / Basis of Intratumoral Phenotypic Diversity 581
0.409, and 0.407, respectively, decreasing from primary tumor
derived Pa to recurrent tumor derived Ra and Rb (Figure 2A).
This observation is consistent with a previous study showing

that global DNA hypomethylation occurred during the pro-
gression of HCC [37]. Significant differences in the extent of
DNA methylation were observed between each pair of samples

(pair-wise Wilcoxon test, P < 2.2E�16, Figure 2B), indicating
heterogeneous modification of DNA methylation in these cell
cultures.

We subsequently subdivided the whole-genome methyla-
tion events into multiple functional genomic categories to
determine whether Pa, Ra, and Rb exhibited different methy-
lation levels in these categories (see Materials and methods).

As shown in Figuere 2C, Pa was significantly hypermethylated
in all categories, whereas Ra was significantly hypomethylated
in potential regulatory regions including promoter, gene body

(containing 50UTR, 30UTR, exon, and intron), as well as CpG
island (CGI) regions, and Rb was significantly hypomethylated
in the intergenic and some repeat regions (Table S5, pair-wise

Wilcoxon test, P < 1.0E�14 for all 3 samples).
Hierarchical clustering of the methylomes of these cell cul-

tures (see Materials and methods) revealed that Rb and Pa

were closely clustered, while Ra was isolated, which was con-
sistent with the transcriptional clustering pattern but inconsis-
tent with the phylogenetic relationship (Figure 2D). We further
analyzed the DNA methylation patterns in different genomic

categories. Accordingly, in all categories, Ra displayed a
unique methylation profile, differing from that of Pa or Rb,
as confirmed by the hierarchical clustering of significant differ-

entially methylated functional genomic categories (DMFs; see
Materials and methods; Figure S5).

Correlation between the variations in copy number, DNA

methylation, gene expression

CNAs can affect gene dosage by altering the number of gene

copies in the genome. Consistency between the changes in
the mRNA expression and gene copy number has been
reported in multiple types of cancers [38–40]. Herein, we inves-
tigated the correlation between gene copy numbers and their

expression levels in the four cultures (see Materials and meth-
ods). We observed significant consistency between the copy
numbers and expression levels of these CNA genes. Genes

located in regions of copy number gain and loss showed signif-
icant increase and reduction in expression level (Kolmogorov-
Smirnov one-tailed test, P < 0.05, Figure S6), respectively,

suggesting that CNAs partially contribute to the divergence
in gene expression between the primary cell cultures.

Promoter and gene body methylations are negatively and
positively associated with gene expression levels, respectively

[41,42], and the observed methylation patterns are consistent
with transcriptional divergence. To further investigate whether
differential methylation in these regions was involved in regu-

lating gene expression in these cell cultures, we correlated the
differences in methylation (DML) at differentially methylated
promoters/gene bodies (DMPs/DMGBs) with the changes in

the expression of associated genes (presented as fold change)
between the samples.

In all comparisons, DMPs and DMGBs showed different

density distributions. The DMP genes were predominantly
distributed around the X-axis in the right-hand quadrants,
indicating that their expression level was not altered according
to promoter methylation variations, whereas the DMGB genes

were predominantly distributed in quadrant 1, implicitly
demonstrating a positive correlation between expression
changes and alterations in gene body methylation (Figure 2E).

The Pearson correlation coefficients between the differences in
DMGB methylation (DML) and alterations in associated gene
expression (fold change) in Pa vs. Ra, Pa vs. Rb, and Rb vs. Ra

were 0.608, 0.502, and 0.713, respectively, which are highly
positive and significant (P = 2.26E�192, 2.37E�42, and
5.95E�190). These results are consistent with the observation
that gene body methylation is associated with active gene tran-

scription [42,43]. Our results also indicate that gene body
methylation was more closely associated with gene expression
than promoter methylation, which is consistent with the idea

that the ‘‘gene body methylation is a stronger indicator of
expression class than promoter methylation”, as described
for human samples and cell lines [41]. In prostate cancers, gene

expression was not obviously associated with promoter methy-
lation levels between tumor samples within individuals [44].

CNAs and variations in DNA methylation jointly confer the

phenotypic differences among the cell cultures

The transcriptional profile of Ra differed markedly from those
of Pa, Pb, and Rb, indicating that Ra has a unique functional

phenotype. We subsequently identified 2886 Ra-specific DEGs
(see Materials and methods; Table S4). According to Gene
Ontology (GO) analysis, these DEGs are over-represented in

202 biological processes (Table S6). Among the top 10 signif-
icant terms, most terms are highly associated with tumor devel-
opment and progression, including angiogenesis, extracellular

matrix organization, positive regulation of cell migration, pos-
itive regulation of GTPase activity, substrate adhesion-
dependent cell spreading, MAPK cascade, and regulation of

apoptotic process [45]. Consistent with previous studies, up-
regulated genes identified in Ra include the oval cell marker
AFP [19,20], the metabolic marker ABCG2 [19], the embryonic
cell lineage markers FOXA2, IPF1, and ISL1, the stem cell-

associated gene PARD6A [19], the newly identified functional
liver TIC marker CACNA2D1 [22], and the TIC driver gene
PBX3 [23]. In particular, the last two genes are demonstrated

to be highly associated with TIC properties of tumor cells in
HCC [22], indicating that Ra is endowed with stronger tumori-
genic capabilities than the other three cell populations, includ-

ing the recurrent tumor-derived Rb.
Our previous analysis has shown that CNAs and DNA

methylation changes are potentially associated with the corre-
sponding gene expression variations observed in these cultured

primary cell populations, suggesting their roles in affecting the
transcriptional profiles of these cell populations. To detect the
contribution of CNAs and gene body methylation to the Ra-

specific functional phenotype, among 330 Ra-specific CNA
genes overlapping with DEGs, we identified 249 genes
(75.45%) showing consistency in CNAs with gene expression

presenting the same directional change as CNA-driven genes.
Among the 580 Ra-specific DMGB genes overlapping with
DEGs, we identified 540 genes (93.10%) showing consistency

in gene body methylation with gene expression presenting



Figure 3 Characterization of the roles of CNAs and variations in gene body DNA methylation in cell cultures

Significantly enriched pathways of CNA/DNA methylation-driven genes. The genes used to construct the network included CNA/DNA

methylation-driven genes and other Ra-specific DEGs that also participate in these pathways. CNA, copy number alteration; DEG,

differentially expressed gene.
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the same directional change as DNA methylation-driven
genes, including 25 genes overlapping with CNA-driven genes
(Table S7).

Pathway enrichment analysis revealed the significantly
enriched KEGG pathways among all the 764 CNA/DNA
methylation-driven genes, as shown in Figure 3 and Table S8

(see Materials and methods), indicating the significant biolog-
ical roles of CNAs and differential gene body methylation in
exerting direct and indirect effects on gene expression in these

cell populations. Notably, these pathways can be divided into
two groups. Group 1, including the pathways in cancer,
MAPK signaling pathway, PI3K-Akt signaling pathway, and

Ras signaling pathway [46–48], is involved in cell cycle pro-
gression, cell proliferation, apoptosis, and tumorigenesis.
Group 2, including the Rap1 signaling pathway, focal adhe-
sion, regulation of actin cytoskeleton, and axon guidance, is

involved in cytoskeleton organization, cell adhesion, regula-
tion of cell morphology, as well as cellular assembly and orga-
nization [49–52]. These two groups of pathways, which are

largely affected by CNAs and gene body DNA methylation
changes, are associated with cell morphology and tumor-
initiating properties, suggesting that CNAs and gene body

DNA methylation might jointly confer the distinct Ra
phenotype. The TIC marker, CACNA2D1 [22], a DNA
methylation-driven overexpressed gene in Ra, further high-
lights the functional role of gene body methylation in the

formation of Ra phenotype.

Characterization of cell morphology and tumorigenicity in Ra

cells

We further determined whether Ra presented a distinct pheno-
type in terms of cell morphology and tumorigenic capability

among these four cell populations. We first analyzed the mor-
phology of these primary cells (see Materials and methods).
Pa, Pb, and Rb cells grew adherently, displaying a typical

epithelial morphology with polygonal shapes. In contrast, Ra
cells were round in shape, adhered loosely to the flask, and
formed spheres during passaging. To clearly show that the
cytoskeleton maintains cell morphology and cell adhesion,

we stained the cells with phalloidin to visualize a major
cytoskeletal element. As expected, enriched F-actin filaments
were distributed in the cytoplasm and under the cell mem-

branes in Pa, Pb, and Rb cells; however, only a few F-actin fil-
aments were detected under the cell membranes of Ra cells
(Figure 4A). This unique morphology might be associated with



Figure 4 Specific cell morphology and tumorigenicity of Ra compared with Pa, Pb, and Rb

A. Morphology of Pa, Pb, Ra, and Rb. Green indicates phalloidin-stained F-actin, and blue indicates the cell nucleus stained with DAPI.

Bar = 10 lm. B. Soft agar assays (40 �). Colonies were microscopically visualized. C. Quantification of colonies formed in each well. 3

wells per group (repeated twice). Data are shown as mean ± SEM. D. Growth curves of tumors after subcutaneous injection of Pa, Pb,

Ra, and Rb cells into the armpits of each NOD/SCID male or female mouse (4–6 weeks old). Tumor formation was monitored weekly

after transplantation. Two weeks later, tumors were detected only in the Ra-transplanted mice. Ra tumor was monitored for the

continuous growth and was removed on day 25 due to the large tumor size. No tumors were formed in the mice transplanted with Pa, Pb,

or Rb, even after 90 days. Values are presented as mean ± SEM (5 mice in each group).
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the malignant behavior of Ra, as malignant transformation is
frequently characterized by alterations of the cellular
cytoskeleton, which results in the deficiency in cell adhesion

[53]. The observation of DAPI-stained nuclei showed that
Ra cells presented the highest nuclear-cytoplasmic ratio (Fig-
ure 4A). An increased nuclear-cytoplasmic ratio is typically

observed in various types of human carcinomas, including hep-
atocarcinoma cells [54], which additionally supports a higher
degree of malignancy in Ra cells.

Furthermore, we sought to characterize the clonogenicity of

these four cell populations in the soft agar (see Materials and
methods). Ra cells were able to grow as spheres in soft agar,
while others failed (Figure 4B and C). Next, 5 � 106 cells from

these four primary cultures were transplanted subcutaneously
into NOD/SCID mice to test their tumorigenicity (see Materials
and methods). Ra cells were able to initiate tumor formation,
whereas under the same condition, no tumorigenicity was
detected in the other three samples (Figure 4D), which is

consistent with the up-regulation of TIC-associated markers
in Ra, i.e., CACNA2D1 and PBX3 [22,23]. Our data also
revealed up-regulation of the putative hepatic stem/progenitor

cell marker, CD56, in Pb. The non-tumorigenicity of Pb sug-
gests that unlike CACNA2D1, CD56 was not associated with
TIC properties of tumor cells in HCC, consistent with our pre-
vious study showing that the marker CD56 was not enriched in

TIC populations [19]. The Ra cells from the recurrent tumor
showed distinct cellular phenotypes, which is consistent with
the prediction based on CNAs and gene body differential

methylation, suggesting that CNAs and gene body DNA
methylation might play vital roles in these biological properties
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by directly or indirectly regulating the expression of the corre-
sponding genes.

Discussion

The accumulation of somatic aberrations and the dynamics of

subclonal changes over time shape the evolutionary process of
tumors and confer tumor heterogeneity. Since high level of
heterogeneity within and between patients is a major obstacle

to successful cancer therapy [13], it should be taken into
account when performing in-depth exploration of tumors or
designing treatment strategies. Patient-derived primary tumor
cells that can provide high-fidelity data derived from specific

patient, have the potential to translate in vitro findings to
in vivo models and ultimately to personalized therapy [14].
However, obtaining multiple primary cell clones to understand

tumor heterogeneity remains challenging, due to the technical
specialties in the primary cell culture. This study is the first to
compare genomic and phenotypic differences among multiple

primary cell cultures derived from primary and recurrent
tumors from the same patient using multi-omics analysis.

The four cell cultures originated from a single ancestor, but
presented heterogeneous, whereas the clustering relations gen-

erated via genomic, transcriptional, and epigenomic variations
were discrepant. Phylogenetic relationships based on SNVs
accurately reflected the clonal origin, consistent with previous

studies showing that genetic variations can be used to recon-
struct clonal evolutionary relationships among different
tumors [55,56]. We also observed that the phylogenetic tree

based on SNVs identified in the WGS data is consistent with
the pattern based on the WES data (Figure 1B and Figure S3),
indicating that WES data is enough for reconstructing the

authentic phylogeny. Transcriptional divergence that indicates
phenotypic variation was inconsistent with the phylogeny. Sig-
nificant overlap between sample-specific mutated genes and
DEGs for each sample was not observed (binomial test, Fig-

ure S4), supporting previous report that most of the intratu-
moral heterogeneous SNVs appear to be functionally
insignificant [31–33]. Inconsistency between genetic phylogeny

and the transcriptional clustering pattern has also been
observed in previous studies in glioblastoma (GBM) [57,58]
and melanoma [59]. The expression clustering patterns of both

single cells and single-cell-derived clones of GBM did not show
clustering according to tumor origin [57,58]. Harbst et al
observed that two evolutionarily similar regions displayed dif-

ferent gene expression subtypes in melanoma [59].
Further analysis revealed that CNAs and changes in gene

body DNA methylation modifications were associated with
the expression divergence of these cell populations. An alterna-

tive explanation for this observation is that CNAs can affect
gene dosage by altering the number of gene copies in the gen-
ome, thereby conferring a stronger impact on gene expression

changes than point mutations [60]. Additionally, DNA methy-
lation plays critical roles in the regulation of gene expression,
and gene body methylation has been associated with active

gene transcription [42,43]. In addition to the direct effect on
the expression of the corresponding genes, CNAs and gene
body DNA methylation changes might indirectly affect genes
through participating in certain pathways and, thus, jointly

confer distinct cellular phenotypes to Ra.
Analysis of the whole genome showed that the recurrent
tumor-derived Ra and Rb cells presented significant
hypomethylation compared to primary tumor-derived Pa. Sig-

nificant overexpression of TDG leads to the demethylation of a
methylated construct transfected in cultured (HEK) cells [61].
Up-regulated TDG may contribute to low methylation levels

in Ra and Rb than in Pa. In the present study, we observed
that Rb was closer to Pa and was largely separated from Ra
based on genome-wide DNA methylation patterns. Ra dis-

played a unique methylation profile, differing from those of
Pa and Rb in all functional genomic categories. These results
suggest that Ra has undergone the DNA methylation changes
required for progression to higher malignancy. For example,

demethylation of potential regulatory regions, including gene
bodies, might account for the distinct transcriptional profile
of Ra.

Despite the fact that Ra and Rb cells were both derived
from the recurrent tumor of the same patient, Rb did not
present TIC properties like Ra, suggesting that functionally

heterogeneous subclones exhibit in the recurrent tumor fol-
lowing the treatment. Although intratumoral heterogeneity
was shown to be reduced upon therapy [62,63], there is still

a need to detect multiple clones within recurrent tumors.
However, further studies are needed to determine whether
the principles discovered here apply to other patients. From
systematic analysis of one patient-derived primary culture,

we observed the cellular functional heterogeneity is more clo-
sely associated with CNAs and differential gene body methy-
lation than subclonal SNVs, which, if validated in more

individuals, will guide the development of therapeutic strate-
gies targeting not only SNVs but also CNAs and variations
in DNA methylation. These primary cultures may be applied

to further identifying the plausible determinants of cancer
metastasis, relapse, and treatment failure. The systematic
strategy, combining multi-omics data with the measurement

of cellular phenotypes in parallel primary cell cultures from
the same patient, could be applied to identifying malignant
subpopulations and characterizing variations related to
malignancy, and further extended to the field of personalized

cancer therapy.
Materials and methods

Patient information

Information of the HCC patient previously described [19,20].
Briefly, a 47-year-old male with chronic hepatitis B virus
(HBV) infection initially underwent HCC resection of the right

lobe of liver, followed by treatment with combination
chemotherapy for two transarterial chemoembolization proce-
dures. The patient underwent left lateral lobectomy 7 months

later, due to HCC recurrence on the left lobe of liver. Both pri-
mary and recurrent tumor tissues were obtained from this
patient for research proposes at Peking University Cancer

Hospital. This study was approved by the Human Research
Ethics Committee of Beijing Institute of Genomics, Chinese
Academy of Sciences (CAS), and Peking University Cancer
Hospital. Informed consent was obtained from this patient

as previously described [19,20].
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Primary culture of tumor cells and TILs

We established two primary cell cultures from the above HCC
patient, designated Hep-11 (from the primary tumor) and
Hep-12 (from the recurrent tumor), as previously described

[19,20], and these cells were renamed as Pa and Ra in the
present study. Briefly, both primary and recurrent tumor
specimens were dissociated and layered onto a 75%/100%
two-step Ficoll gradient. After centrifugation, some of these

mechanically dissociated tumor cells enriched in the upper
interface and lymphocytes enriched in the lower interface were
collected and washed, respectively. To establish Pa and Ra,

some tumor cells from primary and recurrent tumors were
respectively cultured in RPMI1640 (Invitrogen, Grand Island,
NY, USA), which was initially supplemented with 20% autol-

ogous serum and subsequently supplemented with 10% fetal
bovine serum, once the autologous serum was depleted. The
remaining tumor cells were continuously cultured in

RPMI1640 (Invitrogen, Grand Island, NY) supplemented with
10% fetal bovine serum to obtain Pb cells from the primary
tumor and Rb cells from the recurrent tumor. The cell cultures
were regularly passaged via trypsinization. Notably, the cells

used for analysis in the present study were passaged between
5 and 15 times (prior to the establishment of immortal cell
lines) to obtain sufficient cell numbers and avoid bias resulting

from long-term culture. TILs from recurrent tumors were cul-
tured in RPMI-1640 medium supplemented with 2 mmol/l glu-
tamine, 5.5 � 10-5 mol/l b-mercaptoethanol, 10% human AB

serum (Blood Products Institute, Tianjing, China) and 6000
U/ml interleukin (IL)-2 (Ludesheng, Beijing, China).

Flow cytometric DNA ploidy analysis

Pa, Pb, Ra, and Rb cells were subjected to flow cytometric
DNA ploidy analysis, and human peripheral blood mononu-
clear cells (PBMCs) were used as normal cell control.

Trypsin-digested single cells were centrifuged, washed with
phosphate-buffered saline, fixed with 70% cold ethanol, and
stained with DNA-specific fluorochrome propidium iodide

(Sigma-Aldrich, St. Louis, MO) at a working concentration
of 10 lg/ml. The fluorescence of propidium iodide was deter-
mined with a flow cytometer (BD FACSCalibur, BD Bio-

sciences, Franklin Lakes, NJ).

WGS

Genomic DNA of Pa, Ra, Pb, Rb, and TIL was extracted from

the samples using the QIAamp DNA Mini Kit (Qiagen, Hil-
den, Germany) and used for WGS analysis. Libraries of Pa,
Ra, and TIL were constructed from 1–3 mg DNA of each sam-

ple with the Paired-End DNA Sample Prep Kit (Illumina, San
Diego, CA) according to the manufacturer’s instructions, and
paired-end sequencing of 2 � 100 bp was performed on the

Illumina HiSeq 2000 platform at the core facility of the Beijing
Institute of Genomics, CAS. To obtain more data, sequencing
libraries of Pa, Ra, Pb, Rb, and TIL samples were generated

using NEB Next� Ultra DNA Library Prep Kit for Illumina�
(NEB, Boston, MA) following manufacturer’s recommenda-
tions, and paired-end sequencing of 2 � 150 bp was performed
on the Illumina HiSeq 4000 platform at Novogene (Beijing,
China). The average sequencing depths of WGS obtained were
> 60 �.

WEs

WES libraries were constructed from 1–3 mg of DNA of Pa,
Ra, Pb, and Rb samples with the Paired-End DNA Sample

Prep Kit (Illumina) according to the manufacturer’s instruc-
tions, and were further captured using the Agilent SureSelect
Target Enrichment System (Human All Exon V4 kit, Santa

Clara, CA). Paired-end sequencing of 2 � 100 bp and
2 � 125 bp was performed on the Illumina HiSeq2000 plat-
form at the core facility of the Beijing Institute of Genomics,

CAS and the Illumina HiSeq 2500 platform at BerryGenomics
(Beijing, China), respectively. The average sequencing depths
of WES were > 100 �.

RNA-seq

Total RNA was extracted from Pa, Ra, Pb, and Rb samples
using the TRIzol reagent (Invitrogen). For each sample,

10 lg of total RNA was subjected to mRNA purification
and used for library construction using TruSeq� RNA Sample
Preparation v2 (Illumina) according to the manufacturer’s

instructions. We performed two biological replicates for each
sample using two sequencing platforms. Paired-end
2 � 100 bp sequencing was performed on the Illumina HiSeq
2000 platform at the core facility of the Beijing Institute of

Genomics, CAS, and 2 � 125 bp sequencing was performed
on the Illumina HiSeq 2500 platform at BerryGenomics. High
Pearson correlation coefficients (�0.95) were observed

between the biological replicates.

WGBs

We performed WGBS for Pa, Ra, and Rb samples. Purified
genomic DNA of each sample was mixed with 0.1% lambda
DNA, and sonicated using a Covaris S220 instrument

(Woburn, MA, USA). End-repair, dA-tailing, and ligation
were performed using the NEBNext End Repair Module,
dA-Tailing Module, and NEB T4 ligase, respectively. Subse-
quently, DNA fragments were ligated with methylated adap-

tors. Size selection was performed by gel extraction to obtain
DNA fragments larger than 200 bp. The adaptor-ligated
DNA was treated with sodium-bisulfite using the EZ DNA

Methylation-GoldTM Kit (Zymo, Irvine, CA), and subsequently
amplified using KAPA HiFi HotStart Uracil + ReadyMix
PCR Kit (KAPA Biosystems, Roche, Wilmington, MA) with

10 cycles. Paired-end sequencing of 2 � 100 bp was performed
on the Illumina HiSeq 2000 platform at the core facility of the
Beijing Institute of Genomics, CAS.

WES and WGS data processing

Paired-end WES and WGS data were aligned to the human
reference sequence (UCSC hg19) using the Burrows-Wheeler

Aligner (BWA) [64]. All sequenced and aligned reads were fur-
ther processed using both the Picard-tools and the Genome
Analysis Toolkit (GATK) [65], including de-duplication, base

quality recalibration, and multiple-sequence realignment prior
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to mutation detection. Summary of the sequencing data for
each sample is provided in Table S9.

CNA detection

We used Sequenza software [66] to estimate CNAs, cellularity,
and ploidy in Pa, Pb, Ra, and Rb samples. For each WGS

tumor sample, TILs were used as the normal control. Regions
with 0 copies of the B allele were defined as LOH regions.

SNV identification

We employed MuTect [67], a Bayesian framework, for detect-
ing somatic SNVs. For both WGS and WES data from Pa, Pb,

Ra, and Rb samples, TILs were used as the normal control for
SNV calling. For WES data, SNVs were called within the cap-
ture regions (Agilent SureSelect Human all exon V4). SNVs
showing a mutation frequency of > 10% and variant reads

(double-strand support) of > 5 in a tumor sample and none
in the TIL sample (as patient matched normal) were main-
tained. All SNVs were annotated using Oncotator [68].

SNV validation

We performed Sequenom genotyping to validate the detected

somatic SNVs in WES data. Since the SNVs observed in all
four samples were unambiguous, we randomly selected 45
shared SNVs for genotyping in Pa, Pb, Ra, Rb, and TIL sam-

ples. In addition, all of the polymorphic SNVs observed in 1–3
cell culture samples were subjected to genotyping in all the five
samples. Genomic positions for all validated SNVs were
retrieved using hg19 as reference. The detailed procedures of

primer design, multiplexed PCR and allele-specific extension,
as well as variant allele frequency (VAF) calculation of Seque-
nom genotyping were performed according to Ling and col-

leagues [31].

Construction of phylogenetic trees

We constructed a phylogenetic tree of the cell cultures using
the Wagner parsimony method in the PHYLIP package [69].
After excluding SNVs located in LOH regions of the four sam-
ples, the remaining SNVs were used to construct the phyloge-

netic tree. Both lists of the SNVs called from WGS and WES
data were used for tree construction.

RNA-seq data analysis

Raw RNA-seq reads were aligned to the human reference
sequence (UCSC hg19) using MapSplice [70]. Data summary

is shown in Table S10. The aligned reads were sorted and
indexed using SAMtools [71], and then translated to transcrip-
tome coordinates. Indels, large inserts, and reads with zero

mapping quality were filtered with UNC Bioinformatics utili-
ties (UBU). We employed RSEM [72], an expectation maxi-
mization algorithm, to estimate the abundance of transcripts,
which were subsequently annotated using information in Gen-

eric Annotation File 2.1 (GAF2.1). Raw RSEM expected
counts for all samples were normalized to the overall upper
quartile [73]. Subsequently, we employed log2-transformed
values from the normalized counts for calculating PCCs
between biological replicates, and for hierarchical clustering
of replicates. The clustering pattern for the replicates was

shown in Figure S7.
EBSeq [74], an empirical Bayesian approach, was used to

identify DEGs from raw RSEM expected counts. For pair-

wise comparison, we selected genes with a posterior probabil-
ity of being differentially expressed > 0.99 and a fold change
> 1.5 across two samples as DEGs. The specific DEGs of each

sample were defined as the intersection of three lists of DEGs
from comparisons between a specified sample and the other
three samples.

The normalized mean counts of each gene (expressed in at

least one sample) in each sample were log2-transformed values
and employed for hierarchical clustering of samples using the
Pheatmap package in R. Furthermore, DEGs were also

employed for hierarchical clustering of samples. The clustering
pattern based on DEGs was identical with the pattern based
on all expressed genes (Figure S8).

Cumulative distribution of gene expression across CNA regions

Empirical cumulative distribution of the expression of genes

located in either gain or loss regions was illustrated for com-
parisons between any two of the four samples: Pa vs. Pb, Ra
vs. Pa, Ra vs. Pb, Ra vs. Rb, Rb vs. Pa, and Rb vs. Pb. The
gene expression was profiled based on normalized mean counts

on the log2 scale and plotted using the R package. We
employed the Kolmogorov–Smirnov test to calibrate the influ-
ence of CNAs on gene expression. The corresponding P values

were calculated using the one-sided Kolmogorov–Smirnov
test. Genes that were not expressed or showed low expression
(count < 1) in the compared samples were ruled out in this

analysis.

WGBS data processing

Raw WGBS sequence reads were trimmed to remove low-
quality bases, adaptor contamination, and poor-quality reads
using Trimmomatic with default parameters [75]. Sequence
reads of < 40 bp were excluded from further analysis.

Trimmed sequences were aligned to the human reference
sequence (UCSC hg19) using Bismark [76], and Picard-tools
was used to remove duplications. Sequencing data summary

is shown in Table S11. The methylation calls provided by Bis-
mark were employed to extract the methylation statistics of
CpG sites. Only CpG sites covered by > 10 reads in all sam-

ples were retained for further analysis. The methylation level of
each CpG site was defined as the percentage of methylated
counts.

Annotation of functional genomic categories

Genome annotation tables were downloaded from UCSC
Table Browser for functional genomic categories annotation

[77], including CpG islands, transcripts, and repetitive ele-
ments in hg19. CpG island shores were defined as the 2 kb
flanking regions of CpG islands, and CpG island shelves were

defined as the 2 kb flanking regions of CpG island shores. For
each RefSeq transcript, the promoters were defined as the
regions spanning 1500 bp upstream to 500 bp downstream of
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transcription start site (TSS), and gene body regions were
defined as the regions between TSSs and transcription end sites
(TESs). 50UTR, exons, introns, and 30UTR were defined

according to the RefSeq gene table. Several major repetitive
element annotations including long interspersed nuclear ele-
ment (LINE), short interspersed nuclear element (SINE), long

terminal repeats (LTR), and satellite, as well as other repetitive
DNA elements, were used from the RepeatMasker table. The
methylation level of all functional genomic categories was cal-

culated as the average methylation level of CpG sites within
the regions containing these sites.

DNA methylation analysis

To detect differentially methylated sites (DMSs) between each
pair of samples, Fisher’s exact test was applied to the counts of
methylated CpG site and total counts of CpG sites. CpG sites

with a corrected P value (adjusted by Benjamini–Hochberg
procedure) < 0.05 were identified as DMSs. Hierarchical clus-
tering of methylomes was based on methylation levels of

DMSs and was performed using the Pheatmap package in R.
Furthermore, all the common CpG sites (> 10 �) found in
all the four samples were also employed for hierarchical clus-

tering of samples. The clustering pattern based on all the com-
mon CpG sites was identical with the pattern based on DMSs.

We defined differentially methylated functional genomic
categories (DMFs) as the categories showing differences in

methylation levels of > 20% between any two samples (two-
tailed Fisher’s exact test, P < 0.05). The methylation levels
of all DMFs were calculated as the average methylation levels

of CpG sites within the regions containing these sites. We used
the methylation levels of DMFs for hierarchical clustering of
functional categories.

Plot distribution of DMPs/DMGBs with associated gene

expression changes

The methylation levels of DMPs/DMGBs were considered to
be the average methylation levels of CpG sites within these
regions. For pair-wise comparisons, the methylation differ-
ences (DML) of DMPs/DMGBs were plotted with expression

changes (fold change) of corresponding genes.

Functional/pathway enrichment analysis

We performed functional enrichment for Ra-specific DEGs
using DAVID [78]. All the CNA/DNA methylation-driven
genes of Ra were subjected to pathway enrichment analysis

to obtain the significant enriched KEGG pathways via
DAVID [78]. Subsequently, we employed CNA-driven/DNA
methylation-driven genes and other Ra-specific DEGs partici-

pating in these pathways to build the network via Cytoscape
[79].

Cell morphology characterization

The cells were plated onto poly-l-ornithine (Sigma)-coated
glass coverslips. After overnight culture, the cells were fixed,
permeabilized and stained with Alexa Fluor� 488 Phalloidin

(Molecular Probes) at room temperature for 20 min and
subsequently washed. Finally, the cells were counterstained
with DAPI. The slides were analyzed using an Olympus
FluoViewTM FV1000 Confocal Microscope.

Anchorage-independent growth assay

Cells were suspended in 0.3% agar/ RPMI 1640 and plated at

a density of 5000 cells per well onto 6-well plates that were
previously coated with 0.5% agar. A 200 lL aliquot of fresh
medium was added to each well every 3 days. After 3 weeks,

the colonies were quantified without magnification, and the
images were subsequently recorded using a stereomicroscope
(Olympus, Tokyo, Japan).

Tumorigenicity assay in NOD/SCID mice

For the tumorigenicity assay, 5 � 106 cells were suspended in
100 ll of physiological saline and transplanted subcutaneously

into the armpits of 4- to 6-week-old NOD/SCID male and
female mice (Vital River Laboratories, Beijing, China). Tumor
formation was monitored weekly. All the animal experiments

were performed under a protocol approved by Peking Univer-
sity Cancer Hospital Animal Care and Use Committee.

Data availability
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in the Genome Sequence Archive [80] at the BIG Data
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