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Purpose: To describe the relationships between foveal structure and visual function in a cohort of individuals
with foveal hypoplasia (FH) and to estimate FH grade and visual acuity using a deep learning classifier.

Design: Retrospective cohort study and experimental study.
Participants: A total of 201 patients with FH were evaluated at the National Eye Institute from 2004 to 2018.
Methods: Structural components of foveal OCT scans and corresponding clinical data were analyzed to

assess their contributions to visual acuity. To automate FH scoring and visual acuity correlations, we evaluated
the following 3 inputs for training a neural network predictor: (1) OCT scans, (2) OCT scans and metadata, and (3)
real OCT scans and fake OCT scans created from a generative adversarial network.

Main Outcome Measures: The relationships between visual acuity outcomes and determinants, such as
foveal morphology, nystagmus, and refractive error.

Results: The mean subject age was 24.4 years (range, 1e73 years; standard deviation ¼ 18.25 years) at the
time of OCT imaging. The mean best-corrected visual acuity (n ¼ 398 eyes) was equivalent to a logarithm of the
minimal angle of resolution (LogMAR) value of 0.75 (Snellen 20/115). Spherical equivalent refractive error (SER)
ranged from �20.25 diopters (D) to þ13.63 D with a median of þ0.50 D. The presence of nystagmus and a high-
LogMAR value showed a statistically significant relationship (P < 0.0001). The participants whose SER values
were farther from plano demonstrated higher LogMAR values (n ¼ 382 eyes). The proportion of patients with
nystagmus increased with a higher FH grade. Variability in SER with grade 4 (range, �20.25 D to þ13.00 D)
compared with grade 1 (range, �8.88 D to þ8.50 D) was statistically significant (P < 0.0001). Our neural network
predictors reliably estimated the FH grading and visual acuity (correlation to true value > 0.85 and > 0.70,
respectively) for a test cohort of 37 individuals (98 OCT scans). Training the predictor on real OCT scans with
metadata and fake OCT scans improved the accuracy over the model trained on real OCT scans alone.

Conclusions: Nystagmus and foveal anatomy impact visual outcomes in patients with FH, and computa-
tional algorithms reliably estimate FH grading and visual acuity. Ophthalmology Science 2023;3:100225 Published
byElsevier onbehalf of theAmericanAcademyofOphthalmology. This is anopen accessarticle under theCCBY-NC-
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Supplemental material available at www.ophthalmologyscience.org.
Foveal hypoplasia (FH) refers to the incomplete development
of foveal architecture, including the lack of a foveal depres-
sion, lengthening of the photoreceptor outer segment, and
widening of an outer nuclear layer with continuity of inner
retinal layers.1 Foveal hypoplasia may occur as an isolated
condition2e6 or in a syndromic context7,8 and is frequently
observed in individuals with albinism,9,10 albinism-
spectrum syndromes (e.g., ChediakeHigashi syndrome
[CHS]11 or HermanskyePudlak syndrome [HPS]),12,13 and
aniridia-related diseases (e.g., Wilms tumor-aniridia-genital
anomalies-retardation syndrome [WAGR] syndrome and
other conditions involving the Paired Box 6 gene
[PAX6]).14e16 Foveal architecture can also be affected in
conditions involving congenital and early childhood retinal
Published by Elsevier on behalf of the American Academy of Ophthalmology. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
degeneration17 and retinal dystrophies, such as
achromatopsia.18e21

The fovea confers high acuity vision in humans and
nonhuman primates because of the increased density of cone
photoreceptors with the exclusion of other cell types.22e24

As such, best-corrected visual acuity (BCVA) is often
impaired in individuals with FH.25 However, in some
conditions, high visual acuity is preserved despite the
underdevelopment of the fovea in normal retinas26 or in
patients with retinal degeneration.27 To provide a
prognostic indicator of visual acuity, Thomas et al28

developed a structural grading system for FH that
combines qualitative descriptions of these architectural
features. Because FH is a retinal structural anomaly, OCT
1https://doi.org/10.1016/j.xops.2022.100225
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permits analysis and quantification of foveal structures,
including the foveal pit contour, extrusion of the inner
plexiform layer, lengthening of the outer segments, and
widening of the outer nuclear layer.29,30 Thus, OCT
imaging can be used to correlate FH grade with visual
outcome.

The current approach of using OCT for visual acuity
prediction using the grading scale developed by Thomas
et al28 involves manual assignment of a discrete score from
1 to 4 by a trained expert (although FH degradation is
continuous because FH grading changes from one stage to
the next one). In albinism cohort studies, FH grading
correlates with BCVA, whereas iris translucency, fundus
pigmentation, and misrouting do not significantly predict
visual acuity.10 Compared with quantitative measures
(e.g., photoreceptor length, outer segment length, and
foveal developmental index), structural grading is the
strongest predictor of future visual acuity.31 Other clinical
findings in the setting of FH may contribute to vision loss.
For example, many individuals with FH may have
nystagmus, which can affect vision.25,29,32,33 Because FH,
nystagmus, and other ocular features may each impact
visual acuity (although the relationship among these
entities is complex), it is important to understand their
relative contributions to visual maturation, which may
provide prognostic information.

Here, we characterized a cohort of patients with FH to
explore the relationships between visual acuity outcomes
and determinants, such as foveal morphology, nystagmus,
and refractive error. Because visual acuity is often a key
clinical question, the aim of our study was to estimate the
logarithm of the minimal angle of resolution (LogMAR)
visual acuity based on OCT findings. In this paper, while
estimating LogMAR, we also tested a new automated al-
gorithm to assign an FH score based on the gold standard
grading system by Thomas et al.28 To predict the FH
grading and visual acuity, we built a neural network
classifier for a small set of OCT scans (n ¼ 368), along
with nystagmus status and spherical equivalents. For
predicting the FH grading, we evaluated the effectiveness
of training the classifier with real images and images
created from a generative adversarial network (GAN). We
found that extra clinical data, like nystagmus status and
spherical equivalents, and fake OCT images created by a
GAN improve classifier accuracy for predicting visual
acuity from OCT scans.
Methods

Individuals with FH were retrospectively identified using the Na-
tional Eye Institute (NEI) electronic health record. A total of 201
individuals were identified through 2 searches. First, we searched
for the term “FH” (as well as variants of that term) in any text field
for patients seen from 2004 to 2018. Then, to identify potentially
missed cases, we performed a second electronic health record
search of the same period for one of the following search terms:
oculocutaneous albinism, Albinism, Aniridia, Microphthalmia,
Microphthalmos, Nanophthalmia, Nanophthalmos, PAX6, PAX2,
WAGR, Chediak, CHS, Pudlak, and HPS. We collected 1 hori-
zontal OCT B-scan from each subject for FH structural grading and
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analyzed data on foveal imaging, visual acuity, genetic testing,
refractive error, and nystagmus.

Best-corrected visual acuity was measured using a Snellen eye
chart, and values were converted using standardized LogMAR
scale. The Teller Acuity Cards II were used to assess visual acuity
in children aged < 3 years old. OCT scans of the macula were
obtained on Cirrus (Cirrus HD-OCT; Carl Zeiss Meditec, Inc) (n ¼
156) or Spectralis (Heidelberg Engineering Inc) (n ¼ 8) machines.
OCTs were analyzed and graded by 2 independent human graders
using the scale of Thomas et al.28 Nystagmus was recorded from a
clinical examination for individuals who had repetitive,
uncontrolled eye movements (because the presence of nystagmus
can be correlated with other variables, see below for a
description of how analyses were done, without including
nystagmus as a variable). Spherical equivalent refractive errors
(SERs) were used to measure the refraction. The axial length
was not included in the calculation of refractive error; cylinder
and sphere component values were used for this purpose. All
manifest refraction measurements were performed by certified
vision examiners at the NEI, and values were recorded in the
electronic health record to be later computationally converted
into SERs.

This study was approved by the Institutional Review Board of
the NEI. Informed consent was obtained from all participants.
Neural Network Predictor

Our classifier was built based on the EfficientNet-B4 model, which
has obtained high performance on the ImageNet data (images of
general objects) with relatively few parameters.34 The pretrained
weights from ImageNet were loaded and then trained end-to-end.
Pretraining on a larger closely related dataset often helps in pre-
dicting accuracy of smaller datasets. Because EfficientNet-B4 was
originally trained on ImageNet, which is unrelated to OCT scans,
we first retrained EfficientNet-B4 on a large publicly available
OCT dataset,35 which contains 100 000 scans with 3 types of age-
related macular degeneration, as well as normal scans. Next, we
continued training this classifier specifically on just our datasets to
predict FH gradings and LogMAR. Here, we modified just the last
classification layer in EfficientNet-B4 to predict 4 choices of FH
grading or a single LogMAR value and did not change the
component that returned the vector representation of an image.
During training and testing, all OCT scans were rescaled into the
resolution 448 � 448 pixels, chosen to maximize graphical pro-
cessing unit usage (one NVIDIA P100, training batch size 32).
Supplementary Figure 5 shows a few examples where our classifier
analyzes relevant regions of the OCT scans (see the Supplementary
material).

Metadata, like nystagmus and spherical equivalents, were rep-
resented as a numerical vector input. A discrete variable (e.g.,
nystagmus) was represented as 0 or 1, denoting its absence or
presence, whereas a continuous variable (e.g., spherical equiva-
lents) was kept unchanged. For example, the metadata vector [1,
0.5] would represent the presence of nystagmus and a 0.5 spherical
equivalent. This metadata vector was concatenated with the vector
representation of an image and then passed the combined infor-
mation into the last classification layer. Experiments without
nystagmus as the metadata input were also performed to avoid
unintentional bias (see “Discussion” section).

For FH gradings, the classifier was trained with cross-entropy
loss, in which true labels are 1-hot encodings; for example, the
label of an image with an FH grading score 1 out of 4 would be
represented as the vector [1, 0, 0, 0]. The classifier for predicting
LogMAR, which is a continuous value, was trained with smooth-
L1-loss.
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For each label type (e.g., FH grading or LogMAR), we trained 5
classifiers via fivefold cross-validation (one for each fold). For fair
comparison, the same fold partitions were used when predicting
FH gradings and LogMAR. We then created an ensemble predictor
by averaging the predicted label of an image from these 5 classi-
fiers. When averaging the FH grading predictions, we considered
only the classifiers that produced a maximum predicted probability
(overall labels) of at least 0.5. Although FH gradings are discrete
values in the Thomas et al28 grading scheme, disease progression is
continuous. We computed a continuous FH grading by taking the
average score weighted by the prediction probabilities.

Generative Adversarial Network

We trained a generative adversarial network to generate fake im-
ages based on FH gradings. A GAN was trained for each data
partition from the fivefold cross-validation in the section “Neural
Network Classifier.” We describe the GAN training and image
generation for a data partition p, which also will apply to the other
partitions.

We trained StyleGAN2-Ada to generate images using 2 inputs:
FH gradings and eye position (left vs. right).36 We made the
following key modification to StyleGAN2-Ada. Its default label
embedding is L � 512, in which L is the number of labels and
produces a vector of length 512 for each label. In our case, training
this embedding requires many OCTs from 8 unique label combi-
nations (4 possible FH gradings and 2 eye positions). For this
reason, the default label embedding was replaced with 2 smaller
4 � 256 and 2 � 256 matrices to represent the 4 FH gradings and
eye positions (left vs. right). Training the 4 � 256 disease
embedding then used all OCTs from both eyes. Likewise, training
the 2 � 256 eye location embedding uses all images from every FH
grading. The outputs of these 2 components are concatenated to a
vector of size 512 to match the rest of the StyleGAN2-Ada ar-
chitecture. We initialized all the StyleGAN2-Ada weights with the
pretrained values on Flickr-Faces-High-Quality dataset at resolu-
tion 256 � 256 pixels36; all fake images were generated at 256 �
256-pixel resolution. The image resolution was chosen to maxi-
mize graphical processing unit usage (2 NVIDIA P100). Our code
and trained models are available at https://github.com/datduong/
stylegan2-ada-FovealHypoplasia.

After training the GAN on a data partition p, we generated the
following 2 types of fake images: (1) unrelated images for a given
label and (2) images between 2 consecutive labels. We generated
images for every combination (g,p) from FH grading g˛
f1; 2; 3; 4g and eye position p˛ {left, right}.4,21 Conditioned on the
eye position p, the number of generated images for each pair (g,p)
is equal to the average count with respect to the FH gradings in the
data partition. Thus, we created a fake dataset twice the size of our
original dataset. We also made more and fewer images for the
uncommon and common combinations of FH gradings and eye
positions, respectively. In total, we created a fake dataset twice
the size of our original dataset.

For type 1, we generated a fake OCT scan i by concatenating
the random vector rigp with the FH grading label and eye position
embedding eg and ep, denoted as [rige, eg, ep], and then passing this
new vector to our GAN image generator. Each grading g and eye e
combination has images generated from their own unique random
vector rigp so that, theoretically speaking, all the fake images are
unique (Figure 1).

For type 2, with a random vector rigp, we generated 2 images:
the first one shared characteristics of label g and g 0 and the second
image with characteristics of label g and g 00. For example, suppose
g ¼ 2 (e.g., FH grading score 2); we would generate fake images
with both characteristics of FH scores 1 and 2 and then fake images
with characteristics of scores 2 and 3 (Figures 2 and 3). To do this,
we passed into the GAN image generator the inputs [rigp, ceg þ (1-
c)eg’, ep] and [rigp, ceg þ (1-c)eg,” ep], where c is a predefined
fraction between 0 and 1. The true labels of these images are soft
labels; for example, the image created from the vector [rigp, ceg þ
(1-c)eg’, ep], in which g ¼ 1 and g ¼ 2, would have the soft label
encoding [c, 1-c, 0, 0] instead of the traditional 1-hot encoding. We
emphasize that g, g 0, and g 00 are consecutive; we do not generate
fake images with mixed characteristics of FH grading 1 and 3.
When g is 1 or 4, then all the fake images will be a mixture of FH
grading 1 and 2, or 4 and 3, respectively. We tested c at 55%, 75%,
and 90%. Figure 2 shows examples of fake OCT scans with c ¼
55%.

Next, we created 2 new larger datasets by combining partition p
with each of the 2 fake image types. We trained EfficientNet-B4 on
each of these new larger datasets. For each type of new dataset, we
created the ensemble predictor over all data partitions after the
approach described in the section “Neural Network Classifier.”
Statistical Analysis

One-way analysis of variance test was used to test the difference in
the following: (1) LogMAR visual acuity between different grades
of FH, (2) LogMAR visual acuity between different groups of
refractive errors, and (3) LogMAR visual acuity between grades of
individual foveal features. An unpaired 2-tailed t test was applied
to assess the difference in LogMAR between the groups with and
without nystagmus. The Levene test was used to evaluate the
equality of variances for a variable calculated for 4 FH groups.
Agreement between 2 graders was reported to assess the validity of
the grading system.
Results

Participant Characteristics

A total of 201 individuals with FH were evaluated at the
NEI from 2004 to 2018 and included in this study. The
mean age was 24.4 � 18.25 years (range, 1e73 years) at the
time of OCT imaging. The mean BCVA (n ¼ 398 eyes) was
equivalent to a LogMAR value of 0.75 (Snellen 20/115). Of
the entire cohort, 88% (n ¼ 177) had nystagmus clinically
on examination. Spherical equivalent refractive errors
ranged from �20.25 diopters (D) to þ13.63 D with a me-
dian of þ0.50 D in the entire study cohort.

A majority (83%) of subjects (n ¼ 167) had an
albinism-spectrum disorder, including albinism, CHS, and
HPS. Specifically, 54.7% of patients (n ¼ 110) presented
with oculocutaneous albinism, and 3% of the cohort (n ¼
6) had a clinical diagnosis of ocular albinism, whereas
25.3% of patients (n ¼ 51) had syndromic forms of
albinism, with 20.3% of the total cohort having a diag-
nosis of HPS (n ¼ 41) and 3% with CHS (n ¼ 10). Four
percent (n ¼ 8) had aniridia, and of these, 5 patients had
mutations in PAX6, whereas 4.5% of patients had type 2A
Waardenburg syndrome (n ¼ 9). Seven percent (n ¼ 14)
presented with an apparently isolated form of FH, 1.5%
(n ¼ 1) had achromatopsia, and 1.5% (n ¼ 1) had
ErdheimeChester disease. This finding of FH in
ErdheimeChester disease might be coincidental to
ErdheimeChester disease. The composition of the entire
FH cohort is represented in Figure 4.
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Figure 1. Outline of algorithm training approaches. Our base classifier used EfficientNet-B4 to embed OCT scans as vectors (yellow), which were then
passed through a fully connected layer (FC layer) to predict the foveal hypoplasia (FH) grading or logarithm of the minimal angle of resolution (LogMAR)
value. Option 1 included the metadata represented as vectors (blue). These vectors were concatenated with the image embeddings (yellow), and the
combined outputs were passed through the FC layer. Option 2 used real OCT scans to train a StyleGAN2-Ada image generator. Fake images were then
created and jointly trained with real images. We applied option 1 or 2 separately (not simultaneously) to the base classifier. HB ¼ Heidelberg; Z ¼ Zeiss.
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Exploratory Data Analysis between Key Visual
Determinants and Visual Acuity

We analyzed the relationships between the visual acuity
LogMAR score and the following key visual determinants:
FH score, nystagmus status, and SER. These variables were
Figure 2. Examples of type 1 fake OCT scans, one for each eye having foveal h
resolution 256 � 256 pixels.

4

used later as inputs for the neural network model to estimate
LogMAR.

OCT scans from the right and left eyes of every partic-
ipant at the initial visit were assessed for whether visual
determinants, such as nystagmus, spherical equivalent, and
FH grade influenced the visual outcome. Values from both
ypoplasia (FH) grading from 1 to 4 (AeH). Fake OCTs were generated at



Figure 3. Examples of type 2 fake OCT scans (AeJ). Images with mixed characteristics of 2 foveal hypoplasia (FH) gradings. Only mixed labels were used
for training (B, D, E, G, H, J); the unmixed images are shown as reference (A, C, F, I). Fake images were generated at resolution 256 � 256 pixels.
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eyes of every participant were included in the analyses, with
a very high concordance of FH grade between the right and
left eyes in the same individual. Two trained ophthalmic
geneticists discussed and provided a single FH score for
each OCT scan using the scale of Thomas et al,28 currently
considered the gold standard for FH grading. For individuals
who had scans on both OCT systems (n ¼ 37), we found
100% agreement in OCT grading. Figure 5A shows a
positive correlation between a higher FH grade and a
higher LogMAR value, which was statistically significant
when comparing values of FH grades 1, 2, 3, and 4 (P <
0.05). Although the ranges of LogMAR are highly
overlapping between FH scores, 1 subject with FH grade
4 was found to have better vision (LogMAR ¼ 0.4) than
the mean of those with FH grade 1 (LogMAR ¼ 0.4714).
In the entire cohort (n ¼ 398 eyes), we found a
statistically significant difference between the presence of
nystagmus and a high-LogMAR value, corresponding to a
positive correlation between the presence of nystagmus and
reduced visual acuity (P < 0.0001) (Figure 5B). For those
individuals with SER and LogMAR recorded, we
observed that participants whose SERs were farther from
plano demonstrated higher LogMAR values (n ¼ 382
eyes) (Figure 5C).

In summary, a higher LogMAR value is a characteristic
feature of subjects with nystagmus, higher SERs, and higher
FH grade.

Next, we compared the effects among the visual de-
terminants. First, we examined the OCT-graded FH in-
dividuals with (n ¼ 177) and without (n ¼ 24) nystagmus.
The proportion of patients with nystagmus increases with a
higher FH grade from 70% in grade 1 to 98% in grade 4
(Figure 6A).
Subsequently, we examined the distribution of refractive
error among FH grades. We observed a higher variability in
SER with grade 4 (range, �20.25 D to þ13.00 D) than with
grade 1 (range, �8.88 D to þ8.50 D) (P < 0.0001) (Figure
6B).

We performed similar analyses of clinical diagnosis
subgroups. For analyses of visual determinants with FH
grade among the entire cohort, individuals with an albinism-
spectrum disorder and individuals with aniridia or another
PAX6 spectrum disorder show a similar pattern in the data
distribution between FH grades (Figs S1, Figs S2, Figs S3,
Figs S4, available at www.ophthalmologyscience.org).

In summary, in this cohort, FH grade, nystagmus, and
refractive error correlate with worse visual acuity. Further-
more, there seem to be similar relationships between FH
grade, nystagmus, and refractive error. Effects on visual
outcome and between visual determinants do not seem to be
dependent on clinical diagnosis.

Neural Network Predictor for FH Grading

We briefly describe our neural network training process in
this section; more details are explained in the methods. The
scale described by Thomas et al28 is manual and can be
highly subjective because of human judgment. To
systematize this process, we evaluated a neural network
classifier’s ability to automate the FH grading for the OCT
scans. In our dataset of 201 individuals, there were OCT
scans from both eyes of a patient taken by 2 machine
types; hence, some people might have had 4 scans taken.
We trained the model on 164 individuals (368 images)
and tested the model on 37 individuals (98 images). The
test set has the following characteristics: individuals were
5

http://www.ophthalmologyscience.org


Figure 4. Composition of the study cohort. CHS ¼ ChediakeHigashi syndrome; FH ¼ foveal hypoplasia; HPS ¼ HermanskyePudlak syndrome; OA ¼
ocular albinism; OCA ¼ ocular cutaneous albinism.
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with the age range at the time of OCT scanning between 5.1
and 65 years, with 31 of 37 individuals having nystagmus;
LogMAR ranged from �0.1 to 1.4; and spherical equivalent
values were between �12.50 D and þ11.13 D. Only high-
quality OCT scans from 2 machine types of the same in-
dividual were used for analysis.

We evaluated 3 different training approaches for our
neural network predictor, which is based on the
EfficientNet-B4 architecture.34 Figure 1 outlines these
approaches. First, we pretrained EfficientNet-B4 with a
large publicly available OCT dataset and then continued
training this model on our dataset (see our base classifier in
Figure 1).35 Second, we represented visual determinants,
such as nystagmus and spherical equivalent, and other
factors like patient age at the time of OCT scanning as a
Figure 5. Visual acuity by foveal hypoplasia (FH) grade (A), nystagmus (B), an
****P � 0.0001. LogMAR ¼ logarithm of the minimal angle of resolution.
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vector. We concatenated this metadata vector with the
vector representation of an image and then passed the
combined information into the last classification layer
(option 1 in Figure 1).

Third, because our dataset is small compared with many
other computer vision datasets, we generated fake OCTs
based on our real OCTs to increase the training sample size.
Intuitively, because of the sample size difference, a classifier
trained on fake and real images should outperform the one
trained on just real images. To this end, the GAN, Style-
GAN2-Ada,36 was applied to create fake OCT scans, which
were then used with real OCT scans to train EfficientNet-B4
(option 2 in Figure 1). The following 2 types of fake images
were created: (1) unrelated images for a given label (Figure
2); and (2) OCT scans that are between 2 consecutive labels
d spherical equivalent refractive errors (SERs) (C). *P � 0.05; **P � 0.01;



Figure 6. Spherical equivalent refractive error by FH grade (A), relative proportion of number of individuals with versus without nystagmus by foveal
hypoplasia (FH) grade (B), and the distribution of refractive error classes within the cohort (C). *P � 0.05; **P � 0.01; ****P � 0.0001. LogMAR ¼
logarithm of the minimal angle of resolution; ns ¼ not significant.
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(Figure 3). We combined the real OCTs with each of these 2
fake image types, making 2 new larger datasets, and then
trained EfficientNet-B4 on each of them.

For each of the 3 training approaches, we created the
ensemble predictor via fivefold cross-validation. We
computed a continuous FH prediction by taking the
weighted average of predicted probabilities and the corre-
sponding FH gradings. Supplementary Table 1 compares
training the model with and without fake OCT scans when
assuming the predicted FH grading must be discrete. The
following 2 accuracy metrics were considered: (1)
Spearman correlation, in which a high value indicates that
severe cases are assigned higher scores, and (2) linear
Table 1. Neural Network Predictor Accuracy When Treating FH
Grading as a Continuous Value

Correlation R2

Random forest V* 0.1460 0.0344
V þ nystagmus 0.3800 0.1589

Neural network Image 0.8574 0.7114
Image þ V 0.8777 0.7642
Image þ V þ nystagmus 0.8945 0.7775
Image þ GAN basey 0.8828 0.7543
Image þ GAN55z 0.8632 0.7402
Image þ GAN75x 0.8771 0.7614
Image þ GAN90ǁ 0.8942 0.7775

FH ¼ foveal hypoplasia; GAN ¼ generative adversarial network; HB ¼
Heidelberg; Z ¼ Zeiss.
*V: Set of the following variables: machine type (HB vs Z), age at
admission, and spherical equivalent.
yGAN base: Type 1 fake OCT scans in which each fake image is generated
for a specific given FH grading.
zGAN55: Type 2 fake OCT scans in which mix ratio is 55%; for example, a
fake image would have 55% and 45% characteristics of FH gradings 1 and 2
as in Figure 2.
xGAN75: Type 2 fake OCT scans in which mix ratio is 75%.
ǁGAN90: Type 2 fake OCT scans in which mix ratio is 90%.
regression coefficient (r2), in which a high value indicates
that predicted scores closely match their true values.

Table 1 compares random forest classifiers trained on
metadata and neural network classifiers trained according
to the 3 training procedures mentioned above.
Unsurprisingly, the lowest accuracy (Table 1, row 1) was
obtained when ignoring OCT scans and using random
forest to predict FH grading based on these variables
(denoted as symbol V in Table 1): machine type
(Heidelberg vs. Zeiss), age at admission, spherical
equivalent. Including nystagmus into the random forest
(Table 1, row 2) increases the accuracy, in concordance
with the results shown in Figure 6A, B, in which
nystagmus is correlated with FH, whereas SER is not.

When training neural network predictors, including
metadata yielded modest improvement (Table 1, rows 3e5),
with a minor drop without modeling nystagmus. Random
forest results and these 3 rows imply that (1) without
OCT scans, considering nystagmus is useful and (2) with
OCT scans, nystagmus provides a slight advantage. There
are minor differences among the neural networks trained
on real and fake OCT scans; however, the trend is that
using both real and fake images improves the accuracy
(Table 1, rows 3 and 6e9).

In summary, neural network classifiers reliably estimated
FH gradings using OCT scans and related metadata for
patients in our cohort.
Neural Network Predictor for Visual Acuity

We modified the first 2 neural network training approaches,
previously described for predicting FH to estimate Log-
MAR. In our dataset, we considered visual acuity as a nu-
merical value measured as LogMAR. We did not consider
the third neural network training approach involving fake
OCTs because LogMAR does not have a discrete label set,
which is required to train StyleGAN2-Ada. Also, we
included the true FH gradings based on the scale of Thomas
7



Table 2. Neural Network Predictor Accuracy When Predicting
LogMAR

Correlation R2

ElasticNet Nystagmus 0.4585 0.2474
V* 0.0591 0.0229
V þ nystagmus 0.4281 0.2938
V þ FHy 0.7258 0.4948
V þ nystagmus þ FH 0.7644 0.5718

Neural network Image 0.7080 0.4700
Image þ V 0.7081 0.4565
Image þ V þ nystagmus 0.7032 0.4967
Image þ V þ FH 0.7563 0.5392
Image þ V þ nystagmus þ FH 0.7765 0.5745

FH ¼ foveal hypoplasia; HB ¼ Heidelberg; LogMAR ¼ logarithm of the
minimal angle of resolution; Z ¼ Zeiss.
*V: Set of the following variables: machine type (HB vs. Z), age at
admission, and spherical equivalent
yFH: True FH gradings for the OCTs based on Thomas et al, provided by 2
experts.
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et al28 along with the previous metadata: machine type, age
at admission, spherical equivalent, and nystagmus.

Among the metadata, elastic net indicates that (1)
nystagmus and FH grading are the 2 best predictors and (2)
SER does not perform well, agreeing with Figure 5 (Table 2,
rows 1e5). With the true FH gradings, OCT scans do not
contribute much more to the prediction outcome (Table 2,
row 5 vs. 10 and row 4 vs. 9). This is expected because,
in our dataset, FH is highly correlated with visual acuity
(Figure 5A). Without the true FH gradings, OCT scans
alone sufficiently estimated the visual acuity (Table 2,
rows 6e8). In summary, our neural network classifiers
reasonably estimated LogMAR from just OCT scans
because our correlation coefficient 0.7080 falls near the
lower end of the range 0.7 to 1, which is considered
“strong.”37
Discussion

Humans possess high acuity vision because of a layerless
specialization in the central retina, the fovea.38 The fovea
centralis is an avascular zone located within the macula,
presenting as a small anatomic depression rich in cone
photoreceptors with high connectivity between cones,
bipolar, and ganglion cells.24,39

Early morphologic changes associated with the devel-
opment of human fovea take place from 12 to 24 weeks of
gestation,40 and the fovea remains immature until 4 years of
age, when maturation is completed.41 Foveal hypoplasia
results from an interruption of the developmental process
and is formally defined as a lack of foveal depression with
continuity of neuronal layers through the central retina
and a reduced avascular zone.30,42e44

Here, based on the scale of Thomas et al28, we observed
that the impact of these features on visual acuity is likely
conserved. The clinical diagnosis associated with FH may
8

be less important than factors, such as nystagmus,
spherical equivalent, and OCT scans, in building a neural
network classifier to predict FH gradings and visual
outcomes. Moreover, individuals with visual differences
with increasing refractive error, especially with extreme
ametropia (> þ6 or < e9 D) have worse visual acuity
than those with emmetropia/mild, moderate, or severe
ametropia within our cohort (Figure 6C).

In this paper, we evaluated how well a neural network
model estimates the FH gradings and the visual acuity (as
LogMAR) for a cohort in which most subjects (84% of the
test set) had foveal developmental anomalies and nystagmus.
We explored the following 3 approaches to train the neural
network model: (1) training the model on just OCT scans to
predict the true label, (2) training on OCT scans and meta-
data, and (3) training on real OCT scans and fake OCT scans
created from StyleGAN2-Ada. When estimating LogMAR,
the third option was not implemented because StyleGAN2-
Ada needs a discrete label set to generate fake images.

All 3 training options reliably estimated the FH gradings
and LogMAR values; however, the latter 2 training strate-
gies yield better accuracy. First, metadata provide more
information per input sample, which helps model perfor-
mance. Second, because of sample size difference, a clas-
sifier trained on fake and real images should outperform the
one trained only on real images. Interestingly, along with
studies in other disciplines (e.g., analyses of x-rays or skin
lesions), we found that joint training of real and fake images
only slightly improves the prediction outcome.45e47 Our
result also shows different types of fake OCT scans; the best
outcome is seen for images with mixed characteristics of 2
discrete FH gradings. We suspect that these mixed images
may better reflect the continuous progression of FH degra-
dation. Each GAN experiment in Table 1 used a constant
mixing fraction between every 2 discrete FH gradings. For
example, the experiment Image þ GAN75 had fake
images containing 75% and 25% characteristics of FH
gradings 1 and 2, 75% and 25% characteristics of FH
grading 2 and 3, and so forth. Future work will include
evaluating different combinations of mixing fractions
between FH gradings and exploring other GAN
architectures.48

Tables 1 and 2 show that the OCT scans, not nystagmus
and SER, are the main factor behind the performance of a
neural network classifier. Figure 7 depicts selected OCT
scans with misclassified FH gradings. Figure 5 and Figure
6 suggest that nystagmus, not the spherical equivalent, is
an important predictor of visual acuity. We note that
nystagmus, visual acuity, and FH grading may exhibit a
causality dilemma; that is, nystagmus and high refractive
errors can affect visual acuity, and these manifestations
may correlate. We attempted to address this in part by
conducting analyses without considering nystagmus but
emphasize that correlated variables can present challenges,
including in situations in which multiple types of data are
analyzed (e.g., images and metadata). Related to this, one
limitation is that our dataset does include outliers
(including those unrecognized manifestations that may
affect our results), such as a single patient with
achromatopsia. Although rare outliers would be unlikely



Figure 7. Representative OCT scans showing discrepancy of foveal hypoplasia (FH) grading between deep learning (DL) predictor and trained geneticists.
A, OCT scan determined as FH grade 1 but estimated as FH grade 2 by DL predictor. Note that all features of complete foveal development are present. B,
OCT scan determined as FH grade 2 but estimated as FH grade 1 by DL predictor. Note that the extrusion of plexiform layers and foveal pit are absent. C,
OCT scan determined as FH grade 3 but estimated as FH grade 2 by DL predictor. Note that the extrusion of plexiform layers, foveal pit, and lengthening of
the photoreceptor outer segment are absent. D, OCT scan determined as FH grade 4 but estimated as FH grade 2 by DL predictor. Note that extrusion of
plexiform layers, foveal pit, lengthening of photoreceptor outer segment, and widening of an outer nuclear layer are absent.
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to affect the results, it is possible that we were not able to
identify all such instances. Similarly, failures in
emmetropization in individuals with genetic eye
conditions can affect visual acuity in complex ways,
which may not be captured by the data types used in these
analyses. After this, OCT scans might be the least biased
source to estimate FH grading and visual acuity, although
they do not represent all potentially relevant information,
and further study is needed. In Tables 1 and 2, neural
network models without nystagmus did not greatly
underperform, indicating that, in our dataset, the OCT
scans were sufficient predictors of FH grading and visual
acuity.

It is also important to acknowledge that nystagmus and
spherical equivalent (among other metadata like age) are
clinically observed and can be suboptimal at estimating FH
grading and visual acuity. Better inputs would include
quantitative continuous structural parameters of the fovea
like outer nuclear layer widening and inner retinal layer
extrusion values. However, obtaining these parameters can
be difficult (and, although of interest for future work, it was
unfortunately not possible to gather these data in this
study); moreover, the measurements can be noisy because
of biases in human judgment. In this paper, we opted to
have the neural network classifier holistically analyze the
OCT scans; hence, the models may implicitly use the
foveal structural parameters. In future work, we hope to
explore image segmentation methods to automatically
separate each foveal component, measure the relevant
structural parameters, and use these values to predict FH
grading and visual acuity.

In albinism, central macular thickness was thought to
correlate with visual acuity.49,50 However, later studies were
unable to clearly establish this relationship.30 Seo et al51

developed a grading system for FH in patients with
albinism predominantly considering pigmentation defects
because the grading was determined from OCT images
and based on foveal hyporeflectivity, the degree of
choroidal transillumination, the presence of the tram-tract
sign, and foveal depression. The results suggest that the
prognostic value of FH gradings was superior to grading
scores based on iris transillumination or macular
transparency in young patients with albinism. In 2011,
Thomas et al28 developed a structural grading system for FH
that combines qualitative characteristics of the fovea based
on the step at which foveal development was arrested and
that helps predict visual acuity in disorders with FH.
Kruijt et al10 investigated the phenotype of a cohort of
individuals with albinism and found that the FH grading
correlated best with the visual acuity, whereas iris
translucency, fundus pigmentation, and misrouting were
not as useful. Rufai et al31 evaluated structural grading
and quantitative segmentation of FH using handheld OCT
versus preferential looking technique as a prognostic
indicator of the visual acuity in preverbal children with
infantile nystagmus. They found that the application of a
structural grading system can predict future visual acuity
compared with quantitative measures (e.g., photoreceptor
length, outer segment length, and foveal developmental
index). Exploring associations between FH and visual
acuity in a cohort of individuals with and without
albinism, with infantile nystagmus syndrome, Healey
et al25 demonstrated a relation between higher FH grade
and poorer visual acuity. They also observed an
association between FH grade and hyperopia degree.

Building a classifying algorithm as a predictor of FH
gradings and visual outcomes in individuals with foveal
developmental anomalies is a potentially useful approach
when considering prognostic information in the clinical care
of rare conditions. Neural network classifier as an automated
technique may be a useful method for identifying the most
efficient strategy in the management of FH. This algorithm
can be modified, retrained, and applied to other rare eye
conditions.

Nystagmus makes it difficult to assess visual acuity in
patients with foveal anomalies. When OCT scans can be
obtained in these individuals, the development of a method
for visual acuity prediction based on OCT results in in-
dividuals with FH could help vision researchers and clini-
cians as well as patients.

In practice, visual acuity measurements can be obtained
for older children and individuals with nystagmus but with
some difficulty. Previous studies showed that most but not
all individuals with disorders associated with FH exhibited
9
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nystagmus.10,31 Generally, this could be the case in
individuals with a lower FH grade and lower LogMAR
who have a more normally developed fovea.10 Because
our LogMAR predictions correlated well with true
measurements, we plan to evaluate our current model with
a larger cohort and design a similar but more sophisticated
approach to handle longitudinal data.31

In our study, the entire cohort of individuals with an
albinism-spectrum disorder and individuals with aniridia or
another PAX6 spectrum disorder demonstrated a correlation
10
among LogMAR, presence of nystagmus, refractive error,
and FH grade. Individuals with a higher FH grade showed a
higher LogMAR and a higher variability in refractive error.
Nystagmus was present in a larger number of individuals
who had a higher FH grade.

In summary, our results provide novel insight into the
application of computational techniques in the study of FH
and foveal developmental anomalies. The ability to extract
meaningful prognostic data from OCT alone may be
beneficial.
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