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The aim of the present review is to summarize the prevalence of abnormal levels of
various metal micronutrients including copper (Cu), iron (Fe), magnesium (Mg), zinc
(Zn), and selenium (Se) in Autism Spectrum Disorder (ASD) using hair, nail and serum
samples. A correlation of selected abnormal metal ions with known neurodevelopmental
processes using Gene Ontology (GO) term was also conducted. Data included in this
review are derived from ASD clinical studies performed globally. Metal ion disparity
data is also analyzed and discussed based on gender (Male/Female) to establish any
gender dependent correlation. Finally, a rational perspective and possible path to better
understand the role of metal micronutrients in ASD is suggested.
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disorder

INTRODUCTION

Autism Spectrum Disorder: Epidemiology and Etiology
Autism spectrum disorder (ASD) is a complex condition characterized by impaired social
communication and restricted, repetitive behaviors (Lord et al., 2018). Globally, it is estimated that
0.76% of children have ASD. The United States of America (USA) prevalence rates are higher at
1.9%, and have increased since 2000 (Maenner et al., 2020). The USA prevalence varies by race and
ethnicity: prevalence in Hispanic children is approximately 17% lower than that of white children.
Approximately one third of children with ASD also have an intellectual disability.

ASD is a heterogeneous condition which is likely caused by multiple environmental and
genetic factors, and many risk factors have been identified. In a recent literature review of
67 environmental risk factors and 52 biomarkers, the most convincing risk factors for ASD
were maternal factors before or during pregnancy. These included maternal age (≥35 years),
maternal chronic and gestational hypertension, maternal overweight pre-pregnancy or during
pregnancy, maternal pre-eclampsia, pre-pregnancy maternal antidepressant use (Kim et al., 2019),
and maternal immune activation (Bilbo et al., 2018). The gut microbiome is also implicated in
ASD symptomatology. In fact, gut microbiome plays an integral role in immune reactions and
inflammation. One hypothesis is that various antigens induce peripheral immunoreactions through
the GI tract, which subsequently alters CNS activity (Cristiano et al., 2018). Further, mouse models
of maternal immune activation results in ASD-like behaviors as well as decreased gastrointestinal
tract permeability. Because of this, diet modulations have been suggested as a therapeutic option
for ASD (Rosenfeld, 2015). Other likely environmental risk factors for ASD include to paternal
age (>45 years) (Gabis et al., 2010; Simard et al., 2019), and family history of autoimmune
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diseases (Wu et al., 2015) such as psoriasis (Croen et al.,
2019), rheumatoid arthritis (Rom et al., 2018), placenta
morphology (Straughen et al., 2017), and type 1 diabetes
(Atladottir et al., 2009).

Since early twin studies in the late 1980’s, a strong genetic
influence is seen for ASD. A recent literature review of all twin
studies on ASD found a 0.98 correlation between monozygotic
twins and an overall heritability estimate of approximately
64–91% (Tick et al., 2016). Today, over 900 autism susceptibility
genes have been reported (Banerjee-Basu and Packer, 2010),
indicating the condition’s heterogeneous nature. Both common
single nucleotide polymorphisms (SNPs) and more rare copy
number variations (CNVs) likely play a role in ASD incidence.
A study looking at common SNPs across the genome found
that ASD may be caused by a collective effort of many small
effect SNPs rather than one or a few genes (Klei et al., 2012).
CNVs in ASD are common on nine of 23 chromosomes
(Bergbaum and Ogilvie, 2016), and have been reported on every
chromosome. While most genetic variations are inherited in
ASD, approximately 10% of ASD can be attributed to de novo
genetic variations (Sebat et al., 2007).

THE ROLE OF METALS IN ASD

There is a growing interest in the role of metals in ASD
incidence. The increasing environmental dissemination of toxic
metals and chemicals are likely a cause for ASD, among other
neurodevelopmental disorders (Grandjean and Landrigan, 2014).
Typical ASD characteristics such as intellectual disability and
language problems have been associated with exposure of toxic
metals prior to or during pregnancy. In a review of almost 100
studies, 74% suggest that physiological mercury levels are a risk
factor for ASD (Kern et al., 2016), likely due to autoimmune
activation, oxidative stress, and subsequent neuroinflammation.
Aluminum is found at high levels in both white and gray matter
of ASD patients, and is hypothesized to be able to cross the blood-
brain barriers and taken up by microglial cells (Mold et al., 2018).
Further, animal studies examining neurodevelopmental effects of
metals found changes in brain structures also implicated in ASD
(Arora et al., 2017).

Aside from heavy and toxic metals, which actively disrupt
neurodevelopmental processes, dyshomeostasis of metal
micronutrients may also be involved in ASD etiology. Zinc,
copper, selenium, iron, and magnesium levels have been
associated with ASD incidence.

Zinc (Zn)
Zinc is the second most abundant element in the human body
and is involved in a plethora of cellular functions. Approximately
2,800 proteins or 10% of the human proteome may bind zinc
in vivo (Andreini et al., 2006). Zinc is particularly involved
in glutamatergic transmission (i.e., GABA pathway) during
embryonic and childhood development. Deficiency of zinc in
mice models leads to altered neural tube closure (Li et al.,
2018) and ASD-related behavior such as weakened vocalization
and social behavior through SHANK proteins, a family of
postsynaptic scaffolding proteins (Grabrucker et al., 2014).

When dietary zinc is added, non-ASD behavior is restored
in SHANK3-mutant mice (Fourie et al., 2018). Brain zinc
levels are 10-fold higher than serum Zinc levels, indicating a
larger role of Zinc in neurodevelopment (Portbury and Adlard,
2017). Zinc is more abundant in neuronal-rich areas, and is
important in neuronal modulation, synaptic plasticity, learning,
and memory (Qi and Liu, 2019). Of note, current literature
link zinc to ASD in the context of the central nervous system,
and therefore a lot remains unknown within the context of the
peripheral nervous system. Novel pharmacological therapies for
brain injury target levels of free zinc in the brain to restore
homeostasis, indicating the significance of zinc homeostasis in
the brain (Frederickson et al., 2005).

Zinc is also involved in the gut-brain interaction, and many
ASD patients also have gastrointestinal symptoms. Maternal
zinc levels are likely a factor in fetal gut formation and
therefore the gut-brain interaction in ASD (Vela et al., 2015).
Prenatal zinc levels also influence the morphology of placenta
(Wilson et al., 2017), and placental function is notable in
ASD (Straughen et al., 2017).

There is a well-known link between autism and the immune
system (Meltzer and Van de Water, 2017; Hughes et al., 2018),
to which zinc plays an integral role in both innate and adaptive
immunity, such as monocytes, natural killer, T-, and B-cells
(Shankar and Prasad, 1998).

There is considerable evidence for an association between zinc
deficiency and ASD (Yasuda and Tsutsui, 2013; Li et al., 2014;
Goyal et al., 2019). Zinc-binding genes associated with ASD are
up-regulated in all neurodevelopmental stages (Supplementary
Table S1). In a study examining 1,967 children with ASD,
almost 30% had low zinc concentration in hair samples (Yasuda
et al., 2011). Another small study found lower zinc levels in
saliva of autistic children when compared to healthy controls
(Deshpande et al., 2019). Zinc levels may also be correlated to
severity of ASD presentation (Guo et al., 2018). It is important
to note, however, that significant variance is observed when
comparing zinc from hair and nails (Giuseppe De Palma et al.,
2011; Lakshmi Priya and Geetha, 2011), suggesting that serum
may be a better source for zinc measurement. When serum was
evaluated in 78 children with autism, 71.8% of children had zinc
levels either in the lowest 10% or below the reference range
(Faber et al., 2009).

Zinc levels may also be affected by geographic-specific factors
(Table 1); studies in Ireland (Sweetman et al., 2019) and Brazil
(Saldanha Tschinkel et al., 2018) found zinc levels in ASD
children to be equivalent to that of healthy controls. One study in
Oman found higher levels of zinc in ASD patients than in controls
(Al-Farsi et al., 2013). Geographical differences may be attributed
to differences in social determinants of health such as nutrition,
economic status, and associated illnesses. Zinc deficiency in
infants is prevalent in countries with malnourishment, and
is globally a recognized public health issue (Ackland and
Michalczyk, 2016). Geographic-specific differences may also be
due to sample size and age variability between studies.

Copper (Cu)
Copper also has important roles in the human body,
and is involved in cell growth, among many others.
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TABLE 1 | Geographical differences in physiological zinc levels.

Country Gender*†

(male:
female)

Age in
years*

Source ASD mean zinc level Control mean
zinc level

p-value References

Africa

Egypt 3:1 4.1 ± 0.8 Hair 304.99 ± 25.8 µg/mg 419.5 ± 45.96 µg/mg n/a Eman Elsheshtawy
et al., 2011

Antarctica—N/A

Asia

China 4:1 3.78 (SD
1.22)

Serum 78.7 (SD 7.0) µg/dl 87.7 (SD 8.7) µg/dl <0.001 Li et al., 2014

India 4:1 4–12 Hair 130.46 (SD 15.65) µg/g 171.68 (SD 20.60) µg/g <0.01 (Lakshmi Priya and
Geetha, 2011)

Nails 150.83 (SD 18.09) µg/g 193.98 (SD 23.27) µg/g <0.01 Lakshmi Priya and
Geetha, 2011

Japan 3.8:1 0–15 Hair ∼30% of ASD patients
had a > 2 SD lower
zinc concentration than
reference

129 (range 86.3–193)
ppm

Yasuda and Tsutsui,
2013

Oman 4.4:1 3–14
(mean 5.3)

Hair Median 5.4 (quartile
0.82) µg/g

Median 2.9 (quartile
2.2) µg/g

0.0001 Al-Farsi et al., 2013

Saudi Arabia 5.3:1 3–9 Hair 67.04 (SD 23.78)
mg/kg

110–227 mg/kg n/a Blaurock-Busch et al.,
2012

Australia—N/A

Europe

Ireland (Northern) 7.2:1 2–18 Serum 11.68 (SD 1.7) µmol/L 11.63 (SD 2.1) µmol/L 0.86 Sweetman et al., 2019

Romania Not
reported

5.83 ± 3.10 Whole
blood

5.54 (SD 0.78) µg/ml 6.14 (SD 0.76) µg/ml 0.005 Craciun et al., 2016

United Kingdom 3.8:1 2–16
(mean 7.0)

Serum 10.01 (SD 1.52) µmol/L 11.76 (SD 2.14) µmol/L <0.001 Goyal et al., 2019

Italy 3:1 2–6 Serum 1021.52 (SD 100.76)
ng/g

808.03 (SD 131.89)
ng/g

0.01 Vergani Lauraad et al.,
2011

5.3:1 9.00 ± 4.05 Hair Median 149 (25th to
75th percentile
89.00—187.75) µg/g

Median 143(25th to
75th percentile
105.50—166.35) µg/g

0.428 Giuseppe De Palma
et al., 2011

Slovenia 7.8:1 1–16 Serum 10.74 (SD 1.81) µmol/L 12.10 (SD 1.52) µmol/L 0.007 Marta Macedoni-Lukšič
et al., 2014

Russia Not
reported

2–9 (mean
5.12 ± 2.36)

Hair Median 124.6 (25th to
75th percentile
77.0–174.2) µg/g

Median 113.3 (25th to
75th percentile
69.4–166.3) µg/g

0.365 Skalny et al., 2017

North America

United States 3.5:1 6.3 (SD 3.67) Serum 76.89 (SD 14.1) µg/dl Reference 66 µg/dl n/a Faber et al., 2009

6.2:1 11.7 ± 5.62 Serum 78.36 (SD 20.32)
mg/dL

84.42 (SD 24.18)
mg/dL

0.3541 Russo and Devito,
2011

Canada 4:1 3.90 ± 1.68 Red-cell 134.95 (SD
23.94) µmol/L

148.27
(SD17.09) µmol/L

0.08 Joan Jory, 2008

South America

Brazil Not
reported

<18 Serum 105 (SD 0.73) mg/dl Not reported. n/a Saldanha Tschinkel
et al., 2018

Venezuela Not
reported

Not reported Serum 180.50 ± 57.72 µg/dl 219.49 ± 72.10 µg/dl N.S. Semprún-Hernández
et al., 2012

*For studies that list control and ASD patient age/gender separately, ASD patient information is reported in this table.
†Gender ratios were calculated from reported numbers for simplicity.
SD denotes standard deviation and variance reported are as published in the literature. If variance was not specified as standard error or deviation, variance is reported
as mean ± variance.

Copper is involved in reactions connected to neurological
diseases, and dyshomeostasis of copper has been seen in
disorders such as Parkinson’s, Alzheimer’s, and Huntington’s
Diseases (Faber et al., 2009). Further, copper is integral

in several autism-related biological processes, such as
immunity (Kelley et al., 1995) and placental development.
Copper levels are typically higher than average in ASD
patients.
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In 78 children with ASD, 15.4% had higher copper levels
than the reference range, and 30.8% were in the highest 10%
of the copper reference range (Faber et al., 2009). In another
study, mean serum copper levels were significantly higher in ASD
children than in healthy controls (Li et al., 2014). A third study of
79 autistic individuals found a similar pattern, in which autistic
and Pervasive Developmental Disorder-Not Otherwise Specified
(PDD-NOS) patients had significantly higher plasma levels of
copper (Russo and Devito, 2011). Increase in physiological
copper levels may also correlate with increasing severity of
ASD (Lakshmi Priya and Geetha, 2011). Copper levels in ASD
patients do not seem to vary by geographical region (Table 2);
regardless of region, copper levels vary in comparison to controls
between studies.

Interestingly, copper and zinc play competing roles
physiologically, such that an increase in copper leads to
zinc deficiency (Grabrucker, 2012). The zinc/copper ratio has
therefore been examined in the ASD setting. Patients and
children with ASD tend to have lower zinc/copper ratios than
controls (Bjorklund, 2013), even if differences are not seen in
copper levels alone (Craciun et al., 2016). Such differences are not
known to be sex-dependent (Faber et al., 2009), though copper
levels alone may differ by sex due to oral contraceptive use (Babic
et al., 2013). One study found that the zinc/copper ratio could
be used as a diagnostic biomarker (Li et al., 2014). Zinc/copper
cycles may play a role in ASD occurrence, and the rhythmicity
of these cycles can be used as a diagnostic tool to classify ASD
(Curtin et al., 2018).

Selenium (Se)
Selenium and selenium-dependent proteins are essential in brain
development and managing oxidative damage in the brain, and
it has been suggested that dyshomeostasis in selenium may
be associated with ASD incidence (Raymond et al., 2014). In
a recent literature review of 10 studies comparing hair trace
element levels in ASD and controls, four of them found a
significant difference in Selenium levels. However, two found
a significant increase in Selenium levels in children with ASD,
and two found a significant decrease (Tinkov et al., 2019).
Another meta-analysis found no significant differences in mean
hair or erythrocyte selenium concentrations among 12 studies
(Saghazadeh et al., 2017). Though dyshomeostasis is likely
involved in ASD incidence, the contradictory data indicate a need
for a more comprehensive study evaluating Selenium levels in
ASD patients (Anatoly et al., 2018).

Iron (Fe)
Iron is the most abundant trace element in the body (Wood and
Sperling, 2019). Iron deficiency anemia is a major health concern
in both developed and developing countries and can result in
inadequate cellular function at a young age (Bener et al., 2017).
Iron is involved in several neurodevelopmental processes, such
as transmitter synthesis, myelin production, and synaptogenesis,
and deficiency leads to malfunction of these processes (Pivina
et al., 2019). Subsequently, iron deficiency is associated with
developmental delay (McCann and Ames, 2007) and likely in
ASD. Deficiency of iron has been seen in ASD children when

compared to controls (Bener et al., 2017). While one meta-
analysis in 2017 found lower iron levels in ASD patients than
controls (Saghazadeh et al., 2017), another meta-analysis in 2018
found no differences in peripheral iron levels in ASD children
(Tseng et al., 2018). Iron deficiency may be associated with ASD
symptoms and particularly correlates with severity of emotional
and behavioral problems (Saghazadeh et al., 2017).

Magnesium (Mg)
Magnesium is involved in basic cellular processes such as nucleic
acid formation and energy metabolism. In neurodevelopment,
magnesium regulates glutamate-activated channels in neuronal
membranes, a process highly correlated with ASD pathogenesis
(Saghazadeh et al., 2017). Magnesium has been seen as deficient
in children with ASD (Lakshmi Priya and Geetha, 2011). In
combination with vitamin B6, magnesium has been argued as
a potential nutritional intervention for ASD. However, several
systematic reviews from the late 1990’s to early 2000’s found no
substantial evidence for magnesium and vitamin B6 as treatment
for ASD (Karhu et al., 2019). Since then, not many studies
have examined the role of magnesium in ASD. A more recent
review, however, found a significant magnesium deficiency in
ASD patients, and suggests monitoring of magnesium status in
patients with ASD (Saghazadeh et al., 2017).

ASSOCIATION BETWEEN METAL
MICRONUTRIENTS AND BIOLOGICAL
PROCESSES

Iron, zinc, and copper have been considered as essential metal
nutrients for neurodevelopment processes. Iron is required for
the enzyme ribonucleotide reductase that regulates the central
nervous system. Iron also plays a role in myelin synthesis
(Prado and Dewey, 2014). Zinc is needed for cell division
because of its role in DNA synthesis. Zinc is also required
for modulation of postsynaptic plasticity, NMDA receptors for
glutamate and inhibits GABA receptor activation (Prado and
Dewey, 2014). For example, mouse models indicate alterations
in zinc levels lead to differences in both synaptic plasticity and
neurogenesis (Nam et al., 2017). When mothers are deprived
of zinc early in pregnancy or after birth, rodent pups exhibit
impaired DNA synthesis and improperly incorporate of thymine
in brain DNA (Sandstead, 1985). Zinc deficiency in early
development also results in morphologic brain defects including
the hippocampus, a part of the brain most notably significant in
working memory.

Along with folic acid and vitamin A, copper is needed
for the formation of the neural plate and neural tube very
early in the development (Prado and Dewey, 2014). Copper
is also a cofactor of dopamine-β-hydroxylase, peptidyl-a-
monooxygenase and many other enzymes which are involved
in vital central nervous system processes (Lutsenko et al.,
2010; Telianidis et al., 2013). Copper is particularly involved
in neurotransmitter synthesis and neuromodulation (Scheiber
et al., 2014). Subsequently, several neurodegenerative diseases
associate with copper dyshomeostasis. Other essential trace
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TABLE 2 | Geographical differences in physiological copper levels.

Country Gender*†

(male:
female)

Age in years* Source ASD mean copper
level

Control mean
copper level

p-value References

Africa

Egypt 3:1 4.1 ± 0.8 Hair 26.5 ± 1.9 µg/mg 19.1 ± 4.4 µg/mg n/a Eman Elsheshtawy
et al., 2011

Antarctica N/A

Asia

China 4:1 3.78 (SD 1.22) Serum 129.9 (SD 13.1) µg/dl 121.2 (SD 11.3) µg/dl <0.001 Li et al., 2014

India 4:1 4–12 Hair 36.62 (SD 4.39) µg/g 12.31 (SD 1.47) µg/g <0.001 Lakshmi Priya and
Geetha, 2011

Nails 28.85 (SD 3.46) µg/g 9.62 (SD 1.15) µg/g <0.001

Oman 4.4:1 3–14 (mean 5.3) Hair Median 1.2 (quartile
0.1) µg/g

Median 6.6 (quartile
0.7) µg/g

0.02 Al-Farsi et al., 2013

Saudi Arabia 5.3:1 3–9 Hair 133.86 (SD 115.47)
mg/kg

6.7–37 mg/kg n/a Blaurock-Busch et al.,
2012

Australia N/A

Europe

Romania Not
reported

5.83 ± 3.10 Whole
blood

1.26 (SD 0.16) µg/ml 1.22 (SD 0.18) µg/ml 0.460 Craciun et al., 2016

Italy 3:1 2–6 Serum 1390.99 (SD 213.55)
ng/g

1190.36 (SD 478.57)
ng/g

N.S. Vergani Lauraad et al.,
2011

5.3:1 9.00 ± 4.05 Hair Median10.20 (25th to
75th percentile
8.12—13.00) µg/g

Median 9.40 (25th to
75th percentile
7.40–14.45) µg/g

0.374 Giuseppe De Palma
et al., 2011

Slovenia 7.8:1 1–16
(mean 6.2 ± 3.0)

Serum 20.57 (SD 3.29) µmol/L 19.87 (SD
4.12) µmol/L

0.327 Marta Macedoni-Lukšič
et al., 2014

Russia Not
reported

2–9 (mean
5.12 ± 2.36)

Hair Median 10.2 (25th to
75th percentile
8.7–12.5) µg/g

Median 10.5 (25th to
75th percentile
9.2–12.6) µg/g

0.356 Skalny et al., 2017

North America

United States 3.5:1 6.3 (SD 3.67) Serum 129.68 (SD 29.1) µg/dl Reference 153 µg/dl n/a Faber et al., 2009

6.2:1 11.7 ± 5.62 Serum 111.50 (SD 27.73)
mg/dL

90.42 (SD 19.55)
mg/dL

0.0133 Russo and Devito,
2011

Canada 4:1 3.90 ± 1.68 Red-cell 14.38 (SD 1.39) µmol/L 14.90 (SD
2.29) µmol/L

0.22 Joan Jory, 2008

South America

Brazil Not
reported

<18 Serum 83 (SD 0.37) mg/dl Not reported. n/a Saldanha Tschinkel
et al., 2018

Venezuela Not
reported

Not reported Serum 128.62 ± 21.89 µg/dl 109.87 ± 24.65 µg/dl <0.05 Semprún-Hernández
et al., 2012

*For studies that list control and ASD patient age/gender separately, ASD patient information is reported in this table.
†Gender ratios were calculated from reported numbers for simplicity.
SD denotes standard deviation and variance reported are as published in the literature. If variance was not specified as standard error or deviation, variance is reported
as mean ± variance.

metals, such as Mn, Mo, and trace elements such as Se ions
also play a critical role in neurodevelopment. Metal ion contents
also vary with age (Lutsenko et al., 2010; Xu et al., 2012).
Deficiency or dyshomeostasis of any of these metal ions will
affect the neurodevelopmental process and may not be corrected
even after the repletion of these metal ions (Lutsenko et al.,
2010). Considering the importance of metal ions as integral part
of various metalloproteins and enzymes, perturbation of metal
ions homeostasis either through dietary deficiencies or via genetic
alterations in metalloproteins and enzymes can have detrimental
effect on neurodevelopment. There are many zinc-binding
genes within each neurodevelopmental pathway (Supplementary

Table S1), providing an example of metal micronutrients’ role in
neurodevelopment.

SEX AND GENDER DIFFERENCES
IN ASD

ASD incidence is four times higher in males than in females
(Baird et al., 2006; Baio et al., 2018), and ASD phenotypes
present differently between sexes (Grove et al., 2017). Females
may possess a protective factor for ASD, due to their earlier
development of language (Dickerson et al., 2017). However,
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among individuals with a high intellectual capacity, females
out-number males by a ratio of 11:1. When ASD patients do not
have physical or cerebral abnormalities, this ratio has been seen
at as high as 23:1 (Schaafsma and Pfaff, 2014).

ASD sex differences can be explained by many mechanisms.
As ASD has a genetic component, there may be ASD-associated
genes on the X and Y sex chromosomes. In a 2014 study
examining children with an extra X chromosome (i.e., Klinefelter
syndrome and Trisomy X), levels of social dysfunction and
autism symptoms were higher than those of controls. Social
anxiety in children with an extra X chromosome was at a higher
level than ASD patients (van Rijn et al., 2014). Genes on each sex
chromosome can be up- or down-regulated through a number of
cellular mechanisms, all which may impact gene expression.

ASD differences may also be explained by hormonal
mechanisms. One study found a significant difference in
hormone levels between ASD patients and controls (Geier and
Geier, 2006). Further, genes relating to sex steroids are associated
with autistic phenotypes (Chakrabarti et al., 2009). Hormonal
dyshomeostasis leading to ASD-like symptoms may be due to
prenatal gonadal hormones: Prenatal and amniotic testosterone
has been seen to correlate with ASD-similar behaviors, in both
females and males (Schaafsma and Pfaff, 2014).

Previous studies show that levels of metal micronutrients
differ by sex. For instance, copper levels are increased in women
using oral contraceptives (Babic et al., 2013). The testosterone
to estrogen conversion is regulated by a zinc-dependent protein.
Zinc deficiency may therefore affect young girls and boys
differently (Grabrucker et al., 2016). In a recent literature review
of metal levels in ASD, a strong argument was made for the
need to stratify results by sex. Many studies had been published
on a plethora of metals and markers of exposure in hair, urine,
blood, teeth, fingernails, and air pollution. However, only three
studies were found to have reported on sex differences in metal
levels. Further, results for each metal were conflicting; suggesting
that stratification for sex in these studies may lead to more
accurate findings. In the present review, all studies had a higher
number of boys than girls studied, which is representative
of the overall ASD population. Only one study evaluated sex
differences in metal levels. Three studies did not report the gender
distribution of their cohort. There are sex differences in metal
exposures, metabolism, and physiological storage, which may
explain possible metal differences between sexes (Faber et al.,
2009; Dickerson et al., 2017).

PERSPECTIVE

There is a growing interest in the role of metal micronutrients
in ASD. Metal micronutrients, essential to a large majority of
biological processes, are recommended as therapeutic options
for children with ASD (Cristiano et al., 2018). Particularly,
zinc and copper, including the zinc: copper ratio, are evidently
involved in ASD incidence and severity. The role of other
metals, such as selenium, in ASD is less clear. Selenium is
indeed crucial to neurological function, and it is implicated in
neurological disorders (Pillai et al., 2014; Dominiak et al., 2016)

such as Alzheimer’s (Solovyev et al., 2018), suggesting that it may
also play a role in ASD. There is, however, conflicting evidence
indicating the presence or absence of selenium in ASD patients.
There remains a need for a more comprehensive look at selenium
levels in ASD patients.

Many studies examining metal micronutrient levels in ASD
patients did so with nail or hair trace levels, which is an arguable
source for such analyses. Very few have compared hair, nail, and
plasma levels of metal micronutrients. We recommend further
investigations of the accuracy and reliability of using each of these
sources in the ASD setting.

Finally, we recommend and encourage future analyses of
metal micronutrients in ASD to be stratified by sex and
age. ASD prevalence rates greatly differ by sex, and several
hypotheses have been made to explain such differences. However,
only three studies have been identified to stratify their results
by sex when examining metals in ASD. Two of these three
studies found significant sex differences in metal concentrations.
Because of the inherent sex differences in ASD incidence
and presentation, it is evident that there is a need for sex
stratification in metal analyses in ASD. Further, age ranges should
be considered when designing future studies regarding metal
micronutrients in ASD. Throughout the course of the lifespan,
clinical requirements differ (current clinical reference ranges are
indicated in Supplementary Table S3). Therefore, future studies
should delineate age brackets of participants.

Based on the summarized findings on the role of metal
micronutrients in ASD, we also recommend analyzing the
metal micronutrients in all diagnosed ASD children to broaden
the understanding of association of metal micronutrients in
ASD. Future studies should be conducted comprehensively,
as small sample sizes have led to inconsistent results in the
literature.

CONCLUSION

Autism spectrum disorder (ASD) is a complex condition with a
combination of both genetic and environmental factors involved
in each case. While toxic metals and ASD incidence are widely
characterized, much is to be understood of metal micronutrients
in ASD. Zinc and copper play evident roles in neurodevelopment.
The extents to which they play roles in ASD likely differ by
geographic location. Of all genes involved in ASD incidence, 134
are zinc-binding. Within these, several ASD-related and metal-
binding genes can be mapped to specific neurodevelopmental
processes through a GO analysis.

There is a lot that is still unknown regarding metal
micronutrients and ASD. Specifically, while selenium clearly
plays a role in neurodevelopment, the literature shows conflicting
evidence for selenium in ASD incidence. Further, studies often
use one of hair, nail, or plasma as their source to compare
concentrations, but clear differences have been seen in the three,
suggesting comprehensive studies with multiple sources. Last,
there remains a critical need to stratify metal micronutrient
results by sex and age, considering the significant sex and age
differences in all other aspects of ASD.
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