
www.landesbioscience.com Plant Signaling & Behavior e22411-1

Plant Signaling & Behavior 8:1, e22411; January 2013; © 2013 Landes Bioscience

 RESEARCH PAPER RESEARCH PAPER

*Correspondence to: Azri Wassim; Email: azwassim@yahoo.fr
Submitted: 08/06/12, Revised: 09/28/12, Accepted: 09/29/12
http://dx.doi.org/10.4161/psb.22411
Citation: Wassim A, Ichrak B, Saïda A. Putative role of proteins involved in detoxification of reactive oxygen species in the early response  
to gravitropic stimulation of poplar stems. Plant Signal Behav 2013; 8:e22411; PMID: 23104108; http://dx.doi.org10.4161/psb.22411.

Introduction

Plants can reorient their growth direction by sensing organ 
tilt relative to the direction of gravity. With respect to gravity 
sensing in gravitropism, the classic starch statolith hypothesis, 
i.e., that starch-accumulating amyloplast movement along the 
gravity vector within gravity-sensing cells (statocytes) is the 
probable trigger of subsequent intracellular signaling, is widely 
accepted.

In trees, sedimentable amyloplasts in the endodermal cells 
may play a role in gravity perception leading to secondary 
xylem formation, eccentric growth and reaction wood forma-
tion in gravi-stimulated tree stems.1 How the displacement of 
amyloplasts might trigger a signaling cascade is still a matter 
of debate.2 Several different second messengers and proteins 
have been suggested to be involved in signal transduction of 
gravitropism.2-4

Although ROS such as superoxide anions and H
2
O

2
 are gen-

erally considered to be toxic by products of respiration, recent 
evidence suggests that the production of ROS might be an inte-
gral component of intracellular signaling.5-7 Production of ROS 
occurs in response to many physiological stimuli such as during 
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stomatal closure, adventitious root development and root gravi-
tropism.8 The excess production of ROS under biotic and abi-
otic stresses causes oxidative damage to cellular compartments.9 
Plants combat oxidative stress by inducing various protective 
enzymes and anti-oxidants. In mammalian cells, a variety of 
extracellular stimuli have been shown to induce a transient 
increase in the intracellular concentration of ROS, and specific 
inhibition of the ROS generation results in a complete blockage 
of stimulus-dependent signaling.10,11

ROS have been implicated as second messengers in sev-
eral plant hormone responses. Joo et al.12 showed that ROS 
are asymmetrically generated in roots by gravistimulation to 
regions of reduced growth. A function for ROS in root curva-
ture was reported by inhibiting cell growth, thus contributing 
to tropisms. Auxin also induced ROS production in roots and 
the auxin transport inhibitor N-1-naphthylphthlamic acid did 
not inhibit hydrogen peroxide (H

2
O

2
)-induced root curvature, 

leading to the suggestion that ROS play a role downstream of 
transport in auxin signaling and gravitropism.12,13

However, the potential of ROS as a second messenger in gra-
vitropism is still unclear. The implication of ROS in response 
to 45 min of inclination is consistent with the fact that we 
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showed different expression patterns than those of the corresponding proteins, and revealed that transcription levels 
were not completely concomitant with translation. Our data showed that these proteins may play a role in the early 
response to gravitropic stimulation.



e22411-2 Plant Signaling & Behavior Volume 8 Issue 1

The mRNA levels of Trx h, ATP synthase, 
OEE1, OEE2, CuZn SOD, APX2 showed dif-
ferent expression patterns than those of the 
corresponding proteins. The result of the pres-
ent investigation is supported by the previously 
established concept that transcription patterns 
are not directly concomitant with protein 
expression levels.15

Trx h expression was induced by gravitropic 
stimulation. Indeed, the real-time quantita-
tive RT-PCR analysis showed two significant 
increases of Trx h mRNAs: from 20 to 30–45 
min, and 3 h after gravistimulation, in basal 
internodes (Fig. 2A). Increase in Trx h mRNA 
expression levels has also been observed follow-
ing salt treatment of rice seedlings.16 Such reg-
ulation of Trxs suggests that redox balance is 
affected in the early step of gravi-stimulation. 
We previously observed that Trx h was also 
upregulated one week after stem inclination.4 
This is in agreement with the finding that pro-
duction of ROS is essential for auxin-induced 
gravitropic signaling in maize roots.12,17

Interestingly, the energetic pathway seems 
to be affected by gravitational stimulation. 
The real-time quantitative RT-PCR analysis 
showed two significant increases of ATPase 
mRNAs: from 30 min and 3h after gravi-
stimulation, in basal internodes (Fig. 2C). 
After 45 min of inclination, among the few 
genes that were downregulated at the base of 
the stem, we have found mitochondrial ATP 
synthase β chain. Indeed, genes coding for 

subunits of ATP synthase increased in their transcript abun-
dance following gravitational stimulation of Arabidopsis root.18 
Alternatively to the energetic hypothesis, it has been postulated 
that the ATP synthase might be a response related to the detri-
mental effect caused by an oxidative stress in the synthesis of 
ATP, because ATP synthase catalyzes key phosphorylation reac-
tions associated with aerobic catabolism.19 In these past years, 
the involvement of oxidative burst plant defense genes in the 
gravitropic response has been evoked.12,20 The implication of 
ROS in response at the inclination is consistent with the fact 
that we identified a cytosolic CuZn SOD and APX at the base 
of the stem. These ROS serve as substrates in metabolism and 
act as signals during development.21 However, other evidence 
suggests that ROS play significant roles in intracellular signal-
ing in gravitropism in maize.12,13 CuZn SOD plays a central 
role in protecting against oxidative stress. It is interesting that 
it showed a downregulation pattern in response to gravistimu-
lation. Consistent with our results, CuZn SOD also has been 
shown to be downregulated at the protein level by several oxi-
dative stresses.22 RT-PCR analysis showed significant increases 
of CuZn SOD mRNAs: from 20, 30, 45, 1h and 3h after gravi-
stimulation, in basal internodes (Fig. 2E). This upregulation 
began 20 min after inclination and peaked at 30 min. It has 

identified previously a Thioredoxin h, cytosolic CuZn SOD, 
APX2, OEE1, OEE2, and ATPase, proteins involved in detoxi-
fication of ROS.4 These proteins were previously identified as 
being differentially represented in lower internodes of inclined 
stems relative to vertical stems. In this report, these proteins 
were selected in order to investigate their expression patterns, in 
the early response to gravitropic stimulation at the mRNA level.

Results and Discussion

ROS have been implicated as second messengers in several plant 
hormone responses.14 However, the excess production of ROS 
under biotic and abiotic stresses causes oxidative damage to cel-
lular compartments.9 Plants combat oxidative stress by inducing 
various protective enzymes and anti-oxidants. In Poplar stem, 
a number of protein spots involved in detoxification of ROS 
and defense were identified previously:4 Thioredoxin h (Trx h) 
(spot n° 6), i.e., superoxide dismutase (CuZn SOD) (spot n° 
2), ascorbate peroxidase (APX2) (spot n° 1), OEE1 (spot n° 4), 
OEE2 (spot n° 3), and ATPase (spot n° 5) (Table 2). These 
proteins were selected in order to investigate their expression 
patterns, in response to gravistimulation at the mRNA level for 
kinetics 0, 10, 20, 30, 45 min, 1h, 3h and 6h (Fig. 2).

Figure 1. 2-D gel analysis of proteins extracted from poplar stem (basal part) gravistimulat-
ed for 45 min. Arrows and numbers indicate to identify proteins involved in detoxification 
of ROS. The number of each protein spot corresponds to its listing in Table 2.
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ROS could participate in gravitational stress signal integration, 
because ROS in plants act as regular signal transducers in vari-
ous processes. How molecular mechanisms involving ROS was 
integrated into a physiological signal that leads to the gravit-
ropic response remains to be elucidated.

Materials and Methods

Plant materials. Hybrid poplar (Populus tremula x Populus 
alba), clone INRA n° 717-1-B4 was multiplied clonally in vitro 
on Murashige and Skoog medium,30 acclimatized in hydro-
pony,31 and grown in a controlled environment growth chamber 
(16h photoperiod at 60 μmol.m-2.s-1, 22°C/18°C (day/night) 
and 70% of relative humidity). At the 14 internodes stage, the 
poplars showing straight stems were transferred on a new device 
for tilting.4 After one week on the device in a straight posi-
tion, poplars showing 20 developed internodes were inclined 
at 35° from the vertical axis for 45 min, as described early by 
Azri et al.4 Starting from the base, internodes 1 to 5 (showing 
preponderant secondary growth) were harvested from inclined 
and non inclined plants, frozen in liquid nitrogen and stored at 
-80°C until protein and RNA extraction.

Protein extraction and 2-DE analysis. Trees were leaned 
for 45 min. Upright trees were used as controls. Two indepen-
dent biological replicates were performed using five leaned trees 
and five upright trees. For each replicate, base internodes from 
five leaned and five upright trees were sampled. The internodes 
from 10 trees representing each sample type were pooled and 
ground in liquid nitrogen. From each pooled sample three rep-
licate protein preparations were isolated. Total protein were 
extracted and identified as described early by Azri et al.4 The 
silver-stained gels were scanned using a densitometer GS-800 
(Bio-Rad). Spot abundance was normalized as a relative volume 
to compensate for differences in sample loading and gel stain-
ing, using the PDQuest software. The spots whose quantity 
varied significantly after inclination were numbered (Fig. 1).32 
After automated detection and matching, manual editing was 
performed. Triplicate gels using independent protein prepara-
tions were analyzed for each condition. Statistical analyses were 
performed using the Student’s t -test (p < 0.05).

RNA extraction and real-time RT-PCR experiments. After 
one week on the device in a straight position, poplars showing 
20 developed internodes were inclined at 35° from the vertical 
axis for 0, 10, 20, 30, 45 min, 1h, 3h, and 6h as described earlier 

been shown that APX is highly sensitive to inactivation by ROS 
and is often insufficient to protect the photosynthetic appara-
tus from photoinhibition during severe drought stress.23 The 
absence of APX2 results in reduced photosynthetic activity, 
during light stress and altered stomatal responses.24 In our study 
the APX2 was present in the control but not detected after 
inclination 45 min. No upregulation of the transcripts APX2 
occurred after inclination, as demonstrated by comparison with 
the control (Fig. 2B). APX2 expression significantly decreased 
at 20 min, 30 min, 3h and 6h after inclination. The down-
regulation of the transcripts OEE1 (which is bound to photo-
system II) might also be interpreted as a response to oxidative 
stress caused by inclination. It has been shown that deviation 
from regular redox homeostasis can be sensed in chloroplasts 
and that specific chloroplast signals control nuclear gene expres-
sion.25 The decrease in OEE1 transcript (Fig. 2D) could be a 
consequence of such signaling and thus would impair oxygen-
evolving activity and photosystem II stability.26 No upregula-
tion or a slight decrease in OEE2 expression was observed at 1h 
and 6h after inclination (Fig. 2F). OEE2 was identified as the 
molecule inducibly phosphorylated by AtGRP-3 and WAK1. 
In addition, the phosphorylation of OEE2 was enhanced in 
Arabidopsis infected with avirulent Pseudomonas syringae. 
These data suggest that OEE2 is a molecule downstream of 
AtGRP-3/ WAK1, possibly in defense signaling.27 It is currently 
investigating whether AtGRP-3/ WAK1 signaling is related to 
the production of ROS such as H

2
O

2
 and O ·

2
 from chloroplasts 

under stress conditions.27

Involvement of oxidative stress proteins in the gravitropic 
response was to some extent unexpected, although rapid non-
pathogen- related induction of the oxidative stress is known 
to occur in response to wounding, extreme temperatures, UV 
irradiation, salt, and osmotic and mechanical stimulation.28,29 
The oxidative stress proteins have not yet been considered to 
play a role in gravitropism, except for the recent study on role 
of auxin-induced ROS in root gravitropism.12 Joo et al.12 dem-
onstrated that gravity-induced asymmetric ROS generation in 
roots of maize (Zea mays), unilateral application of ROS to ver-
tical roots stimulated root bending, and scavenging of ROS by 
antioxidants inhibited root gravitropism. Theses results support 
our findings of involvement of oxidative stress genes in the gra-
vitropic response. Our data showed an implication of ROS sig-
naling in the decurving process via Trx h, CuZn SOD, APX2, 
OEE1, OEE2, and ATPase. It was however not surprising that 

Table 1. List of primers used for RT-qPCR experiments

Gene Primer for Primer rev Size (bp) Tm (°C)

APX2 GGA CGA TCA GAC ACC CAG AT CCT TCT GGA GGT GGA TCA GA 214 58

Cu/Zn SOD TGG CAC CAT CTT CTT TAC CC TGA CAT TTC CCA GAT CAC CA 215 59

OEE2 GCA GGC AGT ACA GGA AGA GG TCA GAA CCT GAC CAG GGA AC 248 61

OEE1 GGT GTG CCT TCT AGG ACC AG TCG GAA CTC CTT CAG CAC TT 179 61

ATPase CAC TCA ATC CGG TTG GTT CT TGG AGC CTC CCT ATG AAT TG 243 59

Trx h AGG GAA AGG GGT CTC AGA AA ATT GCC TCC ACA TTC CAC TC 178 55
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