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Abstract

Keywords

Identifying potential protein targets for a small-compound ligand query is crucial to the process of drug
development. However, there are tens of thousands of proteins in human alone, and it is almost
impossible to scan all the existing proteins for a query ligand using current experimental methods.
Recently, a computational technology called docking-based inverse virtual screening (IVS) has attracted
much attention. In docking-based IVS, a panel of proteins is screened by a molecular docking program
to identify potential targets for a query ligand. Ever since the first paper describing a docking-based IVS
program was published about a decade ago, the approach has been gradually improved and utilized for
a variety of purposes in the field of drug discovery. In this article, the methods employed in docking-
based IVS are reviewed in detail, including target databases, docking engines, and scoring function
methodologies. Several web servers developed for non-expert users are also reviewed. Then, a number
of applications are presented according to different research purposes, such as target identification,
side effects/toxicity, drug repositioning, drug-target network development, and receptor design. The
review concludes by discussing the challenges that docking-based IVS needs to overcome to become a
robust tool for pharmaceutical engineering.

Inverse virtual screening, Target fishing, Polypharmacology, Side effects, Drug repositioning, Molecular
docking

INTRODUCTION

Identifying protein targets for a query ligand is a crucial
aspect of drug discovery. Historically, natural products
derived from plants, animals, micro-organisms, etc.,
were used as medicines to cure many diseases. The
accumulated experience and knowledge of their usages
have become an abundant resource for modern drug
discovery (Ji et al. 2009). Although purified compounds
from these natural products present good therapeutic
activities, molecular mechanisms of action including the
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identification of binding targets are often shrouded in
mystery. The drug design process in modern times is
highly dependent on Ehrlich’s assumption (Kaufmann
2008), in which drugs work as “magic bullets” modu-
lating one target of particular relevance to a disease.
Great success has been achieved with this simple
assumption, while disadvantages are also emerging in
recent years. The most visible disadvantage is the high
attrition rate (about 90%) of potential compounds at
the late stage of clinical trials due to certain efficacy and
clinical safety problems (Nwaka and Hudson 2006). A
number of drugs have been withdrawn from the market
because of serious side effects or life-threatening toxi-
cities. Recent studies also suggest that each existing
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drug binds to, on average, about six target proteins
instead of one (Azzaoui et al. 2007; Mestres et al. 2008).
If all the targets of an interested ligand can be identified
at the early stage of new drug design, the side effects
and toxicities that appear in the later stages of clinical
trials can be effectively avoided. Thus, a prescreening
process can significantly increase the success rate and
reduce the development cost for the overall drug pipe-
line. However, the lack of effective experimental tools in
identifying all the potential targets for a small molecule
on a proteome-wide scale remains a daunting challenge
to overcome.

Recently, an inverse virtual screening (IVS) technol-
ogy based on molecular docking methods has been
developed and widely used for the process of target
identification (Chen and Zhi 2001). A molecular docking
method is defined as the prediction of both the binding
mode and binding affinity of a query ligand (such as a
small-molecule drug) against a receptor (such as a tar-
get protein) (Brooijmans and Kuntz 2003; Sousa et al
2006; Grinter and Zou 2014a, b). In the IVS method, a
molecular docking process is employed to screen a
protein database for a query ligand, and then an enri-
ched subset containing possible targets of the ligand is
provided. Figure 1 shows a flowchart of the docking-
based IVS procedure.

To run a docking-based IVS study, at least two com-
ponents are required, a protein database and a molec-
ular docking program. The target database is a
collection of structures of proteins or active sites. With
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Fig. 1 A flowchart of the docking-based inverse virtual screening
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the rapidly increasing number of structures deposited in
the Protein Data Bank (PDB) (Berman et al. 2000), a
desirable target database can be constructed for
docking-based IVS. The target database can also be
extended through homology modeling techniques. Then,
a potentially interesting small molecule is docked to
each element of the target database by a docking pro-
gram. Generally, a docking program consists of two main
components—the sampling algorithm and the scoring
function. The sampling component generates sufficient
putative binding modes. The scoring function further
ranks these modes based on binding energy evaluations.
The ability of the existing scoring functions to accurately
predict binding energies remains limited (Brooijmans
and Kuntz 2003; Huang et al 2010). Fortunately, the
purpose of IVS studies (and of virtual screening of
potent ligands against a query target) is in pursuit of an
enriched subset of potential candidates (e.g., top 1% of
the ranked proteins in the IVS case or top 1% of the
ranked ligands in the virtual screening case), which is a
relatively less challenging task than binding energy
prediction for a scoring function.

In addition to docking-based IVS, there are several
other computational methods that can be used for target
identification, including ligand-based methods, binding
site comparisons, protein-ligand interaction finger-
prints, and so on (Rognan 2010; Koutsoukas et al. 2011;
Xie et al. 2011; Ma et al. 2013). Ligand-based methods
are based on the molecular similarity principle, which
states that molecules with similar structures tend to
have similar biological activities (Willett et al. 1998;
Bender and Glen 2004). These methods heavily rely on
the pre-existing knowledge about the molecules in the
database, and require a database of small molecules
with known binding targets. Although ligand-based
methods are widely used for target identification and
have achieved a great amount of success, they become
utterly useless for the remaining “unknown space” (ie.,
dissimilar ligands). Similarly, for the methods of binding
site comparison and protein-ligand interaction finger-
printing, at least one protein-ligand complex structure
of the query small molecule is required (Rognan 2010).
All the aforementioned approaches are classified as
“knowledge-based” IVS methods. By contrast, docking-
based IVS is the only method that does not rely on such
preliminary information, rendering it a more attractive
option in the field of target identification.

Ever since the first docking-based IVS program was
developed by Chen et al (Chen and Zhi 2001), the
method has been improved and utilized widely for
various purposes in the field of drug discovery. Here, we
review the method of docking-based IVS, including the
target database, docking engine, and scoring function
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components of this method. We also review the web
servers that integrate the complex process of IVS for
non-expert users. Then, we present published studies in
which docking-based IVS played an important role.
These application studies are classified into target
identification, side effect/toxicity assessments, drug
repositioning, multi-target therapy/drug-target net-
work, and receptor design. Finally, we discuss about
current challenges that docking-based IVS needs to
overcome in order to become a robust tool for far-
reaching applications.

DOCKING-BASED IVS

In docking-based 1VS, a given small molecule is docked
to the binding site of each protein in a target database
through a docking engine. Then, target proteins are
ranked according to the binding scores estimated by a
scoring function. This complex process has been inte-
grated and presented as online web servers for non-
expert utilization. These components are explained in
detail as follows.

Target databases

A database consisting of three-dimensional protein
structures is required for the implementation of
docking-based IVS. Owing to the development of tech-
nologies in structural biology, such as X-ray crystallog-
raphy and NMR spectroscopy, an increasing number of
protein crystal structures have been resolved and
deposited in a publicly accessible database, the PDB
(Berman et al. 2000). Up to the present (16th March
2017), the number of protein entries in the PDB has
reached up to 118,663, which provides an abundant
resource for constructing a sub-database for IVS.

For example, screening-PDB (sc-PDB) (Kellenberger
et al. 2006) is a sub-database extracted from the PDB
for the purpose of virtual screening. sc-PDB collects all
the high-resolution crystal structures of protein-ligand
complexes in which ligands are nucleotides (<4-mer),
peptides (<9-mer), cofactors, and organic compounds.
In the latest version v.2013, sc-PDB contains 9283
entries corresponding to 3678 different proteins and
5608 different ligands. The known protein-ligand
complex structures in the database embed the infor-
mation about the binding sites (ie., the pocket where
the ligand binds), which would significantly reduce the
sampling space for docking. The authors’ indiscriminate
collections enrich the sc-PDB database, but also com-
plicate the subsequent analysis of the screening results.
To address this issue, several databases that focus on
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specific topics have been constructed, and are intro-
duced as follows.

Therapeutic target database (TTD) (Chen et al. 2002)
focuses on known and potential therapeutic targets,
which are proteins and nucleic acids collected from
literature. Important information, such as targeted dis-
eases, pathway information, and corresponding drugs/
ligands, is provided in the database. After the latest
update in 2015 (Yang et al. 2016), TTD contains 2589
targets, including 397 successful, 723 clinical trial, and
1469 research targets. However, the TTD database does
not provide 3D structures of the targets, which need to
be downloaded from the PDB database by users.

Potential drug-target database (PDTD) (Gao et al
2008) is another database focusing on therapeutic tar-
gets. Different to TTD, PDTD contains only protein tar-
gets. Impressively, cleaned 3D structures for both
protein and active sites are provided, minimizing the
complexity of docking preparation for users. After the
latest update in 2008, PDTD contains 1207 entries,
covering 841 known and potential drug targets. Targets
in the PDTD database were further categorized into
several subsets according to two criteria: therapeutic
areas and biochemical criteria. These subsets could be
very effective for studies on a special topic. The data-
base was implemented in an online web server TarFis-
Dock (Li et al. 2006), which will be introduced later in
this review.

Drug adverse reaction database (DART) (Ji et al
2003) focuses on known and potential targets corre-
sponding to the adverse effects of drugs. Information
such as physiological function, binding affinity of known
ligands, and corresponding adverse effects is provided.
Currently, the DART database contains entries for 147
ADR targets and 89 potential targets. The structures of
the targets and the active sites in the database need to
be prepared by users.

Recently, our group presented a small molecule-
transcription factor (SM-TF) database containing all the
targetable TFs with known 3D structures (Xu et al
2016). SM-TF contains 934 entries, covering 176 TFs
from a variety of species. Besides the protein structures,
the co-bound ligands are also provided in the SM-TF
database. Therefore, the database is suitable for both
docking-based IVS and ligand-based IVS.

In addition to the aforementioned freely accessible
databases, researchers often construct highly special-
ized datasets. For example, a dataset containing
enzymes was constructed by Macchiarulo et al. to study
the selectivity and competition of metabolites between
enzymes (Macchiarulo et al. 2004). Zahler et al col-
lected a dataset of protein kinase structures for identi-
fying the targets of kinase inhibitors (Zahler et al. 2007).
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Lauro et al. (2011) collected a dataset of proteins
involved in cancer and tumor development for antitu-
mor target identification of natural bioactive com-
pounds. These individualized datasets can be either
directly derived from a protein-ligand complex struc-
ture database like sc-PDB, or constructed by collecting
information from publically accessible drug-target
databases such as SuperTarget (Gilinther et al. 2008),
BindingDB (Liu et al 2007), and DrugBank (Wishart
et al. 2006), as listed in Table 1. It should be noted that
information in the later databases is redundant. The 3D
structures of proteins need to be downloaded from the
PDB database by users, and further preparations are
necessary to fit the input file format of docking
methods.

Docking engines

Prediction of protein-ligand complex structures plays
an essential role in docking-based IVS. The credibility of
predicted binding patterns of a ligand against each
protein target is crucial to the final success. Fortunately,
plenty of programs have been developed for the pur-
pose of structure prediction of protein-ligand com-
plexes (Brooijmans and Kuntz 2003; Sousa et al. 2006).
Here, we focus on the issues closely related to IVS.
Interested readers are referred to other recent reviews
on molecular docking methods for more information
(Brooijmans and Kuntz 2003; Sousa et al. 2006; Huang
and Zou 2010; Grinter and Zou 2014a, b).

Briefly, a molecular docking program is designed to
predict a complex structure based on the known 3D
structures of its components. In other words, a docking
method is a problem of searching for the ligand location
on a given protein target (referred to as binding site
prediction) and then for the ligand conformations and
orientations in the binding site. Although methods of
global blind docking are provided by most docking
programs, they suffer from time-consuming execution
and a low success rate compared to dockings into a
known binding site. Considering the large number of
proteins in the target database, protein structures with
known active sites are preferred in the preparation of a
target database.

In the early stages of the development of the docking
methods, both the ligand and the receptor were treated
rigidly. A shape matching method was employed to
place a ligand in the binding site of a receptor. Only six
degrees of freedom (three translational and three rota-
tional) of a ligand conformation are considered, which is
computationally efficient. However, binding of a ligand
to a receptor is a mutual fitting progress, with confor-
mational changes in both components. Thus,
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conformational search is necessary for both the ligand
and the receptor during docking.

According to the searching method, ligand flexibility
algorithms can be divided into three types: systematic,
stochastic, and deterministic search. Systematic search
generates all possible ligand binding conformations by
exploring the whole conformational space. Despite the
completeness of sampling, the number of evaluations
increases rapidly as the number of degrees of freedom
are increased (i.e., the number of rotatable bonds in a
ligand). Examples of systematic search include exhaus-
tive search implemented in Glide (Friesner et al. 2004),
and a fragmentation method named incremental con-
struction algorithm implemented in LUDI (Bohm 1992)
and DOCK (Des]Jarlais et al. 1986). Stochastic algorithms
sample the ligand conformational space by making
random changes, which will be accepted or rejected
according to a probabilistic criterion. This type of
methods significantly reduces computational efforts for
large systems; however, the uncertainty of convergence
is a major concern. Examples of stochastic algorithms
are Monte Carlo (MC) methods implemented in
MCDOCK (Liu and Wang 1999), and evolutionary algo-
rithms implemented in GOLD (Jones et al. 1997) and
AutoDock (Morris et al. 1998). For deterministic search,
the final state of the system depends on the initial state.
Examples are energy minimization methods and
molecular dynamics (MD) simulations. Systems are thus
guided to states with lower energies. However, it is
difficult to cross energy barriers, and systems are often
trapped in local minima with these methods.

The flexibility of the receptor remains a big challenge
for docking, because of the huge number of degrees of
freedom in the system. Some methods for ligand flexi-
bility are also applicable for receptor flexibility, such as
the aforementioned evolutionary algorithms, MC, and
MD methods. In addition, several approaches accounted
for partial flexibility within the receptor, such as soft
docking and conformer libraries. Soft docking allows an
overlap between the ligand and the receptor by soft-
ening the interatomic van der Waals (vdW) interactions
(Jiang and Kim 1991). The methods based on conformer
libraries can be further divided into two different types.
The first type describes the side-chain conformations by
a rotamer library and keeps the backbones fixed (Leach
1994). The second type is referred to docking with
multiple receptor structures, using pre-generated
receptor conformers (Knegtel et al. 1997). Other meth-
ods, such as induced fit docking (IFD), change both
protein and ligand conformations to fit each other
during the docking process (Sherman et al. 2006).
Theoretically, these methods can account for receptor
flexibility in terms of either the side chains or the
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Table 1 Publicly available databases containing the information about targetable proteins

Database Description URL

PDB A pool of 3D structures of macromolecules, including proteins, nucleic acids, and complex http://www.rcsb.org
assemblies. The total number of structures deposited in the database is more than
12,000

sc-PDB A subset of PDB with the collection of protein-ligand complexes. In the latest version http://bioinfo-pharma.u-
v.2013, the database contains 9283 entries corresponding to 3678 different proteins and strasbg.fr/scPDB
5608 different ligands

TTD Therapeutic target database (TTD) contains 2360 targets, including 2589 targets, including http://bidd.nus.edu.sg/
397 successful, 723 clinical trial, and 1469 research targets group/ttd

PDTD Potential drug-target database (PDTD) contains 1207 entries covering 841 known and http://www.dddc.ac.cn/pdtd
potential drug targets, which can be further categorized into subsets according to two
criteria: therapeutic areas and biochemical criteria. Structures for both protein and
active site are available

DART Drug adverse reaction database (DART) contains 147 ADR targets and 89 potential targets http://bidd.nus.edu.sg/

group/drt

SM-TF A database of 3D structures of small molecule-transcription factor complexes. The http://zoulab.dalton.
database contains 934 entries, covering 176 TFs from a variety of species missouri.edu/SM-TF

SuperTarget A database contains the information about drug-target relations. The database http://bioinformatics.charite.
contains >6000 target proteins, 196,000 compounds, 282 drug-target-related pathways, de/supertarget
and >6000 drug-target-related ontologies

BindingDB A database of measured binding affinities for drug-targets with small, drug-like molecules. http://www.bindingdb.org/
Until now, the database contains more than 1,000,000 binding data, for about 7997 bind
protein targets and 453,657 small molecules

DrugBank In the latest version (5.0), the database contains 8261 drug entries including 2021 FDA- http://www.drugbank.ca

approved small-molecule drugs, 233 FDA-approved biotech (protein/peptide) drugs, 94

nutraceuticals, and over 6000 experimental drugs. 4338 non-redundant protein

sequences are linked to these drug entries

Some of them can be directly used for docking-based IVS studies. Others are abundant resources for constructing an individualized target

dataset

backbones, or both. However, the rapidly growing
degrees of freedom make even a single docking event
very time-consuming, and make the hopes of imple-
menting IVS a mirage.

According to a recent review that exhaustively pre-
sented the programs available for protein-ligand dock-
ing, the number of available docking programs was
more than 50 and kept increasing (Sousa et al. 2013). It
is difficult to say which docking program is better than
the others, because the performance of most docking
programs is highly dependent on the system of study,
eg., the characteristics of both the receptor and the
ligand (Sousa et al. 2013). In the published literature
related to docking-based IVS, the choice of a docking
engine is quite arbitrary.

Scoring functions

The scoring function is another important component of
protein-ligand docking protocols. It is for evaluation
and ranking of the binding conformations generated by
the searching algorithms described in the last section. In
fact, scoring functions are usually implemented in
docking programs. Here, we artificially separate scoring
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functions from docking engines, not only because
scoring functions play an essential role in every docking
protocol, but also because they are employed to pick
potential targets out of a database in IVS.

Scoring functions for molecular docking can be
grouped into three major classes according to how
they are derived: force field-based, empirical, and
knowledge-based. Parameters in force field-based scor-
ing functions are derived from molecular mechanical
force fields used in MD simulations, including contribu-
tions from vdW interactions, electrostatic interactions,
and bond stretching/bending/torsional potentials. The
desolvation effects can be considered by using implicit
solvent models like the Poisson-Boltzmann/surface area
(PB/SA) model (Baker et al. 2001; Grant et al. 2001;
Rocchia et al. 2002) and the generalized-Born/surface
area (GB/SA) model (Still et al. 1990; Hawkins et al
1995; Qiu et al. 1997). However, the solvent models
would significantly slow down the computational speed,
which must be considered in screening studies. In
addition, the absence of entropic terms is also a weak-
ness of this type of scoring functions. For example, force-
based scoring functions are used in docking programs
such as DOCK (Meng et al. 1992) and GOLD (Jones et al.
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1997). The second kind of scoring functions are empir-
ical scoring functions, which are a sum of different
energy terms such as vdW, electrostatics, hydrogen
bond, desolvation, entropy, hydrophobicity, and so on.
The weight of each energy term is generated based on a
training set of experimental affinity data. The empirical
scoring functions are easy to calculate and take much
less computational time than force-filed-based scoring
functions. However, the accuracy of an empirical scoring
function heavily relies on the training set of experi-
mental affinity data. Examples can be found in docking
programs such as FlexX (Rarey et al 1996), Glide
(Friesner et al. 2004), ICM (Abagyan et al. 1994), and
LUDI (Bohm 1994, 1998). The third kind of scoring
functions are knowledge-based, which are also known as
statistical potential-based scoring functions. They are
developed by statistical analysis of the atom pair
occurrence frequencies in a training set of experimen-
tally determined protein-ligand complex structures.
Briefly summarized, the frequency of structural features
(such as atom pairs) that appear in a training dataset is
used to derive the scoring functions. The relationship
between the frequency of the structural features and the
interaction energies assigned to those features relies on
the inverse-Boltzmann equation (Thomas and Dill
1996). Compared to the previous two types of scoring
functions, knowledge-based scoring functions hold a
good balance between accuracy and speed. However, a
weakness of knowledge-based scoring functions is that it
is still training set-dependent. Examples of knowledge-
based scoring functions are potential of mean force
(PMF) (Muegge and Martin 1999; Muegge 2006) and
ITScore (Huang and Zou 20064, b; Grinter et al. 2013;
Grinter and Zou 20144, b; Yan et al. 2016). The inter-
ested reader is recommended to read recent reviews on
scoring functions for protein-ligand docking (Huang
et al. 2010; Grinter and Zou 201443, b).

Generally, the best (i.e., the lowest) docking score from
each protein-ligand docking is used for ranking the pro-
teins in the database. Proteins with low docking scores
are potential targets for the ligand. Then, proteins among
the top 1% (or 5%) of the ranking list can be used for
further analysis. However, this arbitrary cutoff results in
enormous false positive targets, significantly increasing
the degree of difficulty. Meanwhile, some real targets
beyond the cutoff will be ignored. Although false positives
and false negatives remain an open question in IVS, sev-
eral efforts have been made to reduce false positive and
false negative targets in the final predicted list.

In a pioneer work of docking-based IVS by Chen et al.
(Chen and Zhi 2001), an energy threshold was intro-
duced to filter the proteins in the ranking list. The
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method was based on an analysis of the known protein-
ligand complexes in the PDB, which showed that the
computed protein-ligand interaction energy was gen-
erally less than AEthresholda = —aN kcal/mol. Here, N is
the number of ligand atoms, and « is a constant (~1.0)
which can be determined by fitting the equation for a
large set of PDB structures. Proteins with calculated
binding energies less than AEThreshold Were predicted as
potential targets. Furthermore, to consider competitive
binding against natural ligands in vivo, another energy
threshold, AEcompetitor» Was introduced. AEcompetitor iS the
binding energy of a competitive natural ligand inter-
acting with each protein for a query ligand. The calcu-
lation of AEcompetior Was based on the experimental
complex structure of the protein and the natural ligand.
The calculated binding energy of the query ligand was
required to be lower than SAE¢ompetitor fOr each protein,
where f§ < 1. A value of 0.8 for § was recommended by
the authors for both weak and strong binders.

In addition to the use of a threshold for binding
scores obtained from the known protein-ligand com-
plexes, Li et al. (2011) introduced consensus scoring to
an IVS study. Consensus scoring is a combination of
multiple scoring functions. Since every scoring function
has its advantages and limitations, consensus scoring
provides a way to combine the advantages from differ-
ent scoring functions. In the work by Li et al. two dif-
ferent scoring functions, an empirical scoring function
(ICM) and a knowledge-based scoring function (PMF),
were employed for consensus scoring, leading to a clear
enhancement in hit-rates.

In the web server SePreSA developed by Yang et al.
(2009), a 2-directional Z-transformation (2DIZ) algo-
rithm was used to process a docking-score matrix.
Briefly, 79 proteins with co-crystalized ligands in the
target database were selected to dock with 86 ligands,
generating a docking-score matrix of 79 x 86 elements.
Then, the Z-score was calculated by Z; = (X; — X;) /SDy,
where Xj; is the docking score of ligand j to protein /, and
X; is the average docking score of ligand j against 79
proteins. SDy, is the standard deviation of docking
scores for ligand j with those proteins. The Z-score
matrix could be further normalized to a Z’-score matrix,
in which the vector for each protein is normalized to a
mean of zero and a standard deviation of one. According
to results presented in the work, the 2DIZ algorithm
significantly improved the prediction accuracy, com-
pared to simply using docking score functions.

Another approach of the normalization of binding
energies introduced by Lauro et al. (2011) was studying
docking of multiple ligands against multiple proteins.

© The Author(s) 2018. This article is an open access publication



Docking-based inverse virtual screening

REVIEW

The normalization was based on the equation
V =Vo/[(ML + MRr)/2], where V; is the binding energy
calculated by the scoring function for each protein-
ligand complex, M|, is the average binding energy of
each ligand with different proteins, and My is the
average binding energy of each protein with different
ligands. Then, IV was a normalized value associated with
each ligand. The approach effectively avoided the
selection of false positive results.

In a recent work by Santiago et al. (2012), a selected
ligand dataset, the National Cancer Institute (NCI)
Diversity Set [ containing 1990 drug-like molecules, was
used to calibrate binding scores of a query ligand
against the proteins in a database. Specifically, the
molecules in the NCI Diversity Set I were docked to each
protein in the protein database. Then, the top-200, top-
20, and Boltzmann-weighted averages of the binding
scores were calculated, which served as the references
for each protein. If the calculated binding score of the
query ligand against a protein was lower than the ref-
erence score, the protein was considered as a hit.
According to the work, the reference using the top-20
average performed better than the other two averages.

Web servers

To run an IVS, in addition to the time-consuming and
labor-intensive process for the construction of a target
database, programming skills and experiences are
required to handle hundreds of dockings and to conduct
post analysis, which could be tough for researchers
focusing on experimental methods. Therefore, several
web servers were developed for public use. The only
thing that a user would need to do is to provide a small
molecule of interest. Then the server automatically runs
the IVS and outputs a list of potential targets. Available
web servers of docking-based IVS are reported in
Table 2.

Target fishing dock (TarFisDock) (Li et al. 2006) is
the earliest freely accessible web server using the
docking-based IVS technique. In this web server, PDTD
is used as the target database, which contains 841
known and potential drug targets. DOCK4.0 (Ewing
et al. 2001) is employed as the docking engine, and a
force field-based scoring function implemented in DOCK
is used for binding energy calculation. During docking,
ligand flexibility is taken into account, whereas the
protein under consideration is treated as rigid. Top 2%,
5%, or 10% of the ranking list can be output for users.
Two multi-target ligands, vitamin E (14 known targets)
and 4H-tamoxifen (ten known targets), were tested in
the study. Top 2% of the ranking list covered 30% of
known targets for the two cases. Moreover, 50% of the
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known targets of vitamin E and 4H-tamoxifen were
covered by 10% and 5% of the ranking list, respectively.
The TarFisDock server provides a convenient and rapid
way to identify potential targets for a given small
molecule. Because many of the proteins in PDTD are
involved in different therapeutic areas, TarFisDock is a
desirable tool for drug repositioning.

SePreSA (Yang et al. 2009) is the first docking-based
web server focusing on targets related to severe adverse
drug reactions (SADRs). The database contains 91 SADR
proteins consisting of major phase I and II drug-
metabolite enzymes, several human MHC I proteins, and
pharmacodynamic proteins. DOCK4.0 is employed as
the docking engine. Besides the scoring function
implemented in DOCK, the 2DIZ algorithm is applied to
generate a Z-score matrix or Z’-score matrix, which
calculates the relative ligand-protein interaction
strength. In a test of prediction for true and unidentified
binding compounds, the value of the area under the
curve (AUC) increases from 0.62 (using only the
docking-score matrix) to 0.82 (using the 2DIZ algo-
rithm). Therefore, SePreSA is a desirable tool to predict
possible side effects of an interesting molecule in the
early stage of drug design.

Drug repositioning potential and ADR via chemical-
protein interaction (DRAR-CPI) (Luo et al 2011) is
another web server provided by the same group who
developed SePreSA. The server was designed for drug
repositioning by taking ADR into account. The target
database contains 353 targetable human proteins with
385 binding sites. Also collected were the information of
254 forms of 166 small molecules with known ADR.
Similar to SePreSA, DOCK6.0 (Lang et al. 2009) is
employed as the docking engine of DRAR-CPI, and the
2DIZ algorithm is applied to generate a Z-score matrix
or Z'-score matrix based on docking scores. Further-
more, the server uses an approach to evaluate the drug-
drug associations based on gene-expression profiles,
searching for similar or opposite drugs from the data-
base for a query ligand. Because the drug-drug associ-
ation method is beyond this review, the interested
reader is recommended to read the original paper (Luo
et al. 2011).

Recently, Wang et al (2012a) released another
docking-based IVS web server named idTarget. The
docking engine is maximum-entropy based docking
(MEDock) (Chang et al. 2005), which was also published
as a web server by the same group. AutoDock4"4”
(Wang et al. 2011), an improved version of the scoring
function AutoDock4 (Huey et al. 2007), is used for the
evaluation of potential targets. The Z-score of a ligand
against a protein pocket is calculated based on an
affinity profile of the binding pocket (Wang et al
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Table 2 Available web servers of the docking-based IVS
Web server Description URL
TarFisDock Using DOCK4.0 as the docking engine and PDTD as the target database. Scores calculated http://www.dddc.ac.cn/
by a force-based scoring function implemented in DOCK4.0 are used for the ranking of tarfisdock
targets. Top 2%, 5%, or 10% of the ranking list can be output
SePreSA Focusing on targets related to SADRs. DOCK4.0 is employed as the docking engine and the http://sepresa.bio-x.cn
database contains 91 SADR proteins. In addition to the scoring function implemented in
DOCK, Z-scores are also calculated for the selection of potential targets
DRAR-CPI Provided by the same groups of SePreSA. The server was designed for drug repositioning http://cpi.bio-x.cn/drar
by taking ADR into account. DOCK6.0 is employed as the docking engine and the target
database contains 353 targetable human proteins. Similar strategy of scoring as in
SePreSA is used for the selection of potential targets
idTarget Using MEDock as docking engine and AutoDock4®*" as scoring function. Z-scores http://idtarget.rcas.sinica.
calculated based on affinity profiles of binding pockets are used for the selection of edu.tw
potential targets. A “contraction-and-expansion” strategy is used to extend the searching
space
DockoMatic DockoMatic is a local program with GUI. AutoDock and AutoDock Vina can be selected as https://sourceforge.net/

docking engine. BLAST and MODELER programs are implemented, allowing the user to
easily extend the target database based on homology modeling

projects/dockomatic

2012a). Then, the ranking of the potential targets for a
query ligand is based on their Z values. To screen a large
protein structure database, such as the whole PDB
database, the authors introduced a “contraction-and-
expansion” strategy. In the contraction stage, the target
database contains 2091 targets, which were constructed
based on sc-PDB. Briefly, 3046 mean points of sc-PDB
were clustered with a cutoff of 40% protein sequence
identity. In sc-PDB, a mean point is a representative of a
cluster containing entries of a protein bound with dif-
ferent ligands. The query ligand is firstly docked to the
contracted database, and half of the targets with lower
docking energies will be used for the next expansion
stage. In the expansion stage, proteins that are homol-
ogous or contain similar binding pockets collected from
both sc-PDB and PDB are also selected for screening.

In addition to the web servers described above,
Bullock et al. provided a free and open source program
DockoMatic2.0 (Bullock et al. 2013), with which the
user is able to perform docking-based IVS through a
graphical user interface (GUI). AutoDock (Morris et al.
1998) or AutoDock Vina (Trott and Olson 2010) can be
selected as the docking engine, and the target database
is provided by the user. Although the program
DockoMatic2.0 is less convenient to use than web
servers which only require a user to upload a query
ligand, DockoMatic2.0 can be applied to a user-cus-
tomized target database which is usually not allowed
by web servers. It is worthy to note that the basic local
alignment search tool (BLAST) (Altschul et al. 1997)
and MODELER program (Sali and Blundell 1993) are
also implemented in DockoMatic2.0. Thus, a user can
extend the target database based on homology
modeling.
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APPLICATIONS
Target identification

Natural products have become an abundant resource for
new drug discovery, due to the accumulation of ancient
medical knowledge for thousands of years (Ji et al
2009). Identification of the targets for these natural
products can not only demystify traditional medicines,
but also provide meaningful targets for modern drug
design. There are a number of successful stories that
utilize docking-based IVS to assist in identifying targets
for natural ligands. Do et al. used an in-house developed
strategy named Selnergy (Do and Bernard 2004), which
is based on using the FlexX docking program (Rarey
et al. 1996) to identify targets for two natural products,
g-viniferin (Do et al. 2005) and meranzin (Do et al
2007). From a manually collected database containing
400 targets, cyclic nucleotide phosphodiesterase 4
(PDE4) was identified as a target of e-viniferin, and
three targets, COX1, COX2, and PPARYy, were identified
as the targets of meranzin. Lauro et al. applied the IVS
method to a set of ten phenolic natural compounds
(Lauro et al. 2012). The target database consists of 163
proteins that are involved in the cancer process. The
AutoDock Vina program was employed as the docking
engine and the binding energies were normalized to
rank the targets. Protein kinases PDK1 and PKC were
confirmed as the targets of xanthohumol and isoxan-
thohumol through in vitro biological tests. Recently, the
method became popular in the studies of traditional
Chinese medicine (TCM) (Yue et al. 2008; Feng et al
2011; Chen and Ren 2014). In the study by Chen and
Ren (2014), the idTarget server (Wang et al. 2012a)
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along with a ligand-based 1VS server PharmMapper (Liu
et al. 2010b) was employed to identify the potential
anticancer targets of Danshensu, an active compound
from a widely used TCM Danshen (Salvia miltiorrhiza).
The screening proposed GTPase HRas as a potential
target of Danshensu for further study.

Toledo-Sherman et al. (Slon-Usakiewicz et al. 2004;
Toledo-Sherman et al 2004) developed a chemical
proteomics approach, combining (experimental) ultra-
sensitive mass spectrometry with (computational)
docking-based IVS. This proteomics approach was
applied to the exploration of the action mechanism of
methotrexate (MTX), an important drug used in cancer,
immunosuppression, rheumatoid arthritis, and other
highly proliferative diseases. Besides the three main
known targets dihydrofolate reductase, thymidylate
synthetase, and glycinamide ribonucleotide trans-
formylase, at least eight other proteins were identified
as the potential targets of MTX. By using a frontal
affinity chromatography with mass spectrometry
detection, the authors further confirmed one of these
predicted targets, hypoxanthine-guanine amidophos-
phoribosyltransferase (HGPRT), as a real binder of MTX
with a Ky of 4.2 pmol/L.

In another early application, Muller et al. applied IVS
to searching for protein targets for a novel chemotype
that uses five representative molecules from a combi-
natorial library that share a 1,3,5-triazepan-2,6-dione
scaffold (Muller et al 2006). A collection of 2148
binding sites (Release 1.0 of the sc-PDB (Kellenberger
et al. 2006)) extracted from the PDB database was
screened by the GOLD 2.1 docking program (Jones et al.
1997). Five proteins were selected from the top 2%
scoring targets by some customized criteria for further
experimental evaluation. Two secreted phospholipase
A2 isoforms were successfully identified as the real
targets of 1,3,5-triazepan-2,6-diones.

Moreover, high throughput screening (HTS) can
quickly screen for potential drug candidates; however,
the action mechanisms of the resulting candidates are
elusive and further improvement of the potency is
therefore difficult. IVS can be used to identify the
potential targets of these compounds. An example is
PRIMA-1 (p53 reactivation and induction of massive
apoptosis). PRIMA-1 has the ability to restore the
tumor suppressor function of mutant p53, leading to
apoptosis in several types of cancer cells. Our group
(Grinter et al. 2011) used MDock (Huang and Zou
2007a; Yan and Zou 2016) as the docking engine and
ITScore (Huang and Zou 2006a, b) as the scoring
function to screen the PDTD target database (Gao et al.
2008). The highest ranked human protein oxi-
dosqualene cyclase (0OSC) was suggested to be the
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primary binding target of PRIMA-1 and a novel anti-
cancer therapeutic target.

Besides the wide applications in the drug design
pipeline, IVS is applied to other fields such as environ-
mental engineering and biosafety of nanomaterials. For
example, Xu et al has applied IVS to identifying the
potential targets of persistent organic pollutants (POPs)
such as dichlorodiphenyldichloroethylene (4,4’-DDE)
and polychlorinated biphenyls (PCBs) (Xu et al. 2013).
The toxicity mechanism of these POPs could be further
illustrated. Calvaresi and Zerbetto have also used IVS to
identify the protein targets of nanoparticle fullerene Cgg
(Calvaresi and Zerbetto 2010).

Side effects and toxicity

Side effects and toxicity are mainly responsible for the
failure of the compounds in clinical trials, and also for
the restricted use or withdrawal of approved drugs.
Therefore, taking side effects into account in the initial
step of new drug design could significantly increase the
final success rate of drug development and drug safety.
Chen et al. first tested their in-house, docking-based
IVS program named INVDOCK (Chen and Zhi 2001), on
the side effects and toxicity of eight clinical agents,
aspirin, gentamicin, ibuprofen, indinavir, neomycin,
penicillin G, 4H-tamoxifen, and vitamin C (Chen and Ung
2001). It was found that 83% of the experimentally
known side effects and toxicity targets could be pre-
dicted. Lately, the authors applied the approach to 11
marketed anti-HIV drugs, including protease, nucleoside
reverse transcriptase, and non-nucleoside reverse
transcriptase inhibitors (Ji et al 2006). The results
showed that over 86% of the adverse drug reactions
predicted by INVDOCK were consistent with the adverse
reactions reported in literature. The agreement between
the predicted results and the experimental data was
also achieved in the work of Rockey and Elcock’s
(Rockey and Elcock 2002), in which three clinically
relevant inhibitors (Gleevec, purvalanol A, and
hymenialdisine) were analyzed against a set of protein
kinase targets (76 GDP receptors and 113 ADP recep-
tors) by the AutoDock program (Morris et al. 1998). The
success of these pioneering studies brings confidence to
the use of a docking-based IVS approach in practice.
Recently, Ma et al. (2011) used INVDOCK to investigate
potential toxicity mechanisms of melamine, which was
found in infant formula and is responsible for the out-
break of nephrolithiasis among children in China. Four
target proteins (glutathione peroxidase 1, beta-
hexosaminidase subunit beta, l-lactate dehydrogenase,
and lysozyme C) were suggested to be related to
nephrotoxicity induced by melamine and its metabolite
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cyanuric acid. In addition, the authors also found three
target proteins (superoxide dismutase, glucose-6-
phosphate 1-dehydrogenase, glutathione reductase) that
were related to lung toxicity. Furthermore, a biological
signal cascade network was constructed based on these
predicted target proteins. However, the results need to be
verified experimentally.

The IVS approach has also been applied to clozapine,
one of the most effective medications for the treatment of
schizophrenia. The usage of clozapine is limited by its life-
threatening adverse drug reaction (ADR), mainly agranu-
locytosis. Yang et al. (2011) used an IVS approach via the
DRAR-CPI server to investigate the ADR across a panel of
human proteins (381 unique human proteins with 410
binding pockets) for clozapine. As a reference, olanzapine,
an analog of clozapine which has a much lower incidence of
agranulocytosis, was also analyzed. With the hypothesis
that targets related to agranulocytosis tend to bind cloza-
pine but not olanzapine, HSPA1A (the gene of Hsp70) was
identified as the off-target of clozapine. The result was
confirmed by the comparison of mRNA expression studies
on HSPA1A-related genes inside a leukemia cell line with
and without the clozapine treatment.

Drug repositioning

As aforementioned, even officially approved drugs
sometimes bind to off-targets and cause side effects. If
the off-target of an approved drug happens to be the
therapeutic target for another disease, the drug has a
chance for a new use, namely drug repositioning. There
are a number of repositioned drugs in the market. For
example, sildenafil was primarily developed for angina
but later approved for erectile dysfunction. Thalidomide
was initially marketed for morning sickness but was
later approved for leprosy and also for multiple mye-
loma. More examples can be found in a review by
Ashburn and Thor (2004). Although docking-based IVS
seems to be a tailor-made tool for drug repositioning,
there have been few successful stories until now.
Recently, Li et al. (2011) performed a large-scale
molecular docking of small-molecule drugs against
protein drug targets, in order to find novel targets for
the existing drugs. The drugs and targets in the study
were based on the data deposited in the DrugBank 2.5
database (Wishart et al. 2006). Overall, 252 human
protein drug targets and 4621 approved and experi-
mental small-molecule drugs were collected. The ICM
program (Abagyan et al 1994) was employed as the
docking engine. The large-scale cross dockings (4621
ligands against 252 receptors) were run on a powerful
computer cluster with 1000 processors. A consensus
score, consisting of an empirical scoring function ICM
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(Abagyan et al. 1994) and a knowledge-based scoring
function PMF (Muegge and Martin 1999; Muegge 2006),
was used to evaluate the docking poses. The consensus
score performed much better than either the ICM score
or the PMF score alone, with the percentage of the
known interactions in the prediction set improved from
1.1% (ICM score) or 2.0% (PMF score) to 10.3%. Fur-
thermore, by combining with the ranks of the proteins
and drugs, the percentage value for the consensus score
reached up to 48.8%, giving the confidence that the
other 51.2% proteins were indeed novel targets. Suc-
cessfully, the cancer drug nilotinib was further con-
firmed as a potent inhibitor of MAPK14
(ICso = 40 nmol/L) by biological tests. MAPK14, also
known as p38 alpha, is a target in inflammation, sug-
gesting that nilotinib has a chance for being repurposed
for the treatment of rheumatoid arthritis.

Multi-target therapy/drug-target network

In novel drug design, compounds are usually engineered
to bind to a specific target, with the assumption that one
drug binds to one target to treat one condition. How-
ever, this assumption is now in question, with the high
failure rate during the late stage of clinical trials due to
efficacy and clinical safety problems (Xie et al. 2011)
being the main source of the scrutiny. Recent studies
suggest that each existing drug binds to, on average,
about six target proteins (Azzaoui et al. 2007; Mestres
et al. 2008) instead of one. This phenomenon can be
easily understood in a biological network, in which each
node represents a protein and a link between two
proteins means a direct interaction. Considering the
robustness of biological systems, acting on multiple
nodes should, in theory, be more effective in affecting
the system overall than when only considering one
node. Therefore, a multi-target therapy is expected to be
able to break the bottleneck of current single-target
drug design paradigms. However, the development of
multi-target drugs proceeds slowly, partially due to the
lack of experimental tools to identify targets on a
proteome-wide scale (Xie et al. 2011). Thus, computa-
tional approaches, such as IVS described in this review,
were developed to narrow down the targets of interest
for further experimental validation.

An example of docking-based IVS for multi-target
identification can be found in a recent work by Zhao
et al. (2012). The INVDOCK program (Chen and Zhi
2001) was employed to search potential protein targets
for astragaloside-IV (AGS-1V). The AGS-IV is one of the
main active ingredients of Astragalus membranaceus
Bunge, a traditional Chinese medicine for cardiovascular
diseases (CVD). The protein targets of approved small-
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molecule drugs for CVD deposited in the DrugBank
database (Wishart et al. 2006) were collected as the
target database, consisting of 188 proteins. Among the
39 predicted targets, three proteins (calcineurin,
angiotensin-converting enzyme, and c-Jun N-terminal
kinase) were experimentally validated at a molecular
level. By mapping the 39 proteins onto the protein-
protein interaction network of the human genome, 34 of
them can be linked into a sub-network, which can be
further divided into six topologically compact modules.
The effects of AGS-IV on CVD were supposed to act
through binding to multiple targets, for example, by
directly binding to the hubs of six modules. The results
were further confirmed by the comparison with the
drug-target networks of the approved CVD drugs that
share common targets with AGS-IV.

Receptor design

In addition, the docking-based IVS method could be
used for receptor design. Steffen et al. (2007) success-
fully improved the property of a synthetic receptor for a
binding ligand. In this study, camptothecin (CPT) was
chosen as the investigated ligand. Although CPT pre-
sents remarkable anticancer activity in preliminary
clinical trials, its therapeutic potential is hampered by
its low solubility and stability. Thus, hosts or so-called
receptors were designed for the solubilization of the
ligand. In particular, a set of B-cyclodextrin (B-CD)
derivatives (a total of 1846 entities) was generated from
the B-CD core and thiol building blocks as the receptor
candidates (from the target database). CPT was docked
to each B-CD derivative in the target database by two
different docking programs, AutoDock 3.05 (Morris
et al. 1998) and GlamDock 1.0 (Tietze and Apostolakis
2007). Nine receptors from the top 10% candidates
were selected for experimental validation. Successfully,
five of them significantly improved the solubility of CPT,
and their ability to do so was significantly better than
any other known CD derivative.

CHALLENGES

In summary, during the last decade, the entire field of
docking-based IVS, including the construction of target
databases, scoring functions, and post analysis, has been
significantly improved by researchers from all over the
world. A number of successful applications as described
in this review have proved that docking-based IVS is a
powerful technique for drug discovery. However, several
challenges remain to be solved for docking-based IVS to
become a robust tool.
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The first challenge is the incompleteness of available
target databases. Using the data in DrugPort (http://
www.ebi.ac.uk/thornton-srv/databases/drugport/) as
an example, there are a total of 1664 known druggable
protein targets in the database, but only about half of
them have 3D structures in the PDB. If unknown targets
are considered, this rate could be much lower. Fur-
thermore, these targets with known-structures are not
evenly distributed among different superfamilies, due to
experimental limitations. For example, the superfamily
of membrane proteins, the G-protein-coupled receptors
(GPCRs), is one of the most important targets in drug
design, given the fact that they account for over a
quarter of the known drug targets (Overington et al.
2006), and about half of the drugs on the market target
GPCRs specifically (Klabunde and Hessler 2002). How-
ever, only a fraction of the GPCRs have experimental
structures (Venkatakrishnan et al. 2013), because the
structural resolution of membrane proteins like GPCRs
is much more complicated and difficult to elucidate than
global proteins such as enzymes. Fortunately, the cur-
rent databases can be significantly improved through
homology modeling techniques, and the incompleteness
problem can be gradually solved with time as more and
more complete structures are determined by experi-
mental methods.

Another challenge is from the vantage point of pro-
tein flexibility. As aforementioned, protein-ligand bind-
ing is a mutual fitting process. The existing docking
programs are able to account for the flexibility of small
molecules very well, but the overall flexibility of the
entire protein remains a great challenge. Efforts have
been made to partially consider protein flexibility dur-
ing docking. For example, the side chains of the residues
in the active site can be treated to be flexible with the
induced-fit docking strategies (Sherman et al. 2006). In
another example, an ensemble of protein structures are
used for docking in MDOCK (Huang and Zou 20073, b).
However, flexible docking using the induced-fit strategy
is time-consuming. For the ensemble docking using
MDOCK, an ensemble of experimentally determined
protein structures are not always available. These
methods are usually difficult to be directly applied to
IVS studies which involve hundreds of different pro-
teins. To the best of our knowledge, the proteins were
all treated as rigid bodies in the published docking-
based IVS studies. Thus, it would be useful to develop
efficient protein flexibility algorithms for IVS studies.

At this stage, IVS and the more traditional VS work as
an enrichment method rather than an accurate predic-
tion tool, mainly due to the inaccuracy of the scoring
functions. Simply selecting the top targets in the ranking
list could result in many false positive candidates. As
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reviewed in the subsection on scoring functions, efforts
have been made to improve the success rate, including
setting a threshold for each target, using consensus
scoring functions, or normalizing binding scores. How-
ever, all these methods can be regarded as post analysis,
which are highly dependent on the scoring values cal-
culated by the existing inaccurate scoring functions. In
fact, the scoring function could be the biggest challenge
for molecular docking. A detailed review about scoring
functions for protein-ligand docking can be found in a
recent review (Huang et al. 2010). Recently, Wang et al.
(2012b) evaluated the performance of Glide scoring
functions in IVS based on the Astex diverse set. Inter-
estingly, “interprotein noises” were found in the Glide
scores, suggesting that scoring functions that are
developed for conformational (the same complex)
ranking could result in over- or underestimated scores
when they are directly used for the ranking of different
protein-ligand complexes. By introducing a correction
term based on a given protein characteristic, the ratio of
the relative hydrophobic and hydrophilic character of
the binding site, the accuracy of target prediction was
improved by 27% (i.e., from 57% to 72%). The study
could be used as a reference in the optimization of the
existing scoring functions for IVS studies.

An efficilent way to address the above challenges
(ie, protein flexibility and scoring function) could be
the use of more accurate yet more time-consuming
sampling/scoring strategies for the enriched subset
(eg., top 5% of the targets). Regarding the sampling
aspect, protein flexibility could be partially considered
by using ensemble docking or induced-fit docking
strategies. Regarding the scoring aspect, contributions
from the solvent effect and from the conformational
entropic effect could be considered. Well-studied
strategies are molecular dynamics (MD)-based binding
free energy calculation methods, such as MM/PBSA and
MM/GBSA (Srinivasan et al. 1998; Kollman et al. 2000;
Wang et al. 2001). In addition, recent studies show that
polarization effects are important for both binding
mode and binding affinity predictions (Cho et al. 2005;
Xu and Lill 2013). To efficiently consider polarization
effects in the docking process, quantum mechanics (QM)
or hybrid quantum mechanics/molecular mechanics
(QM/MM) methods need to be employed. A QM-
polarized ligand docking method has been implemented
in a commercial software package, Schrodinger Suites
(https://www.schrodinger.com).

There are many docking programs and scoring
functions that can be used for an IVS study. As reviewed
in this paper, some of them have already been used by
different groups for different purposes with varying
degrees of success. It would be interesting to find which
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programs are more effective for IVS studies than others.
Such an attempt has been tried by Liu et al. (2010a). In
their work, five schemes, GOLD (Jones et al. 1997) and
FlexX (Rarey et al. 1996) implemented in Sybyl, Tar-
FisDock (Li et al. 2006) which is based on DOCK4.0
(Ewing et al. 2001), and two in-house docking strate-
gies, TarSearch-X and TarSearch-M (DOCK5.1 (Mous-
takas et al. 2006)) combined with two in-house scoring
functions X-Score (Wang et al. 2002) and M-score (Yang
et al. 2006), were tested for eight multi-target com-
pounds extracted from DrugBank (Wishart et al. 2006).
The target database was collected from the PDB, and
contained 1714 entries from 1594 known drug targets.
According to the order of the known targets in the rank
list, their results show that TarSearch-X is the most
efficient and GOLD is acceptable. However, the study
has some limitations. Seven of the eight selected multi-
target compounds have only two known targets.
Another compound has three known targets. More
convincing validation would be to use compounds that
have many known targets, such as vitamin E with 14
known targets and 4H-tamoxifen with ten known tar-
gets which were used in the test for TarFisDock (Li et al.
2006). In addition, a number of other powerful docking
programs and scoring functions are awaited to be
assessed for IVS studies.

To effectively evaluate a method of docking-based
IVS, a database is desired to contain both positive and
negative results. However, negative data are difficult to
collect because literature prefer to present successful
cases rather than failed cases, i.e., in which a molecule
does not interact with a protein. Fortunately, Schomburg
and Rarey (2014) recently provided an example of such
a database. Because of the limited data available for
negative results, the authors constructed a small set
with both positive and negative results. This small set,
referred to as the selectivity dataset, consists of a total
of eight proteins belonging to three target classes and
17 small molecules with defined selectivity in the
respective target class. The selectivity dataset is sug-
gested to be used for proof-of-concept studies. A large
dataset containing 7992 protein structures and 72 drug-
like ligands was also provided. The dataset, called
Drugs/sc-PDB dataset, was constructed based on the
data in DrugBank (Wishart et al. 2006) and sc-PDB
(Kellenberger et al. 2006). The 72 drug-like ligands
were selected based on the assumption that the selec-
tivity and targets of the approved drugs have been well
studied. The selectivity dataset and the Drugs/sc-PDB
dataset form a benchmark for target identification
methods.

The last challenge could potentially be the post-
analysis problem. The output of IVS is an enriched
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subset, which contains at least tens of potential targets
(including false positive targets). How to connect these
predicted multiple targets to the mechanisms of the
ligand remains an open question. Usually, the predicted
targets need to be validated by biological experiments.
Only then can biological functions of the true targets be
connected to the phenotypic effects of the ligand.
Recently, the biological network idea was employed for
the analysis of IVS results. In the work by Zhao et al
(2012), predicted targets were mapped onto the
protein-protein interaction network of the human
genome. A sub-network was identified that could
effectively explain a connection to the actual mecha-
nisms of the ligand in question.
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