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Purpose: Current interpretation guidelines for germline variants in
high-risk cancer susceptibility genes consider predicted loss-of-
function (LoF) variants, such as nonsense variants and variants in
the canonical splice site sequences of BRCA2, to be associated with
high cancer risk. However, some variant alleles produce alternative
transcripts that encode (partially) functional protein isoforms
leading to possible incorrect risk estimations. For accurate
classification of variants it is therefore essential that alternative
transcripts are identified and functionally characterized.

Methods: We systematically evaluated a large panel of human
BRCA2 variants for the production of alternative transcripts and
assessed their capacity to exert BRCA2 protein functionality.
Evaluated variants included all single-exon deletions, various
multiple-exon deletions, intronic variants at the canonical splice
donor and acceptor sequences, and variants that previously
have been shown to affect messenger RNA (mRNA) splicing in
carriers.

Results: Multiple alternative transcripts encoding (partially)
functional protein isoforms were identified (e.g., Δ[E4–E7], Δ
[E6–E7], ΔE[6q39_E8], Δ[E10], Δ[E12], ΔE[12–14]). Expression of
these transcripts did attenuate the impact of predicted LoF variants
such as the canonical splice site variants c.631+2T>G, c.517-2A>G,
c.6842-2A>G, c.6937+1G>A, and nonsense variants c.491T>A,
c.581G>A, and c.6901G>T.

Conclusion: These results allow refinement of variant interpreta-
tion guidelines for BRCA2 by providing insight into the functional
consequences of naturally occurring and variant-related alternative
splicing events.
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INTRODUCTION
Genetic testing of individuals with an enhanced risk of
developing breast or ovarian cancer is routine clinical
practice. Predicted loss-of-function (LoF) variants in BRCA1
and BRCA2, such as nonsense variants, frame-shifting indels,
and variants at the canonical splice sites, are considered to be
associated with high cancer risk and carriers and their family
members are managed accordingly.
Recently, however, it was established that some naturally

occurring alternative transcripts of BRCA1 and BRCA2
encode protein isoforms with residual tumor suppressive
activity.1–7 As a consequence, the pathogenic potential of
predicted LoF variants located in an exon absent in these
alternative transcripts may be substantially smaller than
assumed.
Current gene-specific variant classification guidelines by

ENIGMA (https://enigmaconsortium.org/) as well as the
generic guidelines published by the American College of
Medical Genetics and Genomics (ACMG) and Association
for Molecular Pathology (AMP)8 have therefore included a

cautionary note. ENIGMA classification rules (https://
enigmaconsortium.org/) state that variants found to pro-
duce messenger RNA (mRNA) transcript(s) predicted to
encode isoforms that do not disrupt known clinically
important functional domains should be considered class
3. The ACMG/AMP guidelines pose that the Pathogenic
Very Strong (PVS1) code for predicted loss-of-function
variants (nonsense, frameshift, canonical ±1 or 2 splice sites,
initiation codon, single or multiexon deletion) may no
longer be valid if a variant induces an in-frame deletion or
insertion that leaves the functional domains of the protein
intact.9 Furthermore, caution is warranted for a variant
allele that produces multiple mRNA transcripts as both
transcript ratios and the functional integrity of the isoforms
can affect its clinical relevance. Although alternative
transcripts have been described for both BRCA1 and
BRCA2,10,11 a systematic analysis of the functionality of
encoded protein isoforms has not been performed, which
complicates the application of these variant classification
guidelines.
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For many BRCA1 and BRCA2 variants (both intronic and
exonic) an effect on mRNA splicing has been reported using
either patient RNA or minigene analysis.12–21 The analysis
of patient RNA is however often hampered by the inability
to determine allele-specific transcript expression. It then
remains unclear if and to what extent wild type (WT)
mRNA is still produced from the variant allele. To more
directly assess the impact of an individual variant on both
the nature and level of aberrant transcripts, minigene assays
have been developed. These assays however lack the
genomic context of the complete gene, limiting
the detection of potential alternative transcripts. Jointly,
the currently available approaches may provide evidence
toward pathogenicity, but they all suffer from the same
limitation: they do not provide insight into the in vivo
functional consequences of variants that affect splicing,
an important component of assessing variant pathogenicity.
This shortcoming underscores the need for more
detailed analyses per gene in which the presence and
expression levels of alternative transcripts, either naturally
occurring or induced by a variant, can be linked to protein
function.
We recently validated a mouse embryonic stem cell

(mESC)–based assay as a sensitive test for functional
characterization of BRCA2 missense variants.22 As sequence
alterations are introduced in the full-length (FL) human
BRCA2 gene, the functional impact of all types of variants can
be assessed including those that affect mRNA splicing. In
addition, the presence of only a single human BRCA2 allele
makes the mESC system eminently suited for alternative
mRNA transcript analysis.
In the present study, we show that the nature and relative

contribution of naturally occurring transcripts to the overall
expression of human BRCA2 expressed in mESC is highly
similar to those detected in various human tissues and cell
lines. Furthermore, we systematically characterized a large
panel of alternative transcripts for their ability to encode for
(partially) functional BRCA2 protein.
The functional data presented here can be used to refine

classification guidelines for variants in BRCA2 and improve
the validity of PVS1 assignments for this gene. Moreover,
alternative splicing is a general feature of many multiexon
coding genes, and should be considered as a mechanism by
which the assumed pathogenic potential of predicted LoF
variants may be attenuated or even circumvented.

MATERIALS AND METHODS
Generation of exon-deletion variants
Thirty different exon-deletion variants (i.e., 25 single-exon
deletions as well as five multiple-exon deletions) were
generated in the full-length human BRCA2 gene located on
a bacterial artificial chromosome (BAC) (clone RP11-777I19,
BACPAC) as described previously23 (Tables S1, S5). Once the
deletion was confirmed by Sanger sequencing BAC DNA was
isolated according to manufacturer protocol (NucleoBond®
Xtra Midi, Macherey-Nagel).

Selection and generation of BRCA2 variants
Single-nucleotide variants that are likely to affect BRCA2
mRNA splicing were selected from the ClinVar database
(https://www.ncbi.nlm.nih.gov/clinvar) consisting of variants
in the canonical ±1 or 2 splice sites (Table S2) or of the last
nucleotide of an exon (Table S3). In addition, we included
variants for which aberrant splicing patterns had been
reported in the literature to assess whether BRCA2
variants expressed in mESC yield similar patterns of
alternative transcripts as human cells (Table S3). Further-
more, from the ClinVar database, we selected nonsense
variants located within exons that are absent from naturally
occurring alternative transcripts (Ex3–7, Ex12, Ex18, and
Ex19) or other alternative in-frame transcripts comprising a
single-exon deletion (Ex10 and Ex26) (Table S2). Variants
were generated in the complete human BRCA2 gene as
described previously.22 Primer sequences are listed in
Table S5.

mESC-based functional assay
The mESC-based functional assay involves the introduction
of human BRCA2 variants into a hemizygous Brca2 mESC
line as described previously (Fig. S1).22 For the cell viability
assay, 6 × 104 cells were seeded in triplo on 60-mm cell
culture dishes and subsequently treated for 16 hours with
1.0 µM 4-Hydroxytamoxifen (4-OHT) (Sigma Aldrich). The
next day, cells were washed with phosphate-buffered saline
(PBS) and cultured for six days in the presence of
hypoxanthine–aminopterin–thymidine (HAT) and subse-
quently five days in the presence of hypoxanthine–thymidine
(HT). Thirteen days after 4-OHT treatment, one culture dish
was used to visualize clonal survival by methylene blue
staining. For each variant, the number of clones was
compared with WT BRCA2 expressing cells and based on
that categorized into one of three categories: full (similar
numbers of clones as WT BRCA2), intermediate (fewer and
smaller clones than WT BRCA2), and noncomplementing
(absence of viable clones) variants (Fig. S2). Variants of the
full and intermediate complementing categories were
assessed in the homology directed repair (HDR) assay as
described previously.22 A flowchart for the interpretation of
functional data generated by the mESC assay is presented in
Fig. S4.

Reverse Transcription-PCR (RT-PCR)
To study the effect of a variant on mRNA splicing, RNA was
isolated using a trizol-based protocol and complementary
DNA (cDNA) was synthesized using the ProtoScript II First
Strand cDNA synthesis kit (NEB) according to manufac-
turer’s instructions. For variants that failed functional
complementation in the cell viability assay, RNA was isolated
prior to removal of the conditional mouse Brca2 (mBrca2)
allele. Then, 2 µl of cDNA was amplified with GoTaq
polymerase (Promega) and human BRCA2 exon-specific
primer pairs (Table S5) under the following polymerase chain
reaction (PCR) conditions; 95 °C for 5 minutes, followed by
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28 cycles of 95 °C for 30 seconds, 55 °C for 30 seconds, 72 °C
for 2 minutes, and a final step at 72 °C for 10 minutes.
RT-PCR products were separated on 0.8–1.5% agarose gels
stained with ethidium bromide and visualized by exposure to
ultraviolet (UV) light. Individual bands were reamplified by
band-stab PCR24 and purified PCR products were subjected
to Sanger sequencing to identify which transcript they
represented. Importantly, not every band on the gel reflected
a unique mRNA transcript as some of the products
represented single-stranded PCR products.

Quantitative analysis of naturally occurring alternative
transcripts in mESC expressing WT BRCA2
Capillary electrophoresis (CE) analysis of alternative splicing
has been extensively described previously.11 In brief, we used
a panel of overlapping RT-PCR assays (combinations of
forward and fluorescent-labeled reverse primers located in
different exons) that allowed a comprehensive screening of
BRCA2 splicing events by CE.
Analysis was performed on two technical replicas of RNA

samples from mESC expressing WT BRCA2. RNA samples
(approximately 1 μg) were subjected to cDNA synthesis using
a PrimeScript RT reagent kit with random primers according
to the manufacturer’s protocol (Takara Biotechnology). We
performed 13 different RT-PCR assays spanning exons 1–4,
1–6, 3–8, 4–9, 7–10, 11–14, 11–15, 14–16, 16–19, 16–22,
19–22, 20–24, and 22–27 (sequences of all primers are
available upon request). PCR products were analyzed by CE
(50-cm capillary arrays) in a 3130 Genetic Analyzer (Applied
Biosystems) with GeneScan 500-LIZ/1200-LIZ size standards
(Applied Biosystems) as internal markers. Size calling was
performed with GeneMapper v4.0 Software (Applied Biosys-
tems). For comparison, RNA samples from lymphoblastoid
cell lines (LCLs) were analyzed in parallel. By comparing the
relative contribution of the same alternative transcripts
between samples from mESC and human cells, the quanti-
fication is not influenced by overestimation of the expression
of shorter transcripts as previously shown to occur using RT-
PCR in combination with CE.2,25,26 Only fragments over 50
relative fluorescent units (RFUs) were considered to represent
distinct transcripts.

Western blot analysis
Western blot analysis was performed using NuPAGE™
Novex™ 3–8% Tris-Acetate Protein Gels (ThermoFisher
Scientific). BRCA2 protein was detected with the rabbit
polyclonal antibody (BETHYL, A303–434A-T) directed
against a region between amino acids 450–500 in exon 10
of BRCA2. Protein signal was detected by electrochemilu-
minescence (Amersham ECL RPN2235 Biocompare). It is
important to note that most in-frame protein isoforms
cannot be distinguished by western blot analysis due to
the small difference in size between the full-length BRCA2
protein (BRCA2 FL protein isoform, 3418 aa) and
BRCA2 protein isoforms deleted for only one or a few
small exons.

RESULTS
Naturally occurring alternative splicing of BRCA2 mRNA
The mESC-based functional assay allows evaluation of any
type of BRCA2 variant in its natural genomic context.
Variants are introduced in a human BRCA2-containing
BAC, transfected into mESC containing a single, conditional
mBrca2 allele and assessed for their ability to rescue the cell
lethality provoked by removal of endogenousmBrca2 (Fig. S1).
Three phenotypes can be distinguished for variants, i.e., fully
complementing (similar number of clones as WT BRCA2),
intermediate (fewer and smaller clones than WT BRCA2),
and noncomplementing (absence of viable clones) (Fig. S2).
Subsequently, variants of the full and intermediate comple-
menting categories can be tested for their ability to perform
HDR, the most prominent tumor suppressor function of
BRCA2. The assay was previously validated by functional
assessment of a large series of classified BRCA2 missense
variants and revealed a high sensitivity and specificity for
variant classification.22 It is important to note that the
complementation phenotype reflects the impact of variants on
HDR as well as other BRCA2-associated cellular processes
that play a role in the preservation of genome stability.
Consequently, the correlation between complementation
phenotype and HDR capacity is not absolute, but in general
intermediate complementing variants display a severe reduc-
tion in repair capacity.
To determine whether processing of human BRCA2 mRNA

by the murine spliceosome accurately reflects the splicing
process in human cells, we determined the presence and
quantity of the major naturally occurring isoforms that are
produced from a genomic copy of the human BRCA2 gene in
mESC. RNA analysis showed that the repertoire of the major
naturally occurring mRNA transcripts (i.e., Δ[E3], Δ
[E6q39_E7], Δ[E12], and Δ[E17–E18]) of mESC expressing
WT BRCA2 closely resembled that of human LCLs both
qualitatively (all predominant splicing events are detected,
novel splicing events are not observed) and quantitatively
(similar expression ratios relative to FL transcript) (Fig. 1).11

Up to this date, no tissue-specific transcripts have been
observed in nonmalignant breast epithelia, ovarian epithelia,
or ovarian fimbria.11,15

Functional characterization of exon deletions in BRCA2
Although splicing is a highly coordinated process, it is
currently impossible to predict which alternative transcripts
will be produced when the splice recognition site of a
particular exon is destroyed or when a complete exon has
been deleted. Furthermore, it is unclear when in-frame
transcripts are produced whether these encode for protein
isoforms that retain tumor suppressor activity. To system-
atically bridge this knowledge gap, we generated 30 different
exon-deletion (DelEx) variants in the human BRCA2 gene,
including all single-exon deletions and five in-frame multiple-
exon deletions (Table S1) and analyzed the alternative
transcripts these DelEx variants produced as well as their
ability to preserve BRCA2 functionality.
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After removal of the conditional mBrca2 allele, 17 DelEx
variants failed to complement the cell lethal phenotype
induced by loss of mBrca2. Eight DelEx variants displayed full
complementation, while complementation was intermediate
for five other DelEx variants (Table S1, Fig. S2).
RNA analysis revealed that various DelEx variants

expressed multiple alternative mRNA transcripts (e.g., DelEx4
variant did not only produce Δ[E4] but also Δ[E4–E7]
transcript) (Table S1). Evaluation of the transcripts generated
by the DelEx variants displaying full complementation
allowed us to identify several potential rescue transcripts,
i.e., encoding (partially) functional BRCA2 protein isoform-
s (Table S1) that could be detected by western blot analysis
(Fig. S3). The most potent in-frame rescue trans-
cripts being Δ(E4–E7) (r.317_631del315), Δ(E6–E7)
(r.476_631del156), Δ(E6q39_E8) (r.478_681del204), Δ(E10)
(r.794_1909del1116), Δ(E12) (r.6842_6937del96) and
Δ(E12–E14) (r.6842_7435del594) (summarized in Figs. 2b
and 3, Table S1). BRCA2 transcripts expressed by variants
displaying intermediate complementation encoded protein
isoforms that were either truncated and/or reduced in
quantity (DelEx5, DelEx14, DelEx15, DelEx16, DelEx18).
In some cases (DelEx15, DelEx16, DelEx18) the nature of the
rescue transcript remains elusive. DelEx variants that failed to
complement cell lethality either produced no detectable
transcript (DelEx2) or (a mixture of) out-of-frame transcripts
(DelEx6, 9, 13,, 20, 21, 22, 23, 24, 25) and nonfunctional in-
frame transcripts (DelEx3, 3–7, 11, 14–16, 17, 19, 26)
(summarized in Figs. 2b and 3, Table S1). Congruently with
their complementation phenotype, the fully complementing
DelEx variants displayed HDR levels above 50%. In contrast,
HDR activity of the five variants that showed intermediate
complementation was severely diminished to a level pre-
viously defined for variants associated with enhanced breast
cancer risk (HDR < 30%) (Fig. 4a).22

Based on the functionality of the transcripts lacking specific
exons as summarized in Fig. 2b, it is concluded that exons 4,

5, 6, 7, 8, 10, 12, 13, and 14 do not encode essential parts of
BRCA2 protein and that protein isoforms encoded by
naturally occurring or variant-induced in-frame alternative
transcripts lacking one or multiple of these exons may
(partially) retain BRCA2’s functionality in HDR.

Functional characterization of BRCA2 PVS1 variants
Variant classification using ACMG/AMP guidelines involves
several benign and pathogenic evidence criteria, including a
pathogenic criterion (PVS1) for predicted LoF variants
(nonsense, frameshift, canonical ±1 or 2 splice sites, initiation
codon, single- or multiexon deletion and duplications).9 The
results from our DelEx variant analyses suggest that nonsense,
out-of-frame indels, and spliceogenic variants either located
in or affecting splicing of exons that encode nonessential
domains of the BRCA2 protein may not lead to complete LoF
because of the production of rescue transcripts. To investigate
this in more detail, we characterized a panel of 29 nonsense
and spliceogenic PVS1 variants for their ability to produce
BRCA2 isoforms that retain residual protein activity
(Table S2).
Of the ten nonsense variants that were evaluated, one

variant (c.6901G>T [located in Ex12]) displayed full com-
plementation while three nonsense variants (c.491T>A [Ex6],
c.581G>A [Ex7], and c.9572G>A [Ex26]) showed intermedi-
ate complementation. Variant c.6901G>T almost exclusively
produced the Δ(E12) transcript (Fig. 3b). In line with the
previously demonstrated functionality of variant DelEx12
(51% HDR), variant c.6901G>T revealed a moderate func-
tional impact and retained 43% HDR capacity (Fig. 4b). In
cells expressing either variant c.491T>A or c.581G>A, the
expression level of the naturally occurring Δ(E4–E7) tran-
script was slightly enhanced compared with cells expressing
WT BRCA2 (Fig. 3a). As shown for the DelEx4–7 variant this
alternative transcript encodes a HDR-competent protein
isoform. Nevertheless, the expression level of the Δ(E4–E7)
transcript is apparently insufficient to retain full BRCA2
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functionality as both nonsense variants display a severe
impact on HDR (Fig. 4b). Variant c.9572G>A produced two
transcripts: the FL transcript containing the stop codon and a
ΔEx26 transcript. As the DelEx26 variant failed to comple-
ment loss of endogenous BRCA2, the observed complementa-
tion of c.9572G>A is unlikely the consequence of increased
Ex26 skipping. The severe reduction in HDR activity detected
for c.9572G>A, only 25% activity compared with WT, most
likely reflects some residual activity conferred by the
truncated BRCA2 protein isoform (Fig. 4b).
Remarkably, 5 of 19 canonical splice site variants tested

were able to rescue cell lethality (Table S2). Enhanced
expression of naturally occurring transcripts Δ(E4–E7) or Δ
(E12) was detected for variants located in the canonical splice
sites of Ex7 and Ex12 (i.e., c.517–2A>G [Ex7], c.631+2T>G
([Ex7], c.6842–2A>G [Ex12], c.6937+1G>A [Ex12]) and is
likely responsible for their residual HDR activity (>50%,
Fig. 4b). Variant c.7008–2A>T (Ex14) produced multiple
alternative transcripts including three out-of-frame tran-
scripts and one in-frame transcript containing a 246-bp
(partial) deletion of Ex14 through an exon 14 cryptic acceptor
site (Table S2, Fig. 3c). Although this variant was able
to partially complement loss of endogenous Brca2, the
level of HDR activity (35%) of this variant was severely
impaired (Fig. 4b) and possibly results from the relatively low

expression level of the potential rescue transcript Δ(E14p246).
It should be noted that this variant has been observed in cis
with c.631G>A variant for which an effect on RNA splicing
(i.e., exon 7 skipping) has also been reported.27

Functional characterization of potential spliceogenic BRCA2
variants
For the vast majority of potential spliceogenic variants that
are located outside the canonical splice sites of BRCA2 exons,
it is unknown whether they truly affect splicing and if so, to
what extent identified aberrant splicing events affect protein
functionality. We selected 13 BRCA2 variants for which RNA
analysis has been reported in human cells and determined
their impact on both mRNA splicing and protein function in
mESCs (Figs. 3 and 4c, Table S3).
Overall, human BRCA2 variants in mESCs rendered

similar mRNA transcript profiles as previously detected in
LCLs and minigene analysis with all major aberrant splicing
events identified.12,28–31 The complementation phenotype
of two variants, c.316+5G>C and c.7007G>A, resembled
that of high-risk (class 4/5) variants with respect to their
inability to rescue the cell lethality imposed by Cre-
mediated loss of mBrca2 (Fig. S2). Variant c.316+5G>C
only produced transcripts lacking exon 3, which, as
discussed above, encodes a stable but nonfunctional
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protein isoform (Table S3, Figs. 3a and S3). Variant
c.7007G>A (last nucleotide Ex13) expressed both two
aberrant out-of-frame transcripts (Δ[E13] and Δ
[E12–E13]) and FL transcript (Fig. 3b). However, expres-
sion of the FL transcript was apparently too low to allow
complementation (Fig. S3).

Variants c.8754+4A>G and c.9117G>A (last nucleotide
Ex23) displayed full complementation of cell lethality but
were severely impaired in their HDR capacity (Fig. 4c), in
concordance with their recent classification as pathogenic
variants.32 However, the nature of the transcript that is
responsible for the rescue of cell viability remains elusive.
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Variant c.425G>T (last nucleotide Ex4) produced an out-of-
frame transcript (Δ[E4]) and a transcript (Δ[E4–E7]) that
preserves the reading frame, which is likely responsible for the
residual 66% HDR capacity (Figs. 3a and 4c).
Also, deep intronic variants can impose aberrant splicing as

previously reported for c.6937+594T>G.28,31 Due to the
activation of a cryptic splice site an intronic fragment of 95
bases is inserted between exons 12 and 13 leading to an out-
of-frame transcript. Molecular analysis revealed that although
intron retention seems to be the predominant splicing event
(Fig. 3b) for c.6937+594T>G, the variant allele produced
sufficient FL transcript to rescue cell lethality and to retain
residual HDR activity (46% compared with WT) (Fig. 4c). For
the remaining seven potential spliceogenic variants mRNA
splicing in five variants appeared not to be affected while in
c.6853A>G and c.9501+3A>T sufficient quantities of FL
transcript were produced to prevent substantial loss of
BRCA2 function (Fig. 4c).

DISCUSSION
In classification guidelines documented by ACMG and AMP8

and ENIGMA (https://enigmaconsortium.org/), cautionary
notes are included for variants that produce in-frame
alternative gene transcripts that retain clinically important
functional protein domains. Now that we have revealed
various functionally redundant regions in the BRCA2 protein,
it is possible to propose BRCA2-specific rules. Our results
indicate that the majority of the presumed LoF variants will
lead to inactivation of the BRCA2 protein, and hence, be
associated with high cancer risk (Fig. 5). However, for a
number of variants additional analyses will be required before
they can be considered to represent pathogenic variants
associated with high cancer risk. In particular, for variants in
the canonical splice site regions of exons 4, 7, 8, 10, 12, and 14
caution is warranted since LoF may be prevented through
elevated expression of in-frame rescue transcripts. Further-
more, nonsense variants, out-of-frame indels, and complete
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deletion of functionally redundant exons may for the same
reasons retain (partial) functionality. Expression of Δ(E4–E7)
or Δ(E12) transcripts in mESCs with BRCA2 nonsense
variants in exons 6, 7, or 127 was sufficient to retain
substantial BRCA2 protein functionality. These findings put
into question whether the investigated splice site variants,
nonsense variants, and complete exon deletions are associated
with high cancer risk. As this model system provides an RNA
splicing assay with a direct measure of protein function, the
experimental data generated by this functional assay is
eminently suited to be applied in variant interpretation. We
would like to propose a refined provisional framework for
functional evidence application in ACMG/AMP clinical
variant interpretation guidelines.9,33,34 The decision tree
shown in Fig. 5 may serve as a means to indicate those
presumed LoF variants for which the PVS1 code might not be
warranted.
In the current multifactorial likelihood model (MLM), a

prior probability of pathogenicity is combined with likelihood
ratios estimated from clinical data resulting in a final posterior
probability that assigns the variant to one of the five classes of
the International Agency for Research on Cancer (IARC)
classification system.21,35,36 The prior probability is an in
silico prediction of the functional impact based on variant
location and bioinformatic prediction of variant effect.37,38

Due to the high prior probability assigned to nonsense (0.99)
and canonical splice site (0.97) variants the prior heavily
impacts the final classification of a variant. However, a high
prior might not be justified for presumed LoF variants in
functionally redundant exons. For this reason, a reduced prior
probability of 0.5 was proposed for variants in BRCA1 exons
9–10 or their proximal splice junction regions.38 Likewise, the
prior probability of pathogenicity was set at 0.5 for variants in
the splice acceptor and donor site of BRCA2 exon 12. Our
results indicate that adjustment of the prior should be
extended to other regions of BRCA2 in which presumed LoF
variants still display considerable BRCA2 protein activity such
as nonsense and splice site variants in exon 7 (Fig. S5).
Furthermore, the design of the multifactorial likelihood model
restricts its use to discrimination of variants that confer high
cancer risk from those that do not. Recent data show that
variants associated with reduced penetrance do exist in

BRCA1 and BRCA2 and functional analysis might be required
to identify these variants.39,40 Recently, Parsons et al.32 have
performed multifactorial likelihood analyses for a large
number of BRCA1 and BRCA2 variants, including 13 variants
that were functionally characterized in this study (Table S4).
For most variants, the IARC classification is in agreement
with our functional data. However, two variants in respec-
tively the splice acceptor site (c.517–2A>G) and donor site
(c.631+2T>G) of exon 7 were classified as pathogenic based
on multifactorial likelihood quantitative analysis, while in our
analyses these variants show residual HDR capacity in the
lower range of class 1/2 variants (Table S4). At this moment,
the exact quantitative relationship between BRCA2 protein
functionality and cancer risk is still unclear. Although HDR
activity around 50% of WT activity was shown to correlate
with an odds ratio of 2.5 for breast cancer,40 additional studies
are required to define HDR activity ranges that allow
assignment of variants to clinically relevant cancer risk
categories (i.e., high, moderate, and low increased risk). The
observation that presumed LoF variant alleles may retain
(partial) functionality through the expression of alternative
protein isoforms incites a shift in genetic diagnostics. These
findings emphasize the need for inclusion of quantitative
functional data to the MLM (as done in a qualitative way in
ACMG/AMP guidelines) and specification of gene-specific
classification guidelines.
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