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Abstract: A new synthetic chelating N–hydroxy–N–trioctyl iminophosphorane (HTIP) was prepared
through the reaction of trioctylphosphine oxide (TOPO) with N–hydroxylamine hydrochloride in
the presence of a Lewis acid (AlCl3). Specifications for the HTIP chelating ligand were successfully
determined using many analytical techniques, 13C–NMR, 1H–NMR, FTIR, EDX, and GC–MS analyses,
which assured a reasonable synthesis of the HTIP ligand. The ability of HTIP to retain U(VI) ions
was investigated. The optimum experimental factors, pH value, experimental time, initial U(VI) ion
concentration, HTIP dosage, ambient temperature, and eluents, were attained with solvent extraction
techniques. The utmost retention capacity of HTIP/CHCl3 was 247.5 mg/g; it was achieved at
pH = 3.0, 25 ◦C, with 30 min of shaking and 0.99 × 10−3 mol/L. From the stoichiometric calculations,
approximately 1.5 hydrogen atoms are released during the extraction at pH 3.0, and 4.0 moles of HTIP
ligand were responsible for chelation of one mole of uranyl ions. According to kinetic studies, the
pseudo–first order model accurately predicted the kinetics of U(VI) extraction by HTIP ligand with
a retention power of 245.47 mg/g. The thermodynamic parameters ∆S◦, ∆H◦, and ∆G◦ were also
calculated; the extraction process was predicted as an exothermic, spontaneous, and advantageous
extraction at low temperatures. As the temperature increased, the value of ∆G◦ increased. The
elution of uranium ions from the loaded HTIP/CHCl3 was achieved using 2.0 mol of H2SO4 with
a 99.0% efficiency rate. Finally, the extended variables were used to obtain a uranium concentrate
(Na2U2O7, Y.C) with a uranium grade of 69.93% and purity of 93.24%.

Keywords: Uranium; N–Hydroxy–N–trioctyl–iminophosphorane (HTIP); solvent extraction;
G. Gattar granite; leach liquor

1. Introduction

The arrangement of the reactive center in a ligand has been the basis for many ad-
vances in inorganic as well as organometallic chemistry. Accordingly, significant time and
effort have gone into designing and synthesizing ancillary ligands, besides studying the
properties, reactivities, and geometries of the resulting complexes. In some cases, these
efforts have resulted in new applications in stoichiometric chemistry, catalysis, and mate-
rials science [1–3]. A large number of structural studies for systems with phosphinimide
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ligands have been published in this area. These chelating and anionic ligands (R3PN) are
easily obtained from neutral phosphinimine precursors, prepared utilizing the simple and
long–established Staudinger reaction [4–6]. Iminophosphorane compounds, also known
as phosphoranimines, phosphinimines, or phosphazenes, were detected in 1919; they
are organic composites with the general structure R3P=NR. Iminophosphoranes contain
nitrogen alongside phosphorus atoms, which coordinate to transition metals using the
nitrogen atom’s lone pair of electrons. Multidentate ligands are produced by adding extra
donor sites into the iminophosphorane ligand, and they are gaining popularity in both
coordination chemistry and catalysis [7–9]. Iminophosphoranes are resonance hybrids of
the two recognized forms A and B, and have a highly polarized P=N bond (Scheme 1).
They can also integrate transition metals through the sp2–hybridized nitrogen atom’s lone
pair, resulting in stable complexes (C in Scheme 1) [10]. Iminophosphoranes, which are
primarily s–donor ligands with only minimal p–acceptor characteristics, have a limited
inherent coordinating capability since they can be easily substituted by other ligands.
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Scheme 1. The recognized structures of an iminophosphorane and its coordination to a metal.

Polydentate mixed ligands, such as those found in the generic metal complex structures
shown in Scheme 2 (D–G), can stabilize a wider range of metal ions than their monodentate
R3P = NR counterparts due to the addition of further donor sites to the iminophosphoranes.
The reactivity of the metal center can be modified as needed by selecting and adjusting these
new donor sites, as well as the appropriate linkers. It is regarded as a critical component in
achieving high levels of activity and selectivity [7].
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Scheme 2. Common structures of complexes of metal with polydentate iminophosphorane–based ligands.

Several procedures for the production of iminophosphoranes are recognized; however,
the most dominant and extensively used are the Staudinger as well as Kirsanov reaction
(Scheme 3). A phosphine (PR3) is used as a starting material in both of them. The Staudinger
reaction involves direct oxidation with an organic azide, whereas the Kirsanov reaction
involves initial bromination and consecutive reaction of the resulting phosphine dibromide
compound with a primary amine in the presence of a base [11–13].
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anionic living polymerization, and solution polymerization method [14–17]. Phosphazenes
have highly tunable chemical as well as physical properties that count on the substituents
attached to the phosphorus atom. Therefore, they are employed in an enormous range
of fields, such as rechargeable batteries [18], liquid crystals [19], membranes [20] and
lubricants [21], anticancer agents [22], flame retardants [23], antibacterial reagents [24], bio-
logical materials [25], synthetic bones [26], photosensitive substrates [27], thermally stable
macromolecules [28], a high limiting oxygen index (LOI) [29], coordination metal supports
and reagents for organometallic chemistry [30], silicon-containing compounds [31], and
catalysts [32].

Uranium is a chemical element with the symbol U, which belongs to the actinides. Due
to its strategic significance in the energy sector, uranium became the most valuable heavy
metal [32–35]. In nature, the Earth’s crust contains an average of 4.0 mg/L uranium [36];
however, it deposits in different types of rocks. It is a hexavalent state in the secondary min-
erals, such as kasolite, uranophane, autunite, etc., while it has a tetravalent oxidation state
in the form of primary minerals, e.g., coffinite, pitchblende, uraninite, etc. Firstly, uranium
is leached from its ore in an acidic or alkaline process, and extracted from the resulting
leach liquor using an ion exchanger or a solvent extraction technique [37–47]. Solvent ex-
traction (SX) is a widely used technique for the recovery and separation of base metals and
strategic metals in hydrometallurgy. Solvent extraction efficacy is subject to several factors
including the type of separation apparatus (pulsed columns, mixer–settler, etc.), the type of
feed solution, the applied flowsheets, the chemical composition of the organic solvent, the
flow rates of both aqueous and organic phases in the extractions along with elution steps,
etc. In the SX method, the extractant plays an essential role. It should have tremendous
solubility in the organic solvent. Nevertheless, it must have an extremely low aqueous
phase solubility. The solvent ought to be nonvolatile, industrially serviceable, nontoxic,
nonflammable, and affordable for the element extraction process [48,49]. Previous studies
have used several extractants for uranium extraction by solvent extraction. The derivatives
of organophosphorus compounds have been employed since 1900 in uranium extraction
processes. Compounds such as Cyanex 302, Cyanex 272, TBP, DEHPA, D2EHPA/TOPO
mixtures, Primene JM–T/Alamine–336 mixture [50], DDPA, HDPA, CMPO, DNPPA, and
DBBP, which are used to extract uranium from different matrices, were studied [51–56].
Several ligands with high selectivity are employed for uptake of uranium ions, comprising
organic crown ethers [57], calixarenes [58], and Schiff bases. The long-chain amines have
proven to be outstanding extractants for a large number of anionic metal complexes applied
widely in uranium removal, such as Adogen–383, TOA, and Aliquate–336 [59–61].

Amides are deemed one of the outstanding as well as vital organic functional groups
in pharmaceuticals, agrochemicals, polymers, and naturally occurring molecules. In ad-
dition, carboxamides have considerable value in coordination, medicinal, and organic
chemistry. They can be obtained via the amidation process where a condensation reaction
occurs between carboxylic acid and amine. One-pot synthesis of the chelating carbox-
amides using different catalysts were proposed. For instance, pyridine–2,6–dicarboxylic
acid bis–(3–hydroxy phenyl) amide (Pydca) along with tetra–kis (2–ethylhexyl) pyridine–
2,6–dicarboxamide (EHPyCA) were successfully synthesized and utilized for removal of
thorium as well as uranium from leach liquors of ore samples in Egypt [62–64].

In this study, a new synthetic N–hydroxy–N–trioctyl iminophosphorane (HTIP) chelat-
ing ligand was synthesized using an effective alternative technique compared to the tra-
ditional Staudinger and Kirsanov methods and employed for uranium extraction from
acidic solution. Both the removal and elution factors were optimized. Furthermore, the
study dealt with the equilibrium, kinetic, and thermodynamic characteristics of uranium
extraction from G. Gattar leach fluid, North Eastern Desert of Egypt.
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2. Materials and Methods
2.1. Apparatus

The acidity and alkalinity of solutions were detected using a digital pH meter (VS-
TAR10 series, Thermo Scientific™, Waltham, MA, USA) with an error of±0.1. An analytical
balance (AUW220D Series, Shimadzu, Kyoto, Japan) with standard deviation of 0.05 mg
was utilized to measure all samples. A Vibromatic-384 shaker was employed to mix the
contents in separating funnels. The crystal structure of materials was examined using X-ray
diffraction (XRD) technique (D8 Discover Family, Bruker, Billerica, MA, USA). Quantitative
analysis of U(VI) was executed with a double beam spectrometer (T80 UV/Vis, PG Instru-
ment, Leicestershire, UK) using the arsenazo (III) indicator and 650 nm wavelength against
an appropriate standard solution [65]. Furthermore, oxidometric titration against ammo-
nium metavanadate and sodium diphenyl amine sulfonate as an indicator using automatic
titrator [66,67] (SCOTT Instrument, GmbH, DE, Sialkot, Pakistan) was also employed to
confirm the concentration of U(VI) ions. An ICP-OES spectrometer (OPTIMA 5300 DV,
PerkinElmer, Waltham, MA, USA) was applied to specify the concentration of uranium
and metal ions of G. Gattar leachate. A Reichert Thermovar was used to determine the
melting point. The elemental analysis of uranium concentrate product and HTIP ligand
were recorded using EDX (JSM–7900F, Jeol, Tokyo, Japan). An FTIR spectrophotometer
(IRPrestige–21, Shimadzu, Kyoto, Japan) was employed to record the IR spectra using
KBr disc. The 1H and 13C–NMR spectra were obtained at 500 MHz using an NMR spec-
trometer (Bruker Avance TM 500, Bruker, Billerica, MA, USA). The coupling constant (J)
was measured in Hertz (Hz), while the chemical shift (δ) was measured in ppm. A mass
spectrometer (Finnigan SSQ 7000 spectrometer, Thermo Finnigan, San Jose, CA, USA) was
used for the molecular formula. The laboratories of National Research Center (NRC), Cairo,
Egypt performed the FTIR, GC–MS, 1H, and 13C-NMR analyses.

2.2. Reagents

All of the reagents were made with analytical grade chemicals. HCl, H2SO4, NaOH,
and HNO3 were purchased from POCH S.A., Gliwice, Poland. Trioctylphosphine ox-
ide (TOPO) and N–hydroxylamine hydrochloride were obtained from Thermo Fisher
Scientific–Acros Organics Inc., Geel, Belgium. Ammonium metavanadate, sodium nitrite,
FeSO4.7H2O, AlCl3, and urea were supplied by Scharlau Chemie. S.A., Barcelona, Spain.
Uranyl acetate dihydrate, arsenazo III, and sodium diphenyl amine sulfonate were obtained
from Merck, Darmstadt, Germany. Furthermore, methanol, DMF, and ethyl acetate were
purchased from Fluka, Gillingham, UK. All reactions were performed utilizing flame-dried
glassware. Thin paper chromatography (PC) was used to observe the reaction’s develop-
ment. Ethanol plus ethyl acetate (50:50 v/v) was adopted as an eluent. A UV lamp was
used to visualize spots on the PC plates (250 nm).

2.3. Synthesis of N–Hydroxy–N–Trioctyl Iminophosphorane (HTIP) Chelating Ligand

Two primary procedures were used to produce N–Hydroxy–N–trioctyl iminophospho-
rane (HTIP). The first stage in neutralization was to mix 0.1 mole of NaOH (5.0 g, over the
stoichiometric quantity) with 0.1 mole of NH2OH.HCl (7.0 g) in 50.0 mL of DMF as diluent.
For 2.0 h, the mixture was refluxed at 50 ◦C. The vital goal of the neutralization phase was
to make NH2OH more nucleophilic. The second swelling process started with 0.1 mole
trioctylphosphine oxide (TOPO, 38.6 g) and 0.1 mole (13.3 g) AlCl3 hard Lewis acid in
50.0 mL DMF in a condenser for 2.0 h at 50 ◦C. Finally, the two additions were added to
each other and allowed to condense for 6.0 h at 100 ◦C. The reaction was monitored using
paper chromatography (PC) sheets and a solvent mixture of ethanol plus ethyl acetate
50:50 v/v. A UV lamp was used to detect the spots. The resulting HTIP appeared as a
crystalline white to pale yellow solid with a density of ≈0.943 g/cm3. After completion of
the reaction, the product was obtained by washing it several times with deionized water to
remove any leftover DMF and AlCl3. The residue was washed, and the recrystallization
procedure was performed with an ethanol/DMF mixture.
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2.4. Preparation of U(VI) Standard Stock Solution

A 1000 mg/L (4.2 × 10−3 mol/L) U(VI) standard stock solution was prepared by
dissolving 1.872 g of UO2(CH3COOH)2.2H2O in deionized water that had been acidified
with 5.0 mL concentrated HNO3 to avoid hydrolysis in a 1000 mL volumetric flask. In
addition, numerous standard stock solutions of 1000 mg/L of probable different ions
during U(VI) extraction by HTIP/CHCl3 chelating ligand were generated by dissolving
proper amounts of their salts in 1000 mL deionized water.

2.5. Extraction and Stripping Procedures

The pH value, shaking time, initial uranium(VI) conc., HTIP conc., temperature, and
different ions were all tuned to optimize U(VI) ion extraction from synthetic solution by
HTIP/CHCl3. In these experiments, 25.0 mL of a 100 mg/L (4.2 × 10−4 mol/L) synthetic
U(VI) ions solution was mechanically shaken for a predefined period of time with 25.0 mL
of varied concentrations of HTIP/CHCl3. Both the extraction distribution ratio D and
stripping ratio D′ were calculated using the following Equation (1) [68]:

D =
Co

Ca
; D′ =

Ca

Co
(1)

where Co and Ca (mg/L) correspond to the concentration of U(VI) in organic and aqueous
phase, respectively. Moreover, the distribution coefficient (Kd) and extraction percentage
(E%) were calculated using Equations (2) and (3), respectively:

Kd =
Ci − Ce

Ce
× Va

Vo
(2)

E% =
100D

D +
(

Va
Vo

) (3)

where Ci and Ce (mg/L) symbolise for the initial and equilibrium concentration of U(VI)
ions, respectively. Vo and Va (mL) represent organic and aqueous phase volumes, respec-
tively. Nonetheless, the stripping procedures were performed by shaking different volumes
of the loaded organic solvent with the eluent (2.0 mol H2SO4) for 10 min at ambient tem-
perature. After equilibration, the two layers were entirely separated, and the U(VI) ion
concentration was measured. The stripping percentage (S%) can be expressed using the
next Equation (4):

S% =
100D′

D′ +
(

Vo
Va

) (4)

2.6. Production of G. Gattar Granite Leach Solution

Uranium–rich ore sample was collected from G. Gattar granite, North Eastern Desert,
Egypt. Percolation leaching technique was applied; H2SO4 was used as a leachant. The
leaching parameters were optimized at 75.0 g/L of H2SO4,−100 mesh particle size for 4.0 h
leaching time, and 1:1 S/L phase ratio at room temperature. ICP-OES and colorimetric
analysis were used to detect the chemical composition of the G. Gattar ore sample and
its leachate.

3. Results and Discussion
3.1. Characterization of N–Hydroxy–N–Trioctyl Iminophosphorane (HTIP) Chelating Ligand

The synthesis procedures for N–Hydroxy–N–trioctyl iminophosphorane (HTIP) chelat-
ing ligand and the suggested mechanism of the reaction are illustrated in Scheme 4. A
very important clarification should be mentioned concerning the role of the Lewis acid
(AlCl3) in the fabrication of HTIP ligand. The hard Lewis acid was characterized by a
great charge density with vacant orbitals, which could attract electrons from the oxygen
phosphine group. This operation facilitated the breaking of –P=O bonds. After that, the
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nucleophilic attack of NH2OH upon the phosphine group could take place easily, as the
phosphorous atom acted as an electrophile. This method is considered as an effective
alternative technique to the Staudinger and Kirsanov methods.
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The obtained yield was ≈40.0 g (≈71.0%) with a melting point equal to 135–140 ◦C.
Numerous functional groups in the synthesized HTIP were predicted using important
observations in Fourier transformation infrared spectroscopy (FTIR) [69]. Figure 1a displays
the FTIR spectra of the HTIP and its complex with U(VI) ions. The HTIP had a strong
peak, centered at roughly 3409.48 cm−1, which was linked to the OH group’s stretching
mode. After chelation with U(VI) ions, the stretching vibration related to the OH group
disappeared, indicating that the OH group took part in the chelation. The features located
at 2850–2918, 701.38, 819.83, 1145.18 and 1464.72 cm−1 were more likely caused by the
CH aliphatic, (CH2)n aliphatic, –P=N, –P–N, and N–O bonds, respectively. The frequency
of –P=N and –P–N stretching vibrations in the HTIP–U(VI) complex were shifted to a
lower frequency as compared with the free ligand (776.3 and 1118.41 cm−1), indicating that
there was an appreciable chelation between HTIP and U(VI). The peak in the HTIP–U(VI)
complex spectrum observed at 925 cm−1 corresponded to coordinated U=O bond [40,70].

Gas chromatography–mass spectrometry (GC–MS) is a powerful and effective tool for
predicting chemical formulas and purity; the more stable fragment, [m/z]+, is an influential
and strong tool. The synthetic ligand’s molecular weight was represented by the molecular
ion peak with a value of 401.63. Some important fragmentation patterns related to the
synthesized HTIP were observed, including [P=N–OH]˙ with a molecular weight of 61.98,
[P=N–O]˙ with a molecular weight of 60.98, [CH3(CH2)7]˙ with a molecular weight of
113.25, and a fragment with a 384.66 molecular weight, which denoted the formation of the
[(CH3(CH2)7)3P=N]˙ moiety. The results of the entire investigation indicated that the HTIP
ligand could be synthesized successfully. Figure 1b demonstrates the GC–MS spectrum of
the HTIP chelating ligand.

1H–NMR analysis with a 500.15 MHZ energy and CDCl3 as a diluent is a useful and
efficient technology that provides important information about protons in the produced
substance and aids in structure estimates. The primary δ (ppm) assignments were 7.259,
0.815–0.842, and 1.222–1.637 ppm, which corresponded to the protons of OH, methyl,
and methylene, respectively. The assignments of the OH proton (δ = 7.259 ppm) were
more deshielded than the assignments of the –CH2 and –CH3 protons, whereas –CH2
(δ = 1.222–1.637 ppm) was more deshielded than –CH3 (δ = 0.815–0.842 ppm). Figure 2a
illustrates the 1H–NMR characterization of the HTIP chelating ligand.
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Figure 1. (a) FTIR spectra of HTIP and HTIP–U(VI) complex; (b) GS–MS spectrum of HTIP chelating ligand.

13C–NMR analysis with a 125.76 MHZ energy and CDCl3 as a diluent is a useful
method for determining the number of carbon atoms in an HTIP ligand. The major δ (ppm),
which is connected to alkyl carbon, occurred at 14.126–31.848 ppm (Figure 2b). The –CH3
carbon appeared at 14.126 ppm, which was more protected than the other –CH2 carbons
that appeared in chemical shift ranges of 21.728–31.848 ppm.

Polymers 2022, 14, x FOR PEER REVIEW 7 of 22 
 

 

of the [(CH3(CH2)7)3P=N]˙ moiety. The results of the entire investigation indicated that the 
HTIP ligand could be synthesized successfully. Figure 1b demonstrates the GC‒MS spec-
trum of the HTIP chelating ligand. 

 
Figure 1. (a) FTIR spectra of HTIP and HTIP‒U(VI) complex; (b) GS‒MS spectrum of HTIP chelating 
ligand. 

1H‒NMR analysis with a 500.15 MHZ energy and CDCl3 as a diluent is a useful and 
efficient technology that provides important information about protons in the produced 
substance and aids in structure estimates. The primary δ (ppm) assignments were 7.259, 
0.815‒0.842, and 1.222‒1.637 ppm, which corresponded to the protons of OH, methyl, and 
methylene, respectively. The assignments of the OH proton (δ = 7.259 ppm) were more 
deshielded than the assignments of the ‒CH2 and ‒CH3 protons, whereas ‒CH2 (δ = 1.222‒
1.637 ppm) was more deshielded than ‒CH3 (δ = 0.815‒0.842 ppm). Figure 2a illustrates 
the 1H‒NMR characterization of the HTIP chelating ligand. 

13C‒NMR analysis with a 125.76 MHZ energy and CDCl3 as a diluent is a useful 
method for determining the number of carbon atoms in an HTIP ligand. The major δ 
(ppm), which is connected to alkyl carbon, occurred at 14.126‒31.848 ppm (Figure 2b). The 
‒CH3 carbon appeared at 14.126 ppm, which was more protected than the other ‒CH2 
carbons that appeared in chemical shift ranges of 21.728–31.848 ppm. 

 
Figure 2. (a) 1H–NMR spectrum; (b) 13C–NMR spectrum of HTIP chelating ligand. Figure 2. (a) 1H–NMR spectrum; (b) 13C–NMR spectrum of HTIP chelating ligand.

A characteristic EDX analysis was performed to illustrate the elements composing
HTIP chelating ligand after and before uranyl ion chelation. A significant peak from
0–0.5 keV represented carbon, oxygen and nitrogen atoms, while the peak at 1.65 keV
represented the phosphorous atom. The appearance of uranium gave an obvious sign
for the chelation of uranyl ions by HTIP chelating ligand. The identification of HTIP and
HTIP–U(VI) complex by EDX spectrum is presented in Figure 3.
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3.2. Extraction Procedures
3.2.1. The Influence of pH

The role of pH was very important in the retention of U(VI) on the ligand’s active
sites because it impacted the form of uranium in aqueous media as well as the features
of the active sites of the HTIP ligand. Figure 4 shows the species of uranyl ions in the
HYDRA–MEDUSA program at different pH vales. There are many U(VI) species in solution,
according to earlier research [71,72]. Uranium can be found in cationic, neutral, or anionic
species. Until pH 5.0, uranium is primarily present in the cationic forms UO2

2+, UO2(OH)+,
and (UO2)2(OH)2

2+, whilst UO2SO4, UO3.2H2O, UO2(OH)3–, and UO2(OH)4
2– are neutral

and anionic species that are identified till pH 12.0.
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The retention of U(VI) on HTIP was examined using 25.0 mL of a 4.2 × 10−4 mol/L
U(VI) solution (100 mg/L) and 25.0 mL of 0.99 × 10−4 mol/L HTIP/CHCl3 (10 mg of
HTIP in 25.0 mL CHCl3) at pH ranges from 0.25–6.0 and room temperature for 30 min.
Figure 5a depicts the acquired data, which reveal that the retention capacity was enhanced
from pH 0.25 (qe = 12.5 mg/g) to pH 3.0 (qe = 247.5 mg/g) and remained constant up
to pH 6.0. It was noticed that in highly acidic medium, pH 0.25–1.0, there was a small
variation in HTIP retention due to the high conc. of hydrogen ions, which may compete
with uranyl ions and protonated HTIP ligand. The ultimate retention of U(VI) was detected
at pH 3.0 (qe = 247.5 mg/g) because UO2

2+, UO2(OH)+, and (UO2)2(OH)2
2+ species are

predominant in this range. Therefore, pH 3.0 has been proposed as the best pH value for
U(VI) ion retention on HTIP/CHCl3, with qe = 247.5 mg/g retention capacity (99.0%). A
graph of logD versus pH shows a straight line with a slope of 1.5 and an intersection of
2.7157 in linear regression analysis (slope analysis), as displayed in Figure 5b. The value of
slope represents the amount of hydrogen ions set free in the aqueous medium during the
formation of the HTIP–U(VI) complex, indicating that about 1.5 moles of hydrogen ions
were released during the extraction procedure. Moreover, at pH value 3.0 (logβ = 2.7157),
the stability constant (β) of the HTIP–U(VI) complex was computed and found to be 519.63;
it showed that the HTIP ligand had a high affinity for uranyl ions.

Lastly, based on the preceding analysis, the suggested complex structure and chelation
mechanism are presented in Scheme 5. It is clear that the first mechanism mainly depends
on the pH value. Competition occurs in highly acidic media between both hydrogen and
uranyl ions, causing the tendency of equilibrium to shift towards the left, but in slightly
acidic, neutral and alkaline medium, may cause hydrogen ion withdrawal with increased
chelation effect and uptake capacity of the HTIP ligand. The second mechanism depends
on pH value and the affinity of the HTIP ligand for uranyl ions. The third mechanism is a
mixture between the two later mechanisms.
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Scheme 5. Proposed mechanisms of UO2
2+ ion extraction by HTIP chelating ligand.

3.2.2. The Influence of Equilibration Time

Contact time is one of the highly essential factors on the financial side. The effect of
equilibrium time on U(VI) retention was examined using 9.96× 10−4 mol/L (10 mg/25.0 mL)
HTIP/CHCl3 and a 25.0 mL aqueous uranium(VI) ion solution with a concentration of
0.42 ×10−3 mol/L at pH 3.0. U(VI) ion retention rose with rising equilibrium time and
reached an ultimate value (247.5 mg/g, 99.0%) after 30 min, which remained roughly con-
stant for the next 120 min, as shown in Figure 6. As a result, 30 min was deemed sufficient for
achieving equilibrium in subsequent testing, and it was applied in all successive investigations.
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Figure 6. The influence of time on the retention of uranium by HTIP chelating ligand. (U(VI)
conc.: 0.42 × 10−4 mol/L, HTIP/CHCl3 conc.: 0.99 × 10−3 mol/L (10 mg/25 mL), pH 3.0, A/O 1:1,
T: 25 ◦C).

Kinetic studies were used to express the rate of uranyl ion entrapment using HTIP/CHCl3,
providing crucial information for the design and modeling of the extraction process. Both
pseudo first order (PFO) and second order (PSO) kinetic models were employed to identify
the mechanism of U(VI) ion entrapment using HTIP/CHCl3 and the rate constant of the
process. The PFO model is presented by the equation below [73]:

log(qe − qt) = log qe −
(

k1t
2.303

)
(5)

where qe and qt (mg/g) correspond to the quantity of U(VI) ions entrapped per unit
mass at equilibrium and time t, respectively, and k1 (min−1) denotes the rate constant.
Figure 7a displays a straight line plot of log(qe − qt) against t; the values of both k1 and qe
were calculated from the slope and intercept, respectively. The calculated value of qe was
245.47 mg/g, and of k1, 0.1648 min−1, with R2 = 0.9586. It is obvious that the calculated
value of qe was extremely close to the practical retention capacity of 247.5 mg/g (Table 1).
Nonetheless, the PSO kinetic model was calculated using the equation below [74]:

t
qt

=
1

k2q2
e
+

t
qe

(6)

where k2 (g/mg.min) is in agreement with the rate constant. Figure 7b demonstrates
the straight line of graphing t/qt vs. t; it has a slope of 1/qe and an intercept of 1/k2qe2.
The PSO model was found to be ineffective in explaining the practical data. Table 1
illustrates the calculated value of qe as 277.47 mg/g, which was somewhat greater than the
experimental retention capacity, whereas the value of k2 was 0.001 min−1 with R2 equal to
0.9991. Therefore, the PFO kinetic model was more reliable in characterizing the extraction
process of U(VI) ions using HTIP/CHCl3, as it was appropriate for the experimental data.

Table 1. The kinetic constants of U(VI) ion extraction by HTIP chelating ligand.

Extraction Capacity
qe, mg/g

PFO PSO

qe k1 R2 qe k2 R2

247.5 mg/g 245.47 0.1648 0.9586 277.47 0.001 0.9991
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Figure 7. (a) PFO Kinetic model; (b) PSO kinetic model of U(VI) ion extraction by HTIP chelating
ligand. (U(VI) conc.: 0.42 × 10−4 mol/L, HTIP/CHCl3 conc.: 0.99 × 10−3 mol/L (10 mg/25 mL),
pH 3.0, A/O 1:1, T: 25 ◦C).

3.2.3. The Impact of Initial U(VI) Ion Concentration

The impact of the initial concentration of U(VI) ions on extraction efficiency is crucial
to investigate since it helps us to anticipate retention power. A diagram of retention power
against different initial U(VI) concentrations is shown in Figure 8. Two different stages can
be noted. In the first stage, the retention power of HTIP ligand increases conspicuously
from 24.75 to 247.5 mg/g with the rising initial concentration of U(VI) ions because the
number of active points on the HTIP ligand exceeds the number of uranyl ions in solution.
On the other hand, the retention capacity remains constant in the second stage, when the
concentration of uranyl ions increases from 100 to 300 mg/L U(VI), because uranyl ions
have entirely interacted with the HTIP active sites. The number of active HTIP sites is less
than that of uranyl ions. At an initial U(VI) concentration of 100 mg/L, the maximum value
of U(VI) ion retention on HTIP/CHCl3 is 247.5 mg/g (99.0%).
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Figure 8. The influence of initial U(VI) ion concentration on the retention of uranium by HTIP
chelating ligand. (pH 3.0, HTIP/CHCl3 conc.: 0.99 × 10−3 mol/L (10 mg/25 mL), time: 30 min,
A/O 1:1, T: 25 ◦C).

3.2.4. The Influence HTIP Dose

The HTIP amount is important for better uranyl ion sequestration because it im-
pacts the equilibrium of the system. The effect of HTIP doses varying from 0.0025 to
0.1 g/25.0 mL CHCl3 on U(VI) retention efficiency was investigated. Figure 9a shows that
augmenting the HTIP quantity from 0.0025 to 0.01 g/25.0 mL CHCl3 improved U(VI) ion
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retention efficiency, followed by retention diminishing from 0.025 g to 0.1 g/25.0 mL CHCl3
because the number of HTIP incorporation sites surpassed the number of uranyl ions. The
retention capacity of 0.01 g/25.0 mL HTIP/CHCl3 was 247.5 mg/g with a 99.0% removal
efficiency. As a consequence, the best concentration for consequent extraction studies was
0.01 g/25.0 mL HTIP/CHCl3. It is obvious that the retention efficiency of HTIP is higher
than that of other materials reported in earlier studies, as shown in Table 2.

The regression analysis was studied to guarantee the configuration of the HTIP–U(VI)
complex formed. Figure 9b illustrates a straight line with a slope of 4.876 and R2 = 0.964
when plotting logD versus logHTIP. The linear regression analysis (slope analysis) can
elaborate the stoichiometry mechanism between HTIP chelating ligand and U(VI) ions,
which suggests that 1.0 mole of U(VI) ions is chelated by 4.0 moles of HTIP.
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Figure 9. (a) The influence of HTIP dose on the retention of uranium; (b) the regression analysis of
U(VI) ion extraction by HTIP at different concentrations. (U(VI) conc.: 0.42 × 10−4 mol/L, pH 3.0,
Time: 30 min, A/O 1:1, T: 25 ◦C).

Table 2. Comparison of retention efficiency of different materials.

Materials Retention Efficiency, mg.g−1 Reference

Poly (aminophosphonic)–functionalized poly
(glycidyl methacrylate)–magnetic nanocomposite 262.5 [75]

Nitrogen-enriched carbon–nitrogen polymer, C3N5 207.0 [76]

Cyanex 923 loaded polymer beads 54.5 [77]

2–Hydroxy–4–aminotriazine–anchored
activated carbon 135.0 [78]

D2EHPA–TOPO/SiO2–P 48.0 [79]

D2EHPA–TOPO@MCM–41 2.88 [80]

Eggplant (Solanum melongena) leaves 110.97 [81]

HTIP 247.5 This study

3.2.5. U(VI) Ion Distribution Isotherm (McCabe–Thiele Isotherm)

Figure 10a demonstrates the McCabe–Thiele diagram of the extraction distribution isotherm
of U(VI) ions by HTIP in a system consisting of U(VI) concentration 0.42× 10−4 mol/L,
HTIP/CHCl3 conc. 0.99× 10−3 mol/L (10 mg/25.0 mL), 3.0 pH value, and A/O phase ratio
1:1 for 30 min. It was observed that two theoretical extraction phases are required to extract
nearly all of the U(VI) ions. Furthermore, the elution of U(VI) ions from the HTIP–U(VI)
complex was conducted using 2.0 M of H2SO4. The HTIP/CHCl3 organic phase had a
concentration of U(VI) ions of 95.0 mg/L. Figure 10b depicts the McCabe–Thiele diagram
of the U(VI) ion stripping distribution isotherm; to release almost all of the entrapped U(VI)
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ions from the HTIP–U(VI) complex, four theoretical stripping stages are required with a
2:1 A/O phase ratio.
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Figure 10. McCabe–Thiele diagram of (a) U(VI) ion extraction by HTIP chelating ligand; (b) U(VI)
ion stripping isotherm from HTIP–U(VI) complex. (U(VI) conc.: 0.42 × 10−4 mol/L, HTIP/CHCl3
conc.: 0.99 × 10−3 mol/L (10 mg/25 mL), pH 3.0, time: 30 min, T: 25 ◦C).

3.2.6. The Influence Temperature

The effectiveness of temperature on the removal of U(VI) ions using HTIP/CHCl3 was
investigated by mixing 25.0 mL of 0.99 × 10−4 mol/L (10 mg/25.0 mL) HTIP/CHCl3
and 25.0 mL of uranium(VI) ion solution with a concentration of 4.2 × 10−4 mol/L
(100 mg/L) for 30 min at pH 3.0 and agitation temperature varying from 25–65 ◦C. The
uptake efficiency of HTIP/CHCl3 for U(VI) ions dropped from 247.5 mg/g to 200 mg/g
when the temperature was elevated from 25 to 65 ◦C, (Figure 11a). The pattern suggests
that the process of extracting U(VI) ions through HTIP is exothermic.

Thermodynamic analysis was also carried out to characterize the extraction mechanism
using the Gibbs free energy formula [82–84]:

∆G◦ = ∆H◦ − T∆S◦ (7)

log Kd =
∆S◦

2.303R
− ∆H◦

2.303RT
(8)

where ∆G◦ (kJ/mol) points to Gibbs free energy, ∆H◦ (kJ/mol) is attributed to enthalpy
change, ∆S◦ (J/mol.K) is defined as entropy change, T (K) stands for the temperature,
and R (8.314 J/mol.K) corresponds to the universal gas constant. Figure 11b displays a
logKd versus 1/T graph with R2 = 0.9974; ∆H◦ and ∆S◦ were generated by the slope and
intercept, respectively.

The fact that ∆G◦ is negative implies that the retention of U(VI) on HTIP is thermo-
dynamically spontaneous and attainable (Table 3). In addition, the rise in ∆G◦ values as
temperature rises, from −8.646 kJ/mol at 298 K to −3.926 kJ/mol at 338 K, suggests that
the retention of uranium at low temperature is desirable. Moreover, the negative value of
∆H◦ indicates that U(VI) ion retention on HTIP is an exothermic process, suggesting that
heat is produced during the extraction. Finally, the negative value of ∆S◦ affirms that the
capture of U(VI) ions on HTIP is more practicable and less disorganized.



Polymers 2022, 14, 1687 14 of 21

Polymers 2022, 14, x FOR PEER REVIEW 14 of 22 
 

 

Thermodynamic analysis was also carried out to characterize the extraction mecha-
nism using the Gibbs free energy formula [82–84]: ∆𝐺° = ∆𝐻° − 𝑇∆𝑆° (7)log𝐾ௗ = ∆𝑆°2.303𝑅 − ∆𝐻°2.303𝑅𝑇 (8)

where ∆G° (kJ/mol) points to Gibbs free energy, ∆H° (kJ/mol) is attributed to enthalpy 
change, ∆S° (J/mol.K) is defined as entropy change, T (K) stands for the temperature, and 
R (8.314 J/mol.K) corresponds to the universal gas constant. Figure 11b displays a logKd 
versus 1/T graph with R2 = 0.9974; ∆H° and ∆S° were generated by the slope and intercept, 
respectively. 

 
Figure 11. (a) The influence of temperature on the retention of uranium by HTIP chelating ligand; 
(b) thermodynamic study of U(VI) ion extraction by HTIP chelating ligand (U(VI) conc.: 0.42 × 10−4 
mol/L, HTIP/CHCl3 conc.: 0.99 × 10−3 mol/L (10 mg/25 mL), pH 3.0, A/O 1:1, time: 30 min). 

The fact that ∆G° is negative implies that the retention of U(VI) on HTIP is thermo-
dynamically spontaneous and attainable (Table 3). In addition, the rise in ∆G° values as 
temperature rises, from −8.646 kJ/mol at 298 K to −3.926 kJ/mol at 338 K, suggests that the 
retention of uranium at low temperature is desirable. Moreover, the negative value of ∆H° 
indicates that U(VI) ion retention on HTIP is an exothermic process, suggesting that heat 
is produced during the extraction. Finally, the negative value of ∆S° affirms that the cap-
ture of U(VI) ions on HTIP is more practicable and less disorganized. 

The Arrhenius equation was employed to predict the activation energy (Ea) of en-
trapped U(VI) ions at various temperatures using the slope of the straight line in Figure 
11b. The Arrhenius equation was estimated by the subsequent equation [85]: log𝐾ௗ = −2.303𝐸௔𝑅𝑇 + log𝐴 (9)

where Ea (kJ/mol) corresponds to the activation energy of extraction and A correlates with 
the pre-exponential factor, which is independent of temperature. According to calcula-
tions, the extraction of U(VI) ions on HTIP ligand requires an activation energy of −8.261 
kJ/mol; this implies that the extraction procedure occurs spontaneously and exothermi-
cally at room temperature, with no need for activation energy. 

Table 3. Thermodynamic analysis of U(VI) ion extraction by HTIP chelating ligand. 

∆S°, J/mol.K ∆H°, kJ/mol ∆G°, kJ/mol 

−118 × 10−6 −43.81 
298 K 308 K 318 K 328 K 338 K 
−8.645 −7.466 −6.286 −5.106 −3.926 

Figure 11. (a) The influence of temperature on the retention of uranium by HTIP chelating ligand;
(b) thermodynamic study of U(VI) ion extraction by HTIP chelating ligand (U(VI) conc.:
0.42 × 10−4 mol/L, HTIP/CHCl3 conc.: 0.99 × 10−3 mol/L (10 mg/25 mL), pH 3.0, A/O 1:1, time:
30 min).

The Arrhenius equation was employed to predict the activation energy (Ea) of en-
trapped U(VI) ions at various temperatures using the slope of the straight line in Figure 11b.
The Arrhenius equation was estimated by the subsequent equation [85]:

log Kd =
−2.303Ea

RT
+ log A (9)

where Ea (kJ/mol) corresponds to the activation energy of extraction and A correlates with
the pre-exponential factor, which is independent of temperature. According to calculations,
the extraction of U(VI) ions on HTIP ligand requires an activation energy of −8.261 kJ/mol;
this implies that the extraction procedure occurs spontaneously and exothermically at room
temperature, with no need for activation energy.

Table 3. Thermodynamic analysis of U(VI) ion extraction by HTIP chelating ligand.

∆S◦, J/mol.K ∆H◦, kJ/mol ∆G◦, kJ/mol

−118 × 10−6 −43.81
298 K 308 K 318 K 328 K 338 K

−8.645 −7.466 −6.286 −5.106 −3.926

3.2.7. The Influence of Co-Ions

The investigated co-ions were identified as co-ions accompanied by U(VI) during
the leaching process. The impact of co-existing ions was examined separately under
optimal extraction conditions by introducing each one into 25.0 mL of a 4.2 × 10−4 mol/L
(100 mg/L) U(VI) ion solution. Each ion was identified as an interfering ion when the
extraction efficiency differed by more than ±5.0%. Thus, the co-ion concentration that
produced a ±5.0% error in uranyl extraction efficiency was used to set the tolerance limit.
Table 4 shows that none of the studied co-ions had a negative impact on the retention of
U(VI) ions. The findings emphasize the selective extraction of U(VI) on HTIP chelating
ligand, which could be used to extract U(VI) ions from leachates of ores in the presence of
other ions.
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Table 4. The influence of co-ions on U(VI) ion extraction by HTIP chelating ligand.

Co-Ions Tolerance Limit *, mg/L E% Co-Ions Tolerance Limit *, mg/L E%

Si4+ 3000 99.0 Ba2+ 1000 95.0
K+ 3000 99.0 Ni2+ 550 95.0

Na+ 3000 99.0 Rb+ 650 95.0
Al3+ 3000 99.0 Pb2+ 1000 95.0
Ca2+ 1500 95.0 Mo6+ 850 95.0
Mg2+ 1500 95.0 Zr4+ 950 95.0
Fe3+ 750 95.0 Sr2+ 700 95.0
P5+ 3000 99.0 V5+ 1000 95.0
Ti4+ 850 95.0 Zn2+ 900 95.0

* Tolerance limit: the conc. of co-ion that produces an error does not exceed ± 5.0%.

3.3. Stripping and Precipitation

Three types of acids with different concentrations ranging from 0.025–2.0 M were
utilized as stripping agents for stripping of U(VI) ions from the HTIP–U(VI) complex;
the experiments were carried out using 10.0 mL acid volume for 25.0 mL of HTIP–U(VI)
complex, shaking well for 10 min at 25 ◦C. According to the data listed in Table 5, the
U(VI) stripping efficiency dropped at low acidic concentrations, but increased when the
acid concentration was higher. It was notable that 99.0% stripping efficiency could be
achieved with 10.0 mL of 0.5 M HCl, 0.5 M HNO3, or 2.0 M H2SO4. Subsequently, the
eluted solution was precipitated with 30.0% NaOH solution until pH 7.0–8.0 was attained,
where uranium precipitated as sodium diuranate (Na2U2O7), yielding a final uranium
concentrate (yellow cake). The precipitate was left to settle for 24.0 h and filtered. Lastly,
the precipitate was dried for 3.0 h at 110 ◦C in an electrical oven to obtain the uranium
concentrate as a final product.

Table 5. Effect of stripping agent conc. on U(VI) ion elution from HTIP–U(VI) complex.

Acid Conc., (M)
Stripping Efficiency, (%)

HNO3 HCl H2SO4

0.025 63.51% 58.6% 57.3%
0.05 85.7% 69.8% 68.2%
0.1 95.8% 93.5% 75.4%
0.5 99.0% 99.0% 89.3%
1.0 99.0% 99.0% 96.2%
2.0 99.0% 99.0% 99.0%

3.4. Case Study: U(VI) Recovery from G. Gattar Ore Sample by HTIP Chelating Ligand

The previous data suggest that the HTIP chelating ligand can extract uranium from
leachates of geological ores. Accordingly, this hypothesis was investigated using G. Gattar
granite leach liquor [85,86]. Uranium (1340 mg/kg) was leached from a G. Gattar ore
sample using the percolation leaching technique. The leachate contained approximately
0.45 g/L (450 mg/L) of uranium ions in the presence of a variety of metal ion impurities
(Tables 6 and 7). The recovery experiment was carried out by mixing 1.0 L of HTIP/CHCl3
(0.99 × 10−3 mol/L) with 1.0 L of leach liquor under the previously defined optimum
conditions (pH 3.0, 1:1 A/O phase ratio, 30 min, and 25 ◦C). According to the study,
the extraction efficiency of U(VI) reached 99.0%. In addition, it was affirmed that the
released U(VI) ions from the HTIP–U(VI) complex could be easily eluted in 10 min using
2.0 M H2SO4.
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Table 6. Chemical composition of G. Gattar granite ore sample.

Major Oxides Wt., % Elements Conc., mg/kg

SiO2 48.60 U6+ 1340
Al2O3 8.16 Ni2+ 34
FeO 0.14 Rb2+ 404

Fe2O3 2.59 Sr2+ 38
TiO2 0.15 Y3+ 64
MnO 0.07 Cu2+ 65
K2O 3.38 Zn2+ 200
CaO 6.73 Ba2+ 432

Na2O 2.35 Zr4+ 170
P2O5 0.02 Nb5+ 25
MgO 0.60 Pb2+ 36

Mo6+ 228

Table 7. The chemical analysis of G. Gattar granite leach liquor.

Metal ions Si4+ Al3+ Fe3+ Mo6+ V5+ P5+ Na+ K+ Zr4+ Ti4+ U6+

Conc., g/L 2.33 3.11 1.31 0.06 0.11 0.07 2.11 2.87 0.05 0.03 0.45

After the elution process, 30.0% NaOH was used to precipitate U(VI) ions as sodium
diuranate precipitate Na2U2O7 by adjusting the pH to 7.0–8.0. The uranium concentrate
was characterized using XRD and EDX, in addition to ICP-OES analysis techniques in
order to determine the U(VI) content alongside other associated metal ions. The results are
given in Figure 12, as well as Table 8. According to the analyses, the uranium(VI) content
in the uranium concentrate product “yellow cake” was 69.93%, with a purity of 93.24%.
Figure 13 demonstrates a flow chart of the recovery of U(VI) ions from G. Gattar granite
ore mineralization using HTIP chelating ligand.

Table 8. ICP-OES analysis of Na2U2O7 product from G. Gattar granite ore sample.

Elements Content, (%) Elements Content, (%)

U6+ 69.93 Cr6+ 0.0031
Na+ 4.041 Cd2+ 0.0007
Al3+ 0.0158 Si4+ 0.0091
Fe3+ 0.0207 K+ 0.0185
Mg2+ 0.0391 Zr4+ 0.0035
Ca2+ 0.0521 Pb5+ 0.0028
Co2+ 0.0053 Zn2+ 0.0037
Cu2+ 0.0023 V5+ 0.0035
Ni2+ 0.0031 Mn2+ 0.0031
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4. Conclusions

A novel synthetic chelating agent, N–hydroxy–N–trioctyl–iminophosphorane (HTIP),
was synthesized using an effective substitutional technique compared to the conventional
methods and was utilized to uptake U(VI) ions from leach liquor of G. Gattar, North
Eastern Desert, Egypt. Characterization was performed successfully using numerous
analytical techniques, including 1H–NMR, 13C–NMR, FTIR, EDX, and GC–MS analyses.
The uranium sequestration procedures were optimized by mixing 25.0 mL of U(VI) ion
solution containing 0.42 × 10−4 mol/L with 0.99 × 10−3 mol/L HTIP/CHCl3 at pH 3.0,
1:1 A/O phase ratio, at 25 ◦C for 30 min. The utmost retention capacity of HTIP/CHCl3 was
247.5 mg/g. From the stoichiometric calculations, approximately 1.5 hydrogen atoms were
released during the extraction at pH 3.0, and 4.0 moles of HTIP ligand were responsible
for chelation of 1 mole of uranyl ions. The kinetic modeling data were well-suited to the
pseudo first-order model. Furthermore, thermodynamic study demonstrated a negative
∆S◦ value, indicating that the uptake process is less disordered. Moreover, the rise in
∆G◦ value pointed to the spontaneousness and possibility of removing U(VI) ions at low
temperatures. The elution of uranium loaded on HTIP was achieved using 2.0 M of H2SO4
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as uranyl sulfate with 99.0% efficiency. Lastly, uranium concentrate (Na2U2O7, Y.C) with a
purity of 93.24% was obtained by adding 30.0% NaOH to the elution and adjusting the pH
to 7.0–8.0 with continuous stirring for 2 h.
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