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Neuroinflammation plays important roles in the pathogenesis and progression of altered neurodevelopment, sensorineural hearing
loss, and certain neurodegenerative diseases. Hyperoside (quercetin-3-O-β-D-galactoside) is an active compound isolated from
Hypericum plants. In this study, we investigate the protective effect of hyperoside on neuroinflammation and its possible
molecular mechanism. Lipopolysaccharide (LPS) and hyperoside were used to treat HT22 cells. The cell viability was measured
by MTT assay. The cell apoptosis rate was measured by flow cytometry assay. The mRNA expression levels of interleukin-1β
(IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) were determined by quantitative reverse
transcription polymerase chain reaction. The levels of oxidative stress indices superoxide dismutase (SOD), reactive oxygen
species (ROS), catalase (CAT), glutathione (GSH), and malondialdehyde (MDA) were measured by the kits. The expression of
neurotrophic factor and the relationship among hyperoside, silent mating type information regulation 2 homolog-1 (SIRT1) and
Wnt/β-catenin, and sonic hedgehog was examined by western blotting. In the LPS-induced HT22 cells, hyperoside promotes
cell survival; alleviates the level of IL-1β, IL-6, IL-8, TNF-α, ROS, MDA, Bax, and caspase-3; and increases the expression of
CAT, SOD, GSH, Bcl-2, BDNF, TrkB, and NGF. In addition, hyperoside upregulated the expression of SIRT1. Further
mechanistic investigation showed that hyperoside alleviated LPS-induced inflammation, oxidative stress, and apoptosis by
upregulating SIRT1 to activate Wnt/β-catenin and sonic hedgehog pathways. Taken together, our data suggested that
hyperoside acts as a protector in neuroinflammation.

1. Introduction

Neuroinflammation is a chronic inflammation of brain tis-
sue, which plays an important role in the pathogenesis and
progression of altered neurodevelopment, sensorineural
hearing loss, and certain neurodegenerative diseases [1–5].
In the early stages of the central auditory pathway, noise-
induced hearing loss and conductive hearing loss are related

to neuroinflammation [6]. In addition, neuroinflammation
contributes to neuronal death and neurological deterioration
by increasing the production of proinflammatory factors and
oxidative stress [7]. Numerous studies have shown that hip-
pocampal neurons are susceptible to neuroinflammatory
and cause neurological complications [8]. However, there
are still no effective agents or methods to restore and prevent
neuronal damage caused by neuroinflammation. Thus, the
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identification of effective inflammatory protective candidate
agents is crucial.

Hyperoside (quercetin3-O-β-D-galactoside) is an active
compound isolated from Hypericum plants. It has antioxidant
and anti-inflammatory activities, decreasing calcium overload
and inhibiting apoptosis [9, 10]. Previous studies have con-
firmed that hyperoside effectively prevents neurological compli-
cations caused by neuroinflammation. In the hyperglycemia-
induced oxidative stress and inflammation acute diabetes
model, the administration of hyperoside prevented cognitive
dysfunction, neuroinflammation, and oxidative stress caused
byDM through the TNF-α/NF-κB/caspase-3 signaling pathway
[11]. In diseases such as Parkinson’s disease, hyperoside acts as
a protective agent by attenuating LPS-induced activation of
microglia [12]. So far, there are few studies on the protective
effect of hyperoside on neuroinflammation, and themechanism
has not been fully elucidated.

Lipopolysaccharide (LPS) is widely used to activate the
innate immune system. Previous studies have shown that
LPS is usually used to prepare neuroinflammation models
induced by inflammatory response [13, 14]. In this study,
we exposed HT22 cells to LPS to mimic a cellular model of
neuroinflammation. Simultaneously, the protective effect of
hyperoside on neuroinflammation and its possible molecular
mechanism were studied through this model. We found that
hyperoside protects HT22 cells from LPS-induced inflamma-
tion; oxidative stress and apoptosis are closely related to
SIRT1 levels. Further analysis showed that hyperoside allevi-
ated LPS-induced inflammation, oxidative stress, and apo-
ptosis by upregulating SIRT1 to activate Wnt/β-catenin and
sonic hedgehog pathways.

2. Materials and Methods

2.1. Reagents and Drugs. LPS, hyperoside, and 3-(4,5-
dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide
(MTT) were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Dulbecco’s modified Eagle medium containing 10%
fetal bovine serum (FBS) was purchased from Gibco (Carls-
bad, USA). 100U/ml penicillin and 100mg/ml streptomycin
were purchased from Sigma-Aldrich (St. Louis, MO, USA).
LiCl and sonic hedgehog agonist SAg were purchased from
Merck (San Diego, CA, USA). Primary antibodies against
Bcl-2, Bax, caspase-3, BDNF, NGF, SIRT1, Wnt1, β-catenin,
Shh, Patch, and GAPDH and secondary antibodies were all
purchased from Cell Signaling (Boston, MA, USA).

2.2. Cell Culture and Treatments. The HT22 murine neuronal
cell line was purchased from Kunming Cell Bank of the Chi-
nese Academy of Sciences (Kunming, China). HT22 cells
were seeded at 2 × 104 cells/well in a 6-well plate and cultured
in the DMEM with 10% fetal bovine serum, 100U/ml peni-
cillin, and 100μg/ml streptomycin at 37°C in a 5% CO2
humidified incubator. When HT22 reached 70% confluency
after 24 h, cell transfection pretreated with different concen-
trations of hyperoside and LPS (1μg/ml) was performed.

2.3. Cell Viability. Cell viability was determined by MTT
assay. Briefly, the HT22 cells seeded into 24-well plates at a

density of 2 × 104 cells/ml for 24 h. Cells were starved over-
night and then pretreated with different concentrations of
hyperoside for 24 h followed by incubation with LPS
(1μg/ml) for another 24h. The medium was refreshed
and incubated with 50μl of MTT (5mg/ml prepared in
phosphate-buffered saline) for 4h at 37°C. Next, the solution
was removed and added DMSO to plates. The absorbance at
570nm was measured using a plate reader.

2.4. Western Blotting. RIPA buffer added to HT22 cells (Invi-
trogen; USA) to collect the total protein; then the protein
concentrations were determined assessed using the BCA
method (Invitrogen, USA). The protein samples were mixed
with a 5x loading buffer and denatured at the boil. The pro-
teins were separated by 15% SDS-PAGE and transferred onto
polyvinylidene fluoride membranes. Next, the membranes
were incubated with primary antibodies (Bcl-2, Bax, cas-
pase-3, BDNF, NGF, SIRT1, Wnt1, β-catenin, Shh, Patch,
and GAPDH) at 4°C overnight. Then, the next day, the mem-
branes were washed with PBS and incubated with secondary
antibodies for 1 h. Finally, the protein bands were measured
using the ImageJ software. The data were collected from at
least three independent experiments.

2.5. qRT-PCR. Total RNA of HT22 cells was isolated using
the TRIzol RNA Extraction Kit (Invitrogen, Grand Island,
NY, USA), and the isolated total RNA was reverse-
transcribed to cDNA using a reverse transcription kit
(Takara, Kyoto, Japan). Next, SYBR Premix Ex Taq II
(Takara, Kyoto, Japan) was used to perform qRT-PCR ampli-
fication. The IL-1β, IL-6, and TNF-α amplification primers
were as follows: IL-1β, 5′-GATGGTCGCATTAGCTCC-3′
and 5′-GGCTGTAGCTGTAGCGTC-3′; IL-6, 5′-ATTG
CGGCGGCTGACGCGTAG-3′ and 5′-GTCTGTTGCGC
GAGCTGGTA-3′; IL-8, 5′-GTCGAGCTGCCGCGTAGCG
T-3′ and 5′-CGCGATGCGTGCAGC-3′; and TNF-α, 5′
-CGTCAGCCGATTTGCTATCT-3′ and 5′-CGGACTCCG
CAAAGTCTAAG-3′. The relative expression of mRNA
was analyzed using the 2-ΔΔCt method.

2.6. SOD, GSH, and MDA Assay. We measured oxygen spe-
cies (ROS), catalase (CAT), superoxide dismutase (SOD),
glutathione (GSH), and malondialdehyde (MDA) levels
activity using the corresponding assay kits (Nanjing Jian-
cheng Bio Company, China).

2.7. Flow Cytometry. Flow cytometry assay was used to mea-
sure the cell apoptosis rate according to a previous report
[15]. HT22 cells in each group were harvested and resus-
pended. The apoptotic cells were double-labeled with
annexin V-FITC and PI using an annexin V-FITC/PI apo-
ptosis detection kit (Beyotime Biotechnology, China) for 30
min at room temperature in the dark. Then, the fluorescence
intensity of the cells was quantified by flow cytometry.

2.8. Statistical Analysis. In this study, the difference between
two groups was compared by using a t-test, and that among
groups was analyzed by one-way analysis of variance
(ANOVA). All data were presented as the mean values ±
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Figure 1: Hyperoside alleviated apoptosis and inflammation in the LPS-induced HT22 cells. HT22 cell viability was measured by the MTT
assay. Cell viability was observed by a microscope (100x) (a, b). The expression of Bcl-2, Bax, and caspase-3 in HT22 cells was measured by
western blotting (c). The HT22 cell apoptosis rate was measured by flow cytometry assay (d). The levels of IL-1β, IL-6, IL-8, and TNF-α
mRNA in HT22 cells were measured by qRT-PCR (e); ∗ was considered significant compared to control (∗P < 0:05); # was considered
significant compared to LPS (#P < 0:05).
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standard deviation (SD). Statistical analyses were performed
by GraphPad Prism 7.0 software. P < 0:05 was considered
to indicate a statistically significant difference.

3. Results

3.1. Hyperoside Alleviated Apoptosis and Inflammation in
the LPS-Induced HT22 Cells. The viability of HT22 cells
was detected using the MTT assay. The result showed that
hyperoside had little effect on HT22 cell viability
(Figure 1(a)). Compared with untreated cell, the treatment
of LPS (1μg/ml) significantly reduced HT22 cell viability
(Figure 1(b)). Based on the MTT results, we choose 20μM
hyperoside to evaluate the protective effect on HT22 cells.
The apoptotic protein expression of HT22 cells was detected
using the western blotting; the results showed that treatment
with 20μM hyperoside significantly enhanced the antiapop-
totic Bcl-2 expression and decreased the proapoptotic Bax
and caspase-3 expression (Figure 1(c)). Simultaneously, 20
μM hyperoside treatment significantly inhibited LPS-
induced apoptosis of HT22 cells (Figure 1(d)). Likewise,
treatment with 20μM hyperoside suppressed LPS-induced
production of IL-1β, IL-6, IL-8, and TNF-α (Figure 1(e)).
These results suggested that hyperoside alleviated apoptosis
and inflammation in the LPS-induced HT22 cells.

3.2. Hyperoside Alleviated Oxidative Stress and Reduction of
Neurotrophic Factor in the LPS-Induced HT22 Cells. The oxi-
dative stress of HT22 cells increased, and the production of
neurotrophic factors decreased after LPS treatment. Next,
we studied the effect of hyperoside on oxidative stress and
neurotrophic factors in LPS-induced HT22 cells. The results
showed that treatment with 20μM hyperoside significantly
increased the levels of SOD, GSH, CAT, and neurotrophic
factors BDNF, TrkB, NGF and decreased the levels of ROS
and MDA (Figures 2(a) and 2(b)). These results suggested
that hyperoside alleviated LPS-induced oxidative stress and
reduction of neurotrophic factor in HT22 cells.

3.3. Hyperoside Inhibits LPS-Induced HT22 Cell Apoptosis
and Inflammation through SIRT1. SIRT1 alleviated nerve
damage; to find out whether hyperoside could ameliorate
apoptosis and inflammation in the LPS-induced by acting
on SIRT1, SITR1 inhibitors (nicotinamide (NAM)) were
used to treat cells. Western blotting showed that SITR1
expression decreased in LPS-induced cells; simultaneously,
compared with LPS induction, hyperoside treatment upregu-
lated the expression level of SITR1. In addition, NAM treat-
ment decreased the expression of SIRT1 in HT22 cells
compared with the treatment of cells with LPS+hyperoside
treatment (Figure 3(a)). Likewise, NAM treatment decreased
the expression of Bcl-2 and enhanced the expression of Bax
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Figure 2: Hyperoside alleviated oxidative stress and reduction of neurotrophic factor in the LPS-induced HT22 cells. The levels of SOD, GSH,
CAT, ROS, and MDA were measured by corresponding assay kits (a). The expression of BDNF, TrkB, and NGF in HT22 cells was measured by
western blotting (b). ∗ was considered significant compared to control (∗P < 0:05); # was considered significant compared to LPS (#P < 0:05).
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and caspase-3 in HT22 cells compared with the treatment of
cells with LPS+hyperoside treatment (Figure 3(b)). Simulta-
neously, NAM treatment significantly increased apoptosis

of HT22 cells (Figure 3(c)). In addition, NAM treatment
increased the expression of IL-1β, IL-6, IL-8, and TNF-α,
compared with the treatment of cells with LPS+hyperoside
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Figure 3: Hyperoside inhibits LPS-induced HT22 cell apoptosis and inflammation through SIRT1. The expression of SIRT cells was
measured by western blotting (a). The expression of Bcl-2, Bax, and caspase-3 in HT22 cells was measured by western blotting (b). The
HT22 cell apoptosis rate was measured by flow cytometry assay (c). The level of IL-1β, IL-6, IL-8, and TNF-α mRNA in HT22 cells was
measured by qRT-PCR (d). ∗ was considered significant compared to control (∗P < 0:05); # was considered significant compared to LPS
(#P < 0:05); ▽ was considered significant compared to LPS+HYP (▽P < 0:05).
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treatment (Figure 3(d)). These results indicated that hypero-
side inhibits LPS-induced HT22 cell apoptosis and inflam-
mation by upregulating SIRT1.

3.4. Hyperoside Inhibits LPS-Induced HT22 Cell Oxidative
Stress and Reduction of Neurotrophic Factor through SIRT1.
We studied the effect of SIRT1 on oxidative stress and neuro-
trophic factors in LPS-induced HT22 cells. The results
showed that NAM treatment decreased the levels of SOD,
GSH, CAT, and neurotrophic factors BDNF and NGF and
increased the levels of ROS and MDA in HT22 cells, com-
pared with the treatment of cells with LPS+hyperoside treat-
ment (Figures 4(a) and 4(b)). These results indicated that
hyperoside inhibits oxidative stress and neurotrophic factor
reduction in LPS-induced HT22 cells by upregulating SIRT.

3.5. Hyperoside Activates Wnt/β-Catenin and Sonic Hedgehog
Pathways by Upregulating SIRT1. To clarify whether SIRT1
alleviates HT22 damage through theWnt/β-catenin and sonic
hedgehog pathways, we measured the expression levels of
signaling molecules in theWnt/β-catenin and sonic hedgehog
pathways. The results showed that LPS significantly decreased
the expression levels of Wnt1, β-catenin, Shh, and Patch;
hyperoside treatment significantly increased the expression
levels of Wnt1, β-catenin, Shh, and patch; in addition, NAM
treatment decreased the expression levels of Wnt1, β-catenin,
Shh, and patch. In addition, in HT22 cells, compared with
NAM-treated cells, Wnt/β-catenin agonist (LiCl) and sonic
hedgehog agonist (SAg) inhibited the inhibitory effect of
NAM (Figures 5(a) and 5(b)). These results indicated that
hyperoside activatesWnt/β-catenin and sonic hedgehog path-
ways by upregulating SIRT1.
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Figure 4: Hyperoside inhibits LPS-induced HT22 cell oxidative stress and reduction of neurotrophic factor through SIRT1. The level of SOD,
GSH, CAT, ROS, and MDA were measured by corresponding assay kits (a). The expression of BDNF, TrkB, and NGF in HT22 cells was
measured by western blotting (b). ∗ was considered significant compared to control (∗P < 0:05); # was considered significant compared to
LPS (#P < 0:05); ▽ was considered significant compared to LPS +HYP (▽P < 0:05).
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4. Discussion

Neuroinflammation is associated with the pathology of many
neurological complications, including hearing loss, AD, PD,
neuropathic pain, cognitive impairment, and cerebral ische-
mic injury [2, 16–24]. Identification of effective inflamma-
tory protective candidate agents is one of the hot spots in
the treatment of neurological complications [25]. Effective
medical treatment reduces neuroinflammation or prevents
neurodegeneration. Hyperoside has been reported to treat
neuroinflammation in neurological complications [12],
However, in recent years, there has been little research on
the mechanism by which hyperoside alleviates neuroinflam-
mation. In the present study, we explored the anti-
inflammatory effects of hyperoside on LPS-induced HT22
neuroinflammation in mouse neuronal cells. We demon-
strated that hyperoside attenuated apoptosis, inflammation,
and oxidative stress and simultaneously restored the levels
of neurotrophic factor proteins BDNF, TrkB, and NGF in
HT22 cells induced by LPS. In addition, we provide evidence
that STRI1 is highly expressed under the action of hyperoside
and activates Wnt/β-catenin and sonic hedgehog pathways.
In our study, hyperoside significantly inhibited the LPS-
induced apoptosis, inflammation, and oxidative stress pro-
duction by increased STRI and activating the Wnt/β-catenin
and sonic hedgehog pathways.

Neurons are the basic structural and functional units of the
nervous system [26]. Changes in the structure and function of
neurons in the brain will cause nerve damage [27]. HT22 cells
are a kind of mouse hippocampal neuronal cells, which are
widely used as an in vitro neuronal model associated with neu-
roinflammation and nerve injury in studies to identify effective
inflammatory protective candidate agents [28]. Previous stud-
ies have shown that systemic administration of LPS triggers
nerve injury and neuroinflammation and in the brain, which
induce neurodegeneration in mice [29, 30]. In the present
study, we used HT22 cells as a neuronal cell model to examine
the protective effect of hyperoside on LPS-activated neuroin-
flammation. We found that LPS inhibited HT22 activity, pro-
moted the level of proinflammatory cytokines (TNF-α, IL-1β,
IL-6, and IL-8) and apoptosis proteins Bax and xaspase-3,
and activated oxidative stress. However, pretreatment with
hyperoside significantly protected HT22 cells from LPS-
induced cell growth inhibition by inhibiting apoptosis; down-
regulating TNF-α, IL-1β, IL-6, IL-8, Bax, and caspase-3 levels;
and inhibiting oxidative stress. These results are consistent with
previous studies on hyperoside as antioxidants, anti-
inflammatory agents, and antiapoptotic agents.

Regulation that protects neuronal survival is essential in the
pathological process of alleviating neurological complications
caused by neuroinflammation [2, 31]. In the development of
neuronal, BDNF, as an important nerve growth factors, plays
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Figure 5: Hyperoside activates Wnt/β-catenin and sonic hedgehog pathways by upregulating SIRT1. The expression of Wnt1 and β-catenin
in HT22 cells was measured by western blotting (a). The expression of Shh and patch in HT22 cells was measured by western blotting (b). ∗
was considered significant compared to control (∗P < 0:05); # was considered significant compared to LPS (#P < 0:05); ▽ was considered
significant compared to LPS+HYP (▽P < 0:05); & was considered significant compared to LPS+HYP+LiCl or LPS+HYP+SAg (&P < 0:05).
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an important role in the growth, survival, and differentiation of
neurons [32]. BDNF enhances neuronal survival and protects
synaptic function by binding to tropomyosin receptor kinase
B (TrkB) [33, 34]. Simultaneously, BDNF promotes neuronal
outward growth and recombination of dendritic spines,
thereby improving neuronal connectivity [35]. NGF is a nerve
cell growth regulator with dual biological functions of neuron
nutrition and neurite outgrowth promotion. It has been proven
to protect neurons by promoting nerve fiber regeneration [36,
37]. Previous studies have shown that LPS-induced inflamma-
tion is the main cause of neuronal death in the hippocampus.
In this study, we found that the expression levels of BDNF,
TrkB, and NGF in HT22 cells induced by LPS were signifi-
cantly reduced and hyperoside treatment significantly restores
the expression levels of BDNF, TrkB, and NGF.

SIRT1 is the main regulator of neurogenesis and plays a
neuroprotective role in neurological diseases [38]. Previous
studies showed that activation of SIRT1 reversed nerve dam-
age in different neurological diseases by augmenting hippo-
campal neurogenesis [39]. Simultaneously, previous reports
also demonstrated that activation of SIRT1 reduces the level
of oxidative stress and the extent of inflammation [40]. In
addition, crucially, Li et al. found that hyperoside enhances
SIRT1 protein expression in a mechanism that protects
ECV-304 cells from tert-butyl hydrogen peroxide-induced
damage [41]. Thus, we speculate that hyperoside alleviating
neuroinflammation may be related to the level of SIRT1. In
this study, we found that hyperoside significantly increased
the expression of SIRT1 in cells, while the SIRT1 inhibitor
NAM effect attenuated the alleviating effect of hyperoside
on neuroinflammation of induced by LPS. Wnt/β-catenin
and sonic hedgehog pathways are confirmed to be regulated
by SIRT1; SIRT1-mediated deacetylation in the process of
c-myc degradation, which affected the stability of c-myc
and increased the transcriptional activity of β-catenin, acti-
vates Wnt signaling through β-catenin [42]; simultaneously,
SIRT1 agonist SRT1720 activated the sonic hedgehog signal-
ing [43]. In addition, we have also observed that Wnt/β-
catenin and sonic hedgehog signaling pathways are inhibited
in neuroinflammation [44, 45]. Simultaneously, Wnt/β-
catenin and sonic hedgehog signaling pathways are involved
in the development of neuroinflammation-mediated hearing
loss and other neurological diseases [46–55]. In this study, we
found that hyperoside activates the expression of Wnt1, β-
catenin, Shh, and patch by upregulating SIRT1.

In summary, the present study showed that hyperoside
alleviated apoptosis, inflammation, oxidative stress, and
reduction of neurotrophic factor in the LPS-induced HT22
cells. We further found that hyperoside alleviated nerve dam-
age by upregulating SIRT1 to activate Wnt/β-catenin and
sonic hedgehog signaling pathways. In conclusion, based on
our findings, the therapeutic effect of hyperoside on neuroin-
flammation is further clarified, providing possible treatment
basis for its clinical application for neuroinflammation.
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