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Abstract

Nucleotide sequence and taxonomy reference databases are critical resources for wide-
spread applications including marker-gene and metagenome sequencing for microbiome
analysis, diet metabarcoding, and environmental DNA (eDNA) surveys. Reproducibly gen-
erating, managing, using, and evaluating nucleotide sequence and taxonomy reference
databases creates a significant bottleneck for researchers aiming to generate custom
sequence databases. Furthermore, database composition drastically influences results,
and lack of standardization limits cross-study comparisons. To address these challenges,
we developed RESCRIPt, a Python 3 software package and QIIME 2 plugin for reproducible
generation and management of reference sequence taxonomy databases, including dedi-
cated functions that streamline creating databases from popular sources, and functions for
evaluating, comparing, and interactively exploring qualitative and quantitative characteris-
tics across reference databases. To highlight the breadth and capabilities of RESCRIPt, we
provide several examples for working with popular databases for microbiome profiling
(SILVA, Greengenes, NCBI-RefSeq, GTDB), eDNA and diet metabarcoding surveys
(BOLD, GenBank), as well as for genome comparison. We show that bigger is not always
better, and reference databases with standardized taxonomies and those that focus on type
strains have quantitative advantages, though may not be appropriate for all use cases. Most
databases appear to benefit from some curation (quality filtering), though sequence cluster-
ing appears detrimental to database quality. Finally, we demonstrate the breadth and exten-
sibility of RESCRIPt for reproducible workflows with a comparison of global hepatitis
genomes. RESCRIP1 provides tools to democratize the process of reference database
acquisition and management, enabling researchers to reproducibly and transparently create
reference materials for diverse research applications. RESCRIPt is released under a per-
missive BSD-3 license at https://github.com/bokulich-lab/RESCRIPH.
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Author summary

Generating and managing sequence and taxonomy reference data presents a bottleneck to
many researchers, whether they are generating custom databases or attempting to format
existing, curated reference databases for use with standard sequence analysis tools. Evalu-
ating database quality and choosing the “best” database can be an equally formidable chal-
lenge. We developed RESCRIPt to alleviate this bottleneck, supporting reproducible,
streamlined generation, curation, and evaluation of reference sequence databases.
RESCRIPt uses QIIME 2 artifact file formats, which store all processing steps as data prov-
enance within each file, allowing researchers to retrace the computational steps used to
generate any given file. We used RESCRIPt to benchmark several commonly used
marker-gene sequence databases for 16S rRNA genes, ITS, and COI sequences, demon-
strating both the utility of RESCRIPt to streamline use of these databases, but also to eval-
uate several qualitative and quantitative characteristics of each database. We show that
larger databases are not always best, and curation steps to reduce redundancy and filter
out noisy sequences may be beneficial for some applications. We anticipate that RESCRIPt
will streamline the use, management, and evaluation/selection of reference database mate-
rials for microbiomics, diet metabarcoding, eDNA, and other diverse applications.

This is a PLOS Computational Biology Software paper.

Introduction

Marker-gene amplicon and metagenome sequencing have become attractive methods for
characterizing microbial community composition and function [1,2] in human health [3-5]
and agriculture [6-8], as well as macroorganism diversity through diet metabarcoding studies
[9-11] and environmental DNA (eDNA) surveys [12-15]. Taxonomic classification is often a
primary goal in marker-gene and metagenome sequencing studies to identify the composition
of a mixed community, or to detect species of interest (e.g., pathogens or invasive species).
This is accomplished by comparing the observed sequences to a reference database consisting
of target marker-gene or genome sequences from known species. The selection of a reference
database can significantly impact both marker-gene and metagenome sequencing results
[16,17], and methods for assessing database quality and fitness for a given sample type or
hypothesis remain an undermet need.

Identification of Bacteria and Archaea is most commonly performed using the 16S rRNA
gene, due to its historical use as a phylogenetic marker [18,19] and the existence of curated ref-
erence databases [20,21]. The SILVA [20,22] rRNA gene database and Greengenes [21,23] 16S
rRNA gene database are commonly used for identifying Bacteria and Archaea, containing
curated taxonomies, sequences, and phylogenies. More recently, the Genome Taxonomy Data-
base (GTDB) was developed with the intent to provide a standardized bacterial and archaeal
taxonomy based on genome phylogeny [24,25], and provides 16S rRNA reference sequences.
NCBI-RefSeq also provides several targeted loci sequence databases from curated records,
including Internal Transcribed Spacer (ITS), and both the small and large sub-unit (SSU &
LSU) rRNA genes [26]. Non-16S genes are also attractive targets for bacterial and archaeal spe-
cies identification due to the degree of species resolution that they afford, but their application
is limited by the relative lack of curated reference materials [27-29].
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Fungal classification is most commonly performed using the ITS domain, the designated
fungal “barcode of life”, though the SSU and LSU rRNA genes are also common targets [30].
Both NCBI-RefSeq [26] and the UNITE database [31] provide curated ITS sequences from
fungi and other eukaryotes, as well as the RDP Warcup fungal ITS training set [32], which was
prepared from an earlier release of the UNITE+INSD database. Both SILVA [22] and RDP
[33] provide LSU databases for fungal sequence classification. NCBI RefSeq releases databases
for both fungal SSU and LSU [26].

Identification of other eukaryotes, including for diet metabarcoding, microbial eukaryote,
and eDNA surveys, is commonly accomplished using the mitochondrial cytochrome oxidase
subunit I (COI) gene for metazoa [34-36], 18S rRNA gene or other rRNA gene subunits [37],
ITS2 and chloroplast trul (UAA) intron [38-40] for plants, 12S rRNA for fish [41,42], and a
variety of other clade-specific marker genes. For some of these marker genes, curated reference
databases exist, such as BOLD for COI [34] and PLANITS for plant ITS2 [40], but for others
the process of generating custom reference databases poses a research bottleneck.

Taxonomic profiling studies rely on high-quality sequence taxonomy reference databases.
However, errors in public sequence databases are well documented [12,43,44] and can lead to
misclassification errors in downstream results [12]. Different reference databases can yield
widely different classification results for biological data, but standards are lacking to objec-
tively assess the quality of individual databases [45]. Revisions to taxonomic naming [46-51]
and the rapid pace at which new sequences and genomes are added to public databases mean
that curated reference releases may lag behind [52]. Additionally, issues with amplicon length
and sequence heterogeneity can limit the ability to identify species, especially from short
marker-gene sequences or metagenome fragments [53]. Hence, many researchers choose to
perform additional curation to focus on type strains [54], quality filtering [14,55], or construct
environment-specific databases that are constrained to contain species found within a given
environment [54,56-61]. Database customization is also often performed to add new acces-
sions that are absent in some database releases to increase database coverage [52], or to incor-
porate outgroups [14]. However, generating such databases can be technically challenging,
subjective, and difficult to document, leading to issues with transparency and reproducibility,
and limiting the ability of many researchers to acquire appropriate reference materials for
their studies, or leading to reliance on proprietary resources and services (limiting scientific
transparency and increasing research costs). Sequence curation is a significant hurdle in this
process, as taxonomic misannotations, sequence errors, and other errors in existing (and
inchoate) reference sequence databases reduce the accuracy of taxonomic classifiers that rely
on these data [43,44,62-64]. For example, inconsistent genus-level annotation of identical
sequences labeled as either ‘Escherichia’, ‘Shigella’, or even as the combined group ‘Escherichia-
Shigella’ [43] can result in queried sequences being incorrectly classified with their last com-
mon ancestor (LCA) family label “unclassified Enterobacteriaceae” instead of a more informa-
tive genus label.

The need for scientific results to be reproducible, replicable, and transparent has taken on
new urgency in the digital age [65]. On the one hand, increasing experimental and analytical
complexity pose mounting challenges to effective documentation and sharing of methodologi-
cal procedures and results [65-68]. On the other hand, digital tools present opportunities to
address these challenges, and various reporting standards have been published to guide
researchers in reporting and publishing new types of data, software, and other resources [69-
71]. Following guidelines such as these is important for reporting, but also for standardization
of methods during data reuse and metaanalysis. Given the fundamental importance of refer-
ence databases to reporting results from marker-gene and metagenome experiments, it is
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critical that principles such as these be followed by researchers when they acquire, modify, and
use reference data.

To address the need for reproducible bioinformatics workflows to streamline database gen-
eration and curation, we developed RESCRIPt (REference Sequence annotation and CuRatlon
Pipeline; https://github.com/bokulich-lab/RESCRIPt). Below we describe the RESCRIPt soft-
ware package, and demonstrate its use via a series of benchmarks to evaluate sequence and tax-
onomy information in several widely used reference databases.

Results

Contents

1. Software Description
2. Comparison of 16S rRNA Gene Sequence Databases
3. Effects of processing steps on the SILVA 16S rRNA gene database

4. Effect of Clustering on Sequence and Taxonomic Information: lessons from the Greengenes
16S rRNA gene database

5. Reference Curation Improves Taxonomic Classification: lessons from the UNITE Fungal
ITS database

6. Clustering and primer-region trimming effects on a BOLD COI gene database
7. Comparison of metazoan COI gene sequences in BOLD and GenBank

8. Fetching Reference Genomes for Classification

Software description

RESCRIPt (https://github.com/bokulich-lab/RESCRIPt) is a Python 3 package for retrieving,
filtering, and evaluating nucleotide sequence and taxonomic data (Fig 1). It was motivated by
the need for scientists to transparently and reproducibly generate and curate reference
sequence databases, to facilitate interoperability and comparison downstream. RESCRIPt was
implemented as a QIIME 2 [72] plugin, in order to incorporate the integrated data provenance
and multiple user interfaces of QIIME 2. Hence all processing steps used to generate a database
are recorded in provenance that is stored both in the database files as well as in all downstream
results, enhancing scientific transparency, reproducibility of results, and replication of the
database (and the processing steps used in its creation) by other researchers, following the
FAIR data principles to make data findable, accessible, interoperable and reusable [69].
RESCRIPt enables efficient and transparent construction of reference databases for any
amplicon targets for which source data exist, as well as for full genomes from NCBI. RESCRIPt
currently supports a variety of methods for acquiring, formatting, and evaluating nucleotide
sequence and taxonomy databases (Fig 1). These include methods for automated download of
sequences and taxonomy from SILVA (selecting marker gene and release version) and NCBI
GenBank (selection based on NCBI query or a list of accession numbers). Additional functions
allow traceable formatting (e.g., sequence manipulation, taxonomy parsing), filtering (e.g.,
automatic quality and length filtering), and modification of data (e.g., to merge taxonomies
and dereplicate or cluster sequence/taxonomy databases). Several functions allow evaluation
of information content in sequence and taxonomy databases, e.g., based on sequence and tax-
onomy label entropy and cross-validated taxonomic classification of sequences (to simulate
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Fig 1. Current RESCRIPt functionality for processing and curating reference sequence data. Arrows indicate suggested workflows. Dotted arrows and
edges indicate optional steps for customized workflows.

https://doi.org/10.1371/journal.pchi.1009581.g001

classification accuracy). Future development plans are discussed below (see Future Goals), and
further details on functionality are described in the Methods section. Complete usage details
and tutorials are available on the project’s source code repository (https://github.com/
bokulich-lab/RESCRIPt).

To demonstrate the diverse applications of RESCRIPt for sequence and taxonomy analysis,
we used RESCRIPt to benchmark several commonly used reference sequence databases,
including several popular databases of bacterial 16S rRNA genes, fungal ITS sequences, and
eukaryote COI genes that are commonly used for diet metabarcoding and eDNA studies.
These include side-by-side comparisons to evaluate relative information and performance
characteristics, and the impacts of various sequence curation steps on database characteristics.
An example tutorial is provided for the acquisition and construction of a 12S rRNA marker
gene reference database (S1 File). Finally, we demonstrate the application of RESCRIPt for
reproducible and extensible genomics analysis workflows via a comparison of hepatitis
genomes from several global sources.

Comparison of 16S rRNA gene sequence databases

Researchers investigating bacterial and archaeal community compositions using 16S rRNA
gene sequences are faced with myriad options for reference sequence databases. Those using
non-16S genes will be quick to remind them that having choices is a good problem to have—
but selecting the “best” reference materials for a specific task is still indeed a problem faced by
many researchers. Although the Greengenes database [21,23] is popular among the micro-
biome research community, the last release was in 2013 and much has changed in the world of
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microbial taxonomy in the interim. The SILVA database [22] has been a popular alternative,
boasting a regular release cycle, curated taxonomy and sequences, and a large database size.
More recently, the GTDB project [24] seeks to create a standardized bacterial and archaeal tax-
onomy based on genome phylogeny, making it an attractive database for some researchers.
Meanwhile, many other options exist, such as NCBI-RefSeq [26] for a curated set of type
strains and high-quality reference genomes. We conducted a benchmark of these four 16S
rRNA gene databases using RESCRIPt to compare various qualitative and quantitative charac-
teristics and performance metrics. This benchmark was performed using full-length 16S rRNA
gene sequences from each database, so the goal was to compare full-length sequence and tax-
onomy information, not to simulate performance for commonly used short-read sequencing
technologies.

RESCRIPt’s evaluate-seqs action was used to examine sequence length distributions (Fig
2A), the number of unique sequences (Fig 2B), and sequence and kmer entropy as measures of
both richness and evenness of unique sequences in these databases (Fig 2C). The evaluate-tax-
onomy action was used to examine the number of unique taxonomic labels (Fig 3A), taxo-
nomic entropy (Fig 3B), and the number of unclassified labels at each taxonomic rank (Fig
3C). The evaluate-fit-classifier and evaluate-classifications actions were used to compare opti-
mal classification performance for each classifier (Fig 3D).

Results illustrate varying length distributions across databases, reflecting different propor-
tions of Bacteria and Archaea in each, as well as different methods used to identify start and
end sites in each of these databases. Notably, some outliers (as short as 200 nt and as long as
3983 nt) were initially observed in SILVA, NCBI, and GTDB, presumably representing partial
and untrimmed 16S rRNA gene sequences. These were removed prior to downstream evalua-
tion to avoid biasing performance metrics (see Methods section). Researchers should be aware
of length aberrations in these and other reference databases, and can use the evaluate-seqs
action in RESCRIPt to check length distributions in their own databases before proceeding.

A. Sequence Length Distribution
= 00151
.o
S 0.010 4
Q
Q
Q- 0.005 4
0.000 - . . — . ‘
1000 1100 1200 1300 1100 1500 1600 1700
Length (nt)
B . C.
N Unique Sequences Entropy
400,0001 13
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» 300,000 12 =m  greengenes_99
c
g 200,000 T 1 wun GTDB
Y NCBI-RefSeq
100,000 10
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silva_99  greengenes_ 99  GTDB NCBI-RefSeq Sequence 32mer 16mer 8mer

Fig 2. Comparison of sequence information from SILVA, Greengenes, GTDB, and NCBI-RefSeq 16S rRNA gene databases. A, Sequence length distributions (after
removing outliers, see materials and methods). B, Number of unique sequences in each database. C, Entropy of full-length sequences and different kmer lengths in each
database.

https://doi.org/10.1371/journal.pcbi.1009581.9002
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https://doi.org/10.1371/journal.pchi.1009581.g003

The SILVA database exhibited the highest number of unique sequences (Fig 2B) and species
labels among the databases compared here (Fig 3A). However, ~72% of species labels present
in SILVA consist of unidentified, uncultured, or unknown organisms, and ~2.5% (excluding
chloroplast and mitochondrial sequences) do not match the genus label, leaving only ~25% of
sequences with meaningful species labels. Notably, this is because SILVA only curates the tax-
onomy to genus level but provides the “organism name” given to the sequence in the NCBI
GenBank source data, and hence genus-species mismatches can occur. Furthermore, GTDB
and Greengenes display similar levels of kmer entropy (Fig 2C), suggesting that these databases
cover a similar sequence space and taxonomic diversity to SILVA. GTDB actually has more
species-level annotations than SILVA (once unidentified and mismatched species labels are
discounted), and higher species label entropy (Fig 3B), indicating less redundancy. The lack of
species-rank curation in SILVA leads to poor optimal classification performance at the species
level (Fig 3D), yielding a species-level F-measure of 0.73, far below the other 16S rRNA gene
databases. By comparison, classification accuracy at the genus level is much higher for SILVA,
consistent with the level of curation performed (Fig 3D).

NCBI-RefSeq and GTDB share the highest species-level taxonomic entropy, and the most
unique species, after discounting the unknown/unmatched labels in SILVA (Fig 3A and 3B).
However, NCBI-RefSeq has fewer unique sequences and lower sequence entropy (Fig 2B and
2C), indicating that a lower amount of sequence space is covered, most likely because of the
stringent quality control and assessment process employed. Thus, NCBI-RefSeq exhibits high
quality reference sequences, but may have limited coverage for characterization of microbial
communities in some environments, e.g., where a large number of unknown species may be
encountered. In well characterized environments, this database is likely to offer competitive
advantages in terms of its curated taxonomy, size, and extensive use of type strains. NCBI-Ref-
Seq exhibited the highest optimal classification accuracy (F = 0.94, Fig 3D), though this is likely
aided by the smaller database size and use of many genomes sequenced from type material,
reducing taxonomic ambiguities that are likely to occur in nature and are reflected in the other
databases. GTDB exhibited a slightly lower optimal classification accuracy (F = 0.92), indicat-
ing very high optimal accuracy in spite of its size, suggesting that the curation efforts and taxo-
nomic re-classification strategies employed by the GTDB curators lead to a very well resolved
(if currently not officially recognized) taxonomic labeling scheme that closely aligns with the
16S rRNA gene sequence space.
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https://doi.org/10.1371/journal.pcbi.1009581.9004

Greengenes 13_8 hosts a large number of unique sequences (Fig 2B) and similar sequence
entropy to SILVA (Fig 2C), but yields many sequences that are unannotated at the genus
(54%) and species (90%) levels. This indicates that a large number of sequences in this database
are genetically similar (> 98%) but taxonomically distinct, yielding ambiguous labels. This
highlights practical disadvantages with using this database, as 99% OTU clustering (the highest
% similarity provided in the 13_8 release) limits sequence information that could be used to
differentiate groups (e.g., dereplication to 100% OTUs would preserve this sequence diversity).
In practice, the use of non-sequence information (e.g., ecological distribution) can be lever-
aged to guide taxonomic classification [56] and hence preserving this information can be
advantageous in some use cases. RESCRIPt provides users with a variety of taxonomy derepli-
cation options to put such decisions in the hands of individual researchers, and to make data
processing pipelines transparent and reproducible so that others can reconstitute and adjust
processing decisions as desired.

To provide context to database size comparisons, we evaluated taxonomic overlap among
these databases, extending an earlier comparison of SILVA, Greengenes, NCBI (not RefSeq),
and other taxonomies by Balvo¢iaté and Huson [73]. Fig 4 illustrates the proportion of labels
shared at each taxonomic rank, between each pair, trio, and across all databases, relative to the
total number of taxonomic labels in each database. Labels that were a prefix of another label
were collapsed into that label to avoid undercounting the number of shared labels between
databases, and to account for subclade labels used by GTDB (for example, “Lactobacillus_A”
would be considered the same label as “Lactobacillus”).
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We found that very low proportions of taxonomic labels were shared between and among
databases at all ranks below domain. In general, select pairs shared more labels than trios, and
~30-50% (of the total number of labels in each of those databases) of species labels were shared
by SILVA, GTDB, and NCBI-RefSeq (Fig 4). Proportions increased at the genus rank, and for
some groups at the species rank, reflecting differences in taxonomic labels (often due to taxo-
nomic reclassifications related to database age) at the intermediate ranks. Taxonomic reclassi-
fications have rendered many of the older taxonomies obsolete, most notably (and
unsurprisingly) the Greengenes 2013 release taxonomy, as reflected in the low proportions
shared with all other databases. Proposed taxonomic reclassifications in GTDB are unique to
that database, leading to reduced sharing with all other databases. SILVA exhibited relatively
low proportions of genus and species labels shared with other databases, but this is unsurpris-
ing given that SILVA does not curate species labels (as discussed above). Considering these
limitations, these findings indicate that a reasonably high proportion of genus and species
labels are shared across databases, and instances of non-sharing reflect taxonomic reclassifica-
tions more often than lack of coverage. Greengenes exhibited notably poorer taxonomic cover-
age, taking into account both the paucity of unique labels (Fig 3A), low taxonomic entropy
(Fig 3B), the markedly lower level of sharing with all other databases (compared to other pairs
of databases), and the high level of coverage of Greengenes taxonomies by the other databases
(Fig 4).

Using NCBI-RefSeq as the standard for coverage of official taxonomic names (as the only
taxonomy in this comparison that is comprised mostly of genomes sequenced from type mate-
rial), SILVA exhibits the best coverage at class through species rank (Fig 4), but GTDB exhibits
only slightly lower coverage at those ranks (most likely because proposed reclassifications
reduce the degree of taxonomic sharing), hence both exhibit similar levels of coverage. By
comparison, only a small proportion of GTDB and SILVA species labels are shared with other
databases, reflecting both taxonomic inconsistencies (as described above) as well as the inclu-
sion of uncultured and proposed taxa. Taken together, these findings reinforce the suggestion
that NCBI-RefSeq may contain the best coverage of accepted type strains, making it best suited
to some applications, although the greater inclusion of non-type and uncultured species in
SILVA and GTDB may make these databases more suitable for environmental survey applica-
tions and other studies containing many uncultured organisms.

To evaluate practical implications of reference database selection on 16S rRNA gene
sequence classification of biological data, we compared classification of the Earth Microbiome
Project (EMP) data [74] using SILVA, Greengenes, GTDB, and NCBI-RefSeq reference data-
bases (S1 Text). Results demonstrate that classification with SILVA yielded the highest number
(SIA Fig) and entropy (S1B Fig) of taxonomic labels at genus and species ranks, and the lowest
proportion of unclassified sequences at order through species ranks (S1C Fig). Viewing taxo-
nomic classification results at family level indicates that the different databases do not appre-
ciably alter predicted abundances of different groups, but differences in taxonomic labeling
and taxonomic coverage between databases lead to some notable differences, and lower depth
of classification with Greengenes (Fig 5). Classification of real biological data is important for
contextualizing methodological benchmarking results with “real world” performance, but the
true result often cannot be known a priori [75]. Hence, we use the EMP data here to test per-
formance for classification of biological sequences, but cannot use these results to compare
accuracy between the different reference databases. For example, the higher proportion of spe-
cies-level classifications with SILVA is encouraging, but does not necessarily indicate that this
is a better result—indeed, the simulated classification results (Fig 3D) suggest that the species-
level classifications achieved with SILVA have lower accuracy than the other databases.
Accordingly, classification of true biological data should be interpreted with caution.
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Fig 5. Average family-level taxonomic composition of EMP empo 3 types. Family-level classification as predicted by SILVA, Greengenes, GTDB, or NCBI-RefSeqs
classifiers. Samples were grouped by EMPO 3 type to look at average family-level taxonomic composition of each sample type. Only taxa detected at a minimum of 10%
relative frequency in at least one group are shown.

httpsz//doi.org/10.1371/journal.pcbi. 1009581005

Effects of processing steps on the SILVA 16S rRNA gene database

RESCRIPt contains multiple functions that were designed specifically for handling data from
SILVA, due to the popularity of SILVA as a reference for LSU and SSU rRNA gene sequences
(Fig 1). We tested the impact of several of these steps on the SILVA 138 release 16S rRNA
sequences to inform best practices for processing these data with RESCRIPt. Removing abnor-
mally short sequences (fragments) (Fig 6A) and sequences with excessive ambiguity and
homopolymer content had the beneficial effect of reducing database size (Fig 6B) without sub-
stantial loss of sequence entropy (Fig 6C). Ambiguously labeled taxa (e.g., those unidentified at
genus or species ranks) may create “taxonomic noise” but clearly represent unique genotypes
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Fig 6. Comparison of sequence information across each successive sequence quality filtering step as applied to the SILVA 16S rRNA gene database. A, Sequence
length distributions. B, Number of unique sequences. C, Entropy of full-length sequences and different kmer lengths. Note: The subsequent sequence length filtering did
not have any effect on the data as the NR99 reference database is already pre-trimmed as specified above. Base: the complete NR99 SILVA database, Culled: after
sequences with either 8 or more homopolymers and/or 5 ambiguous bases removed, LengFiltByTax: sequence length filtering of the data based on taxonomy, i.e.
removal of archaeal and bacterial sequences less than 900 and 1200 bp in length, respectively. DereplicateUniq: Taxonomy and Sequence dereplication using “uniq”
mode (i.e. any identical sequences with differing taxonomy will not be merged), NoAmbigLabels: any sequence data associated with ambiguous labels (typically at lower
taxonomic ranks) are removed from the data set.

https://doi.org/10.1371/journal.pcbi.1009581.9g006

and should not be removed (Fig 6B). Whereas the strict removal of any sequence containing
ambiguous taxonomic annotations (typically at the lower ranks) resulted in the removal of
305,636 sequences. This had a noticeable effect on sequence entropy.

The evaluate-taxonomy action was also used to examine the number of unique taxonomic
labels (Fig 7A), taxonomic entropy (Fig 7B). Optimal classification performance for each clas-
sifier without cross-validation (Fig 7C) as was performed earlier (Fig 7D), and with cross-vali-
dation (Fig 7D). Aside from the strict removal of ambiguous taxonomic annotations, quality
filtering also had minimal impact on classifier performance and entropy. Quality filtering has
a similarly subtle effect on taxonomic classification of biological data (S2 Fig).
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Fig 7. Comparison of taxonomic information and simulated classification accuracy across several successive steps of quality filtering of the NR99 16S rRNA gene
databases. A, Number of unique taxonomic labels; B, Taxonomic entropy; C, optimal classification accuracy from the evaluate-fit-classifier action (as F-Measure)
without cross-validation (simulating best possible classification accuracy when the true label is known but classification accuracy may be confounded by other similar
hits in the database); D, optimal classification accuracy from the evaluate-cross-validate action (as F-Measure), which simulates pseudo-realistic classification task
whereby a set of query sequences may not have an exact match in the reference database. See Fig 6 Legend for label descriptions. Rank labels on x-axis: D = domain,

P = phylum, C = class, O = order, F = family, G = genus, S = species.

https://doi.org/10.1371/journal.pcbi.1009581.g007
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Effect of clustering on sequence and taxonomic information: Lessons from
the Greengenes 16S rRNA gene database

Clustering sequences into OTUs has long been practiced for dereplicating and reducing errors
in marker-gene sequencing experiments [76]. In times of yore, clustering was also often
applied to reference sequence databases for marker-gene sequencing, to reduce complexity
and thus computational requirements. We have previously shown that clustering COI diet
metabarcoding databases at 97% vs. 99% is detrimental to database information [77], but the
effects of clustering on database quality more generally are lacking. To benchmark general
effects of OTU clustering on database quality, and for 16S rRNA gene sequencing specifically,
we used RESCRIPt to evaluate multiple database quality characteristics of the Greengenes
database (13_8 release) [21,23] clustered at multiple OTU % similarity thresholds. The Green-
genes public release data contain pre-clustered sequence and taxonomy files (with LCA con-
sensus taxonomies assigned to OTU clusters), which were evaluated in this benchmark using
the RESCRIPt actions evaluate-taxonomy, evaluate-fit-classifier, evaluate-cross-validate, and
evaluate-classifications.

The loss of information as a result of clustering sequences has been highlighted by others
for bacterial SSU [44,78] and metazoan COI [77] query sequences. We build on their work by
demonstrating similar issues with the use of OTU clustering for reducing complexity in
marker-gene sequence reference databases. Decreasing % similarity threshold rapidly leads to
information loss; at the genus and species ranks the number of unique taxonomic labels rap-
idly declines (Fig 8A), as sequences (and genera and species) are collapsed into larger OTUs

A B C
5000 A 6 /_"" 0.4
a "
©n 4000 4 o @ 0.3
[9] ] a ¥
G w4 A 3
8 3000 1 o -
g £ 2 0.2 1
g £
2000 2 /_/_ :
2 A 9}
D X
|_ . -
1000 P 0.1
0 _ //_- 0 | 00 1P
D P c o F G S D P C 0 F G S D P c o F G S
D E
1.00q = 1.0 A Dataset
XN\ — gg_64
0.98 _
0.8 - - 99_79
v 0.96 A o — g9g_88
3 ~—__ |2 061 9991
© 0.94 © L 04
2 2 99_
L 0.92 4 \ L og.44 gg_97
— g9_99
0.90
0.2 1
0.88

C o F G
Level

O
o
(@]
O
m
(9}
wn
o
o
wn -

Fig 8. Taxonomic information (A-C) and classification accuracy (D-E) of Greengenes 16S rRNA gene database clustered at different similarity thresholds. Subpanels
show taxonomic/classification characteristics at each taxonomic level: A, Number of unique taxonomic labels; B, Taxonomic entropy; C, number of taxa that terminate
at that level; D, optimal classification accuracy (as F-Measure) without cross-validation (simulating best possible classification accuracy when the true label is known but
classification accuracy may be confounded by other similar hits in the database); E, classification accuracy (F-Measure) with cross-validation (simulating realistic
classification tasks when the correct label is unknown). Rank labels on x-axis: D = domain, P = phylum, C = class, O = order, F = family, G = genus, S = species.

https://doi.org/10.1371/journal.pcbi.1009581.9008

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1009581 November 8, 2021 12/37


https://doi.org/10.1371/journal.pcbi.1009581.g008
https://doi.org/10.1371/journal.pcbi.1009581

PLOS COMPUTATIONAL BIOLOGY Reproducible reference database management

with less taxonomic resolution. Taxonomic entropy (Shannon’s entropy [79] applied to vectors
of taxonomic label counts), which measures both the richness and evenness of taxonomic
labels, registers a gradual decline as OTU % similarity is decreased from 99% to 88% at both
genus and species levels, and rapidly declines thereafter (Fig 8B). This indicates that, although
unique genus and species labels are being collapsed into larger family-level OTUs, OTU clus-
tering is also initially reducing label redundancy, leading to increased evenness. The propor-
tion of terminal labels (i.e., the rank at which taxonomic annotation terminates) illustrates
how the rank assignment landscape changes: a higher proportion of genus- and species-level
annotations in the 99% OTU sequences gives way to a higher proportion of class-, order-, and
family-level terminal annotations as the % similarity threshold is decreased (Fig 8C). Contrary
to this trend, “best-case” classification accuracy (with evaluate-fit-classifier, which trains and
tests a naive Bayes taxonomy classifier on the same input data without cross-validation) is seen
to increase from F = 0.88 to F = 1.0 as databases are clustered (Fig 8D), but this phenomenon
reflects the loss of information with increased OTU clustering, suggesting that the higher
apparent accuracy is actually an indicator of lost database coverage. Cross-validated classifica-
tion accuracy (with evaluate-cross-validate) gives a more realistic demonstration of perfor-
mance, demonstrating that classification accuracy actually declines as OTU clustering %
increases, as database coverage decreases making the classifier less effective (Fig 8E). Taken
together, these results suggest that even very modest OTU % clustering thresholds are likely to
negatively affect database information content as well as classification accuracy. Although a
small degree of dereplication and clustering may be beneficial for reducing sequence and taxo-
nomic redundancy, we recommend against using OTU clustering < 99% similarity for any
marker-gene sequence databases.

Reference curation improves taxonomic classification: Lessons from the
UNITE Fungal ITS database

Next, we used RESCRIPt to benchmark the effects of various sequence processing steps on
fungal ITS sequences, and in particular the impacts of database clustering and representation
on taxonomic classification. Sequence reference databases are often subsetted by investigators
to focus on particular clades of interest or to perform additional curation of public datasets.
Some researchers have generated environment-specific databases, founded in the belief that
such databases increase taxonomic classification accuracy by removing sequences that are
genetically related but ecologically distinct from species found in a specific environment
[54,57-61], although this can elevate the risk of false-positive errors [80]. RESCRIPt contains
several methods to support and evaluate such filtering decisions, which then become embed-
ded in provenance to facilitate transparent and reproducible use of these databases. To demon-
strate this filtering capacity, and evaluate its effect on classification accuracy, we performed a
benchmark of the UNITE [31] ITS database. The most recent releases of UNITE contain dif-
ferent versions that we benchmark here: (1) different “species hypothesis” OTU clustering
thresholds (including a dynamically defined clustering threshold defined by manual curation
[31]); (2) release versions containing ITS sequences for all eukaryotes vs. only fungi; and (3)
the fungal database filtered (by RESCRIPt) to contain only sequences that are annotated at the
order level or below.

OTU clustering (97% vs. 99% vs. dynamic clustering) exhibited minimal impact on results,
though the 99% OTUs yielded the highest taxonomic information and classification accuracy
(Fig 9), corresponding to the more comprehensive clustering benchmark performed above
(Fig 8). As expected, the “all eukaryotes” version of UNITE contains more than twice as many
sequences as the fungi-only database (Fig 9A), though taxonomic entropy is slightly lower

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1009581 November 8, 2021 13/37


https://doi.org/10.1371/journal.pcbi.1009581

PLOS COMPUTATIONAL BIOLOGY Reproducible reference database management

A B C
60000 A 8 0.5
o .
50000 A 2 w
2 S 64 o 0.44
(V] -~ o
£ 40000 & 38
> 9 = 031
% 30000 A g 44 E
'S 20000 - 5 S 0.2
=) X 5 P
©
10000 [ 0.1
01 o 01 0.0 A S—
K P C (e} F G S K P C 0 F G S K P C (e} F G
D E
1.00 A1 1.0 A Dataset
— All Euks 97%
0.95 = All Euks 99%
© 0.90 v 087 —— All Euks Dynamic
= 3 = Fungi 97%
1%} %]
§ 0851 3 —— Fungi 99%
= = 0.6 1 ) )
L 0.80 A o - Fungi Dynamic
Fungi Order 97%
0.75 1 0.4 ‘ Fungi Order 99%
0.70 1 Fungi Order Dynamic
K P C o F G S K P C (0] F G S
Level
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processed.
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(Fig 9B), reflecting a greater proportion of non-fungal sequences that are not annotated at the
family, genus, and species ranks (Fig 9C). Taxonomic classification accuracy is lower in the
“all eukaryote” release version of the UNITE database, compared to fungal sequences alone
(Fig 9D and 9E). This indicates that removing non-target sequences from the database
improves taxonomic resolution; however, such practices (whether focusing on particular
clades or environment-specific species) is fraught with risks and should be used with caution.
If the non-target sequences can be detected (e.g., amplified by the same primer, or introduced
by cross-contamination or rare migration events), filtered databases may lead to misclassifica-
tion (e.g. a sequence may be classified as a fungus, when it is actually a metazoan, or vice versa
[80]). We recommend careful consideration of these risks when selecting primers, databases,
and filtering decisions for marker-gene and metagenome sequencing studies. An advantage of
using RESCRIPt for database construction and curation is that these processing steps are
embedded in provenance, allowing the appropriateness of these steps to be re-evaluated at
later stages (e.g., in documenting results, peer review, and re-use in future studies and by other
researchers).

Filtering out fungal sequences that were not annotated at least to order level removed only
a small fraction of unique labels (Fig 9A), boosting entropy by a narrow margin (Fig 9B) and
classification accuracy by a wide margin (Fig 9D and 9E). These results indicate that, even in
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curated release versions of some public databases, some additional curation is beneficial to
remove sequences with missing or uninformative taxonomic labels. Filtering with RESCRIPt
enables researchers to automatically record these filtering decisions in provenance, making it
clear when, where, and why their reference materials diverge from public release versions of
these databases.

Clustering and primer-region trimming effects on a BOLD COI gene
database

The COI gene is a common target for taxonomic identification of metazoa, both for diet meta-
barcoding and eDNA studies [35]. The earliest versioned COI databases were available
through a single resource: the Barcode of Life Data Systems (BOLD) [34]. However, a growing
number of researchers have recently contributed updated COI databases using either BOLD
or NCBI GenBank (or both) as source data [14,81-84]. We conducted a series of benchmarks
that evaluated the compositional and performance effects of COI databases constructed by
varying the following: first, clustering reference sequences and/or using full length sequences
versus trimming references to a particular primer region; second, the reference source itself
(BOLD vs. NCBI GenBank) [34,85]. The BOLD vs. NCBI GenBank comparison is the subject
of the next section. For all COI benchmarks, the results are reported separately for the two
largest groups of (animal) COI sequence data available in BOLD: arthropods and chordates.

Previous reports have separately described the reduction of taxonomic information when
clustering COI sequences, as well as the effects of classifier performance based on the reference
source [77,83,84]. We build on those previous works to demonstrate the effects of clustering in
combination with trimming these sequences to a particular region within the COI sequence,
focusing only on reference sequences obtained from BOLD. Clustering sequences dramatically
reduces the number of unique sequences in both the untrimmed and primer-trimmed COI
datasets (Fig 10A). Similarly, trimming COI sequences to a particular primer-defined region
results in a decrease in the number of unique chordate and arthropod sequences. Nevertheless,
it is worth noting that despite trimming to a region containing sequences approximately 180
bp in length, a large amount of sequence diversity remains for both arthropod (N = 611,166)
and chordate (N = 69,924) references. Sequence entropy was similarly reduced when refer-
ences were trimmed or clustered (Fig 10B).

We found that sequence clustering and primer trimming both also contribute to a decrease
in taxonomic information, most pronounced at the species rank (Fig 11A). Untrimmed chor-
date sequences clustered at 97% identity (“Full_97”) contained just 77% as many unique labels
as the untrimmed sequences that were only dereplicated (“Full_100”). Trimming these chor-
date sequences to a particular primer region also reduced taxonomic information, with dere-
plicated (“ANML_1007) and clustered (“ANML_97”) sequences containing 80% and 60% as
many unique labels as the untrimmed dereplicated Chordate reference set, respectively. A sim-
ilar effect was observed for arthropod sequences, with 97% identity clustered untrimmed
sequences containing 83% as many unique labels compared to the dereplicated and
untrimmed arthropod references. Dereplicated and primer-trimmed arthropod sequences,
and 97% clustered primer-trimmed sequences contained 78% and 62% as many labels relative
to the untrimmed, dereplicated arthropod sequences, respectively.

Unlike the observations with Greengenes SSU data, we found that taxonomic entropy
increased marginally when a larger clustering radius (decreasing percent identity) is applied
(Fig 11B), indicating that clustering reduces redundancy of taxonomic labels. In addition, the
same effect is observed when a reference sequence is reduced to a relatively shorter subse-
quence. Likewise, we observed that both clustering and primer trimming led to a significant
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Fig 10. Comparison of sequence information from BOLD COI gene database for available arthropod and chordate sequences. Differences in
datasets reflect whether sequences were trimmed to a particular primer region (boldANML) or not (boldFull), and whether sequences were dereplicated
(100) or clustered at a particular percent identity (97, 98, 99). A, Number of unique sequences. B, Entropy of sequences and different kmer lengths.

https://doi.org/10.1371/journal.pcbi.1009581.9g010

reduction in the number of terminal labels (Fig 11C). Although both arthropod and chordate
references contain the most sequences with species-rank labels in BOLD, arthropods uniquely
contain more sequences ending with family-level information than genus-level, which is per-
haps an indication of the greater challenge in classifying many arthropod specimens. The
entropy results, paired with the number of terminal labels at a given rank, indicate that
sequence clustering and primer trimming are both more consequential with respect to reduc-
ing the total number of sequences (richness) than the redundancy of labels (evenness).

While trimming and clustering followed similar trends with respect to taxonomic informa-
tion, the results of the evaluate-fit-classifier, our “best-case” classification accuracy (Fig 11D),
indicate opposing outcomes with respect to these two processes: primer trimming reduces true
taxonomic classification accuracy (due to reduced sequence information and thus lowered
ability to distinguish taxa), while clustering artificially increases it (by reducing genetic com-
plexity and clustering genetically similar clades). Thus, the “best-case” accuracy for these COI
sequences was obtained when references were untrimmed and clustered at 97%. Notably, the
magnitude of these effects varied by taxonomic group: chordate sequences were more sensitive
to clustering than arthropods, and primer trimming was more impactful for arthropods than
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Fig 11. Comparison of taxonomic information and simulated classification accuracy from BOLD COI gene database for available arthropod and chordate
sequences. Differences in datasets reflect whether sequences were trimmed to a particular primer region (boldANML) or not (boldFull), and whether sequences were
dereplicated (_100) or clustered at a particular percent identity (_97, _98, _99). A, Number of unique taxonomic labels; B, Taxonomic entropy; C, proportion of
unclassified taxa at each rank; D, optimal classification accuracy (as F-Measure) without cross-validation (simulating best possible classification accuracy when the true
label is known but classification accuracy may be confounded by other similar hits in the database). E, Classification accuracy with cross-validation. Rank labels on x-
axis: K = kingdom, P = phylum, C = class, O = order, F = family, G = genus, S = species.

https://doi.org/10.1371/journal.pcbi.1009581.9011

chordates. Cross-validated classification suggests a more unified pattern with respect to classi-
fication accuracy, such that trimming and clustering both reduce accuracy (Fig 11E). As men-
tioned previously with regards to clustering the Greengenes SSU OTUs, the differences
between “best-case” and cross-validated accuracy are likely driven by a loss of information
with increasing OTU clustering. Collectively, our data suggest that OTU clustering is detri-
mental for COI gene classification (Fig 11).

Comparison of metazoan COI gene sequences in BOLD and GenBank

Next, we compared dereplicated and primer-trimmed metazoan COI reference sequences
obtained from either BOLD or NCBI GenBank. Because some COI reference sequences
have been deposited in both BOLD and NCBI, the NCBI data were partitioned into
sequences cross-referenced to BOLD (“ncbiOB”) or not (“ncbiNB”), as well as represented
in its totality (“ncbiAll”). In addition, we evaluated the number of distinct taxonomic labels
shared among these databases to illustrate the degree of taxonomic information shared
between groups.

Dereplicated and primer-trimmed sequences obtained from BOLD contained a slightly
larger number of unique arthropod and chordate references compared to those obtained
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Fig 12. Comparison of sequence information from BOLD and NCBI GenBank COI gene databases for available arthropod and chordate
sequences. All sequences were dereplicated and trimmed to a common primer region. NCBI references either contained a cross-reference term to
BOLD (“ncbiOB”) or not (“ncbiNB”) or were combined together (“ncbiAll”). A, Number of unique sequences (note difference in scales between
Arthropoda and Chordata). B, Entropy of sequences and different kmer lengths.

https://doi.org/10.1371/journal.pcbi.1009581.9012

through NCBI GenBank (Fig 12A). Although many thousands of sequence accessions are
cross-listed in both NCBI GenBank and BOLD, these data indicate that tens of thousands of
COI sequences publicly available via BOLD are not cross-listed in NCBI GenBank. Sequence
entropy was similar among all combined NCBI datasets and BOLD (Fig 12B) for both chordate
and arthropod references.

Despite having fewer overall unique sequences, data obtained from NCBI contained
more unique genus and species labels than BOLD arthropod references, and a similar num-
ber of BOLD chordate references (Fig 13A), leading to higher taxonomic entropy at the
genus and species levels for NCBI (Fig 13B). Similarly, the combined NCBI database
(“ncbiAll”) contains many more arthropod and slightly more chordate sequences that are
assigned species labels after truncation and dereplication (Fig 13C). For arthropod refer-
ences, we find that BOLD data is the least accurate database among the “best case scenario”
classification (Fig 13D), but performs the best when subject to cross validation (Fig 13E).
However, chordate references are consistent between both measures, indicating that NCBI
references provide improved accuracy relative to BOLD references from family through
species-levels (Fig 13D and 13E).
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Fig 13. Comparison of taxonomic information and simulated classification accuracy from BOLD and NCBI GenBank COI gene databases for available

arthropod and chordate sequences. All sequences were dereplicated and trimmed to a common primer region. NCBI references either contained a cross-reference
term to BOLD (“ncbiOB”) or not (“ncbiNB”) or were combined together (“ncbiAll”). A, Number of unique taxonomic labels; B, Taxonomic entropy; C, proportion of
unclassified taxa at each rank; D, optimal classification accuracy (as F-Measure) without cross-validation (simulating best possible classification accuracy when the true
label is known but classification accuracy may be confounded by other similar hits in the database). E, Classification accuracy with cross-validation. Rank labels on x-
axis: K = kingdom, P = phylum, C = class, O = order, F = family, G = genus, S = species.

https://doi.org/10.1371/journal.pchi.1009581.g013

Fetching reference genomes for classification

The generation and use of genomic data is increasing [86], and allows better phylogenetic and
taxonomic resolution of microorganisms [87]. Thus the need to easily and reproducibly
retrieve and use this information for either direct analyses or generating custom metagenomics
reference databases has become imperative. To address this need, RESCRIPt supports the
automated retrieval of reference genomes from NCBI GenBank, enabling extensible and

reproducible genomics workflows via interaction with other QIIME 2 plugins, and registering
this pipeline in data provenance for greater transparency and reproducibility downstream (Fig
14A). To highlight this functionality, we used RESCRIPt along with several other plugins,
q2-sourmash (https://github.com/dib-lab/q2-sourmash) [88], q2-sample-classifier [89],
q2-diversity, and EMPeror [90] to generate a reproducible workflow to acquire and process a
set Hepatitis E virus (HEV) genomes from NCBI-GenBank (Fig 14A), generate MASH signa-
tures, perform pairwise genome comparisons, and visualize genome similarity via PCoA (Fig
14B). Finally, we show that HEV genotype (MASH signature) is predictive of geographic
source (Accuracy = 86.1%) using k-nearest-neighbors classification with leave-one-out cross-
validation (Fig 14C). Note that this analysis was performed using a subset of HEV genomes
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Fig 14. An example of using RESCRIPt for reproducible genomics workflows. HEV genomes were downloaded from NCBI-GenBank and used to make a reference
genome classifier based on the following geographic locations: Bangladesh (BD), China (CN), France (FR), India (IN), and the United Kingdom (UK). The
interoperability of RESCRIPt with other QIIME 2 plugins enables users to chain together a variety of functions into fully reproducible workflows that record processing
decisions in data provenance. A, a simplified data provenance graph highlighting our workflow leveraging RESCRIPt, q2-sourmash, q2-diversity, q2-sample-classifier,
and EMPeror. B, PCoA plot of individual HEV genomes based on MASH signature comparison results. C, k-nearest-neighbor classification accuracy based on MASH
signature dissimilarities and geographic location.

https://doi.org/10.1371/journal.pchi.1009581.9014

merely as a demonstration of RESCRIPt’s broad functionality, and does not represent a fully
structured test from which biological conclusions should be drawn.

Discussion
The acquisition problem

Curated reference materials are publicly available for commonly used marker-genes such as
rRNA genes [21,22,24,25,33] and the ITS region [31] for various domains of life. However,
public curated reference databases are currently lacking for many other marker genes and for
particular clades, creating a major bottleneck in scientific research. Even when such databases
do exist, acquiring and formatting these data for use with standard methods for sequence anal-
ysis and taxonomy classification can present a steep learning curve for scientists and clinicians
who lack the bioinformatics expertise required to generate and manage custom sequence and
taxonomy databases. RESCRIPt resolves many of these issues, providing automatic tools for
generating and formatting custom sequence and taxonomy databases (from either marker
genes or genomes) from NCBI GenBank and from SILVA. Methods to provide similar support
for other commonly used databases are planned for future releases of RESCRIPt. We hope that
these methods will democratize the process of generating custom reference databases, support-
ing research efforts across the microbiome, eDNA, and metagenomics communities.
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The reproducibility problem

The transparent reporting, replication, and reproduction of scientific discoveries is not a new
problem, but it is one that has become complicated in the digital age, as experiments and
computational methods become increasingly sophisticated and datasets have become both
larger and more likely to be re-used by others [65,67,68,91]. Reference database selection, and
any subsequent curation, critically impact the findings from marker-gene and metagenome
experiments [44,77,80,92], and hence must be carefully documented to allow others to inter-
pret scientific findings. For example, inappropriate use of environment-specific databases have
been shown to yield alarming false-positive rates in metagenomics datasets [80]. As reference
data are circulated and re-used by other researchers, it is critical that database curation steps
be transparently documented and transmitted so that the impact of these decisions can be eval-
uated downstream both by researchers re-using those datasets, as well as by the wider scientific
community when interpreting results. To address this issue, RESCRIPt utilizes QIIME 2’s inte-
grated data provenance tracking system [72] to record and store processing steps inside each
individual file generated as part of a workflow. Hence, provenance can be retrieved from any
terminal result file to document and replicate the entire processing chain, from data acquisi-
tion to filtering to downstream use (e.g., for taxonomic classification or sequence analysis).
We believe that embedding provenance within reference database files should become a stan-
dard in the field whenever reference data are modified by a researcher or destined for re-use
by others, and hope that others utilize RESCRIPt to facilitate greater transparency and repro-
ducibility within the microbiome, eDNA, and metagenomics communities.

The curation problem

Our results have shown that formatting and correcting taxonomy and other metadata are criti-
cal components of reference database generation and management prior to applications for
sequence classification, e.g., to standardize taxonomic ranks across entries [93]. We have
already implemented functions in RESCRIPt to format the popular SILVA rRNA gene and
NCBI GenBank databases, and are planning future support for parsing and editing other tax-
onomy formats, as well as mapping between these formats [73].

There are four codes of nomenclature as reviewed in [94], the International Code of
Nomenclature for algae, fungi and plants (ICNafp; [95]) International Code of Nomenclature
of Prokaryotes (ICNP; [96]), International Code of Zoological Nomenclature (ICZN; [97]),
International Code of Virus Classification and Nomenclature (ICTV, [98]). Each of these have
their own rules for taxonomic curation within their respective areas. Combining and curating
taxonomic information across multiple databases can be an onerous task as new issues can
arise when attempting to merge information across the respective authorities on nomenclature
[94]. For example, not all taxonomic ranks are recognized, available, or even treated equally
across the various databases. Valid rank fields in one database may not be recognized, or even
useful, in other databases, e.g. INCafp formally recognizes the below-species ranks varieties
(varietas) and forms (forma), which are not recognised within the other codes of nomencla-
ture. Inconsistencies in taxonomic labeling, updates, and rank suffixes can cause additional
incompatibilities between databases. Current efforts seek to standardize higher level suffixes of
microbial nomenclature [99], streamlining bioinformatic extraction and inference of rank
information.

In recent years, the explosion of high-throughput sequencing technologies has allowed
researchers to generate genomic data on many as yet uncultured microbial taxa. In fact, the
rate at which novel genomic data can be acquired [86], and rapidly placed within a phyloge-
netic context [24], has surpassed our ability to appropriately resolve any conflicts with
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traditional Linnaean taxonomy. This has resulted in some proposals on how to taxonomically
organize genomic data from uncultured microbes, and with greater emphasis on phylogenetic
systematics [24,100]. For example, commonly used labels may have no officially recognized
rank (e.g. Opisthokonta), but are quite informative, as they may refer to monophyletic group-
ing of taxa.

Sequences with missing or incomplete taxonomy/metadata and low-quality sequences are
common in some databases. RESCRIPt introduces easy-to-use and user-customizable tools for
detection and removing low-quality entries based on sequence filtering criteria (e.g., presence
of homopolymer or ambiguous bases) or based on taxonomic information. Although some of
these are trivial tasks for experienced bioinformaticists, using RESCRIPt to perform these
functions results in those processing decisions being recorded automatically in the provenance
stored in the downstream results files, so that this information can be recovered at any stage of
downstream processing (provided that the data are maintained in a QIIME 2 archive format).

The aim of RESCRIPt is to democratize the tools for database acquisition, formatting, and
curation, but RESCRIPt is not in itself a tool to automatically curate data. It is the responsibil-
ity of users to check the validity of their source data and to use those reference data and
RESCRIPt appropriately. Even popular sequence taxonomy databases are prone to error [43],
and issues with taxonomic naming, polyphyly, and inconsistent degrees of sequence similarity
at different taxonomic ranks can complicate the use, accuracy, and contemporaneity of refer-
ence databases [101]. Defining definitions of taxonomic boundaries has historically been a
challenge and can vary based on the characters used to define them, e.g. biochemical, metabo-
lomic, ecological phenotypes, with more recent definitions, and circumscription of taxa, based
upon phylogenetic relatedness and average nucleotide identity. However, these new phyloge-
netic approaches have resulted in either the lumping or splitting of taxa creating ever more
inconsistencies between taxonomy and phylogeny [16,25,102,103].

We hope that by decreasing the number of technical hurdles involved with the generation
and curation of custom databases, we will ease the point of entry, and create an interest in the
taxonomic sciences among the research community. In the future, RESCRIPt could help facili-
tate data curation in large-scale citizen science projects in which the greater research commu-
nity and general public can contribute to the growth and curation of sequence and taxonomy
databases.

The evaluation problem

After constructing a custom database comes the critical question: is the database actually useful
and informative? How does it compare to other databases? User-friendly methods for
sequence reference database evaluation are not currently available, making database evaluation
and benchmarking a formidable challenge to the research community. RESCRIPt has imple-
mented multiple methods for database evaluation, which generate interactive visualizations to
allow users to explore and better interpret database quality characteristics (see example gallery
at https://github.com/bokulich-lab/RESCRIPt). These involve both qualitative metrics, for
evaluating sequence and taxonomy information within and between databases, as well as
quantitative metrics for evaluating taxonomic classification performance of marker-gene
sequences with different cross-validation schemes. Furthermore, we provide reproducible
examples in the online tutorials (https://github.com/bokulich-lab/RESCRIPt) to guide users in
the use and interpretation of these methods, to make these methods widely available and
usable by the research community.

Using these evaluation methods, we have benchmarked performance characteristics of
some of the most popular reference databases for bacterial/archaeal 16S rRNA gene, eukaryote
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ITS region, and animal COI gene sequences. This evaluation informs several conclusions.
First, all of these databases may require some additional curation by end-users to improve suit-
ability for certain research applications. This includes filtering low-quality sequences and
annotations to improve database quality and classification accuracy, such as abnormally short
sequences in the GTDB, SILVA, and NCBI-RefSeq databases. Second, we compared several of
these databases side-by-side to measure relative performance metrics. In the case of 16S rRNA
gene analysis specifically, we conclude that the size and taxonomic comprehensiveness of
SILV A are major assets, though GTDB and NCBI-RefSeq may be more suitable for various
applications that respectively require greater taxonomic and phylogenetic rigor. The use of
genomes sequenced from type material provides these two databases with a robust taxonomic
and phylogenetic backbone that enables users to link natural history and experimental science
[94,104].

NCBI-RefSeq’s species records are extracted from data submissions to the International
Nucleotide Sequence Database Collaboration (INSDC), i.e., NCBI-GenBank, the European
Nucleotide Archive (ENA), and the DNA Data Bank of Japan (DDB]J). NCBI-RefSeq continu-
ally curates these species records from the primary data, often by collaborating with other
groups, e.g. authorities in sequence data curation, taxonomic nomenclature, phylogenetic sys-
tematics, et cetera. Furthermore, NCBI-Taxonomy continually runs taxonomic consistency
checks on assembled genomes with average nucleotide identity (ANI) [105]. These curational
efforts result in a well integrated suite of biological information that can be interrogated
through a variety of means and data types [26,94]. The GTDB extracts and curates data from
both NCBI-RefSeq and NCBI-GenBank to generate a phylogeny of Archaea and Bacteria from
roughly 120 ubiquitous single-copy proteins [24,93]. This phylogeny is used to inform micro-
bial taxonomy, especially in cases where a given taxonomy is observed to be polyphyletic. In
this case, a conservative approach is used to remove polyphyletic groups and normalize taxo-
nomic ranks according to their relative evolutionary divergence. Any remaining polyphyletic
groups are then flagged as “regions of instability” in the hopes that future in-depth analyses
will result in a stable set of classifiable taxa [24,93]. The efforts by NCBI and GTDB enable
researchers to not only more accurately classify uncultured microbes, but also place them into
ecological and evolutionary context based on their nearest phylogenetic neighbors.

The design, curation decisions, and ultimate quality of these databases must be considered
carefully when applying them for particular purposes. For example, the SILVA database is not
curated at species level, though the “organism name” provided in the source NCBI data are
provided. RESCRIPt’s “get-silva-data” method for acquiring and formatting SILVA data can
be configured to either report these organism names as the species labels in the output hierar-
chical taxonomy annotations, or to only report the SILVA taxonomy, which is curated from
the domain to genus rank. In our evaluation, we found that although SILVA species labels can
be informative, 72% consist of unidentified, uncultured, or unknown organisms, and 2.5% do
not match the genus. Downstream users should be aware of such caveats when using SILVA,
or any reference data, and understand the limitations that these impose when interpreting
results.

What RESCRIPt does not do, and other limitations

RESCRIPt is designed to give researchers access to tools for reproducible nucleotide sequence
and taxonomy database generation, curation, and evaluation. RESCRIPt is not in itself a data
source nor an authority on taxonomy, systematics, or data quality, and the qualitative and
quantitative metrics that RESCRIPt can generate are not infallible indicators of quality or accu-
racy. As with any bioinformatics methods, the quality of RESCRIPt’s outputs is dependent on
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the quality of its inputs and the processing decisions made by the user. In general, users should
use multiple metrics to guide their interpretations of RESCRIPt’s results, but also need to be
aware of the composition of input data before making conclusions about database quality.

For example, classification accuracy metrics output by RESCRIPt can be artificially high if
the input database is of low quality. This is clearly seen in the OTU clustering benchmark per-
formed using the Greengenes database (Fig 8D and 8E): the “evaluate-fit-classifier” method,
which classifies sequences without cross-validation, reports perfect and near-perfect species-
level classification accuracy on the highly clustered sequences (e.g., 64 and 79% OTUs) (Fig
8D). This is, however, because these sequences are clustered to the extent that the remaining
taxonomic coverage becomes relatively poor and sparse as near-neighbors become clustered
into fewer OTUs (Fig 8A). This sparsity becomes reflected in the poor classification accuracy
when cross-validation is used, as the lack of near neighbors leads to high misclassification rates
for the 64% and 79% OTUs (Fig 8E). Using multiple classification evaluation methods and
both qualitative and quantitative metrics (e.g., comparing classification accuracy to taxonomic
and sequence entropy and coverage information) will help guide more robust conclusions
about database quality.

Future goals

RESCRIPt currently contains a range of tools for sequence reference database acquisition,
management, and evaluation. Curation tools remain manual and qualitative. In the future, we
plan to explore and incorporate methods for quantitative curation of sequences and taxono-
mies. For example, the methods used by GTDB [24] to inform species clusters based on aver-
age nucleotide identity (ANI) [106] could be incorporated for similar curation of species
clusters in RESCRIPt. Other methods to detect and re-annotate mis-annotated and unanno-
tated sequences would be valuable for guiding sequence curation efforts. However, methods
such as these can be difficult to apply generally, and while ANT is useful for defining species
clusters based on whole-genome sequences, it may not scale appropriately to incomplete
genomes or marker-gene sequences [107].

Although the scope and benchmarks included in this study focus on marker-gene sequenc-
ing applications, genome and metagenome databases are already compatible with RESCRIPt.
For example, the “get-ncbi-data” method could be used to automatically download reference
genomes from GenBank, and the filtering and taxonomy functions are general purpose. More
genome- and metagenome-focused functionality is planned for future releases of RESCRIPt,
such as ANI [106] and MASH [108] for (meta)genome distance estimation, and methods for
estimating the taxonomic classification accuracy of (meta)genome databases.

RESCRIPt’s developers remain committed to working with researchers to provide access to
leading reference materials and reproducible and transparent reference sequence processing
workflows. We plan to add more methods for sequence and taxonomy acquisition from public
online databases that are commonly used by the marker-gene and metagenome research com-
munity, and welcome collaboration with database curators who want to better integrate their
databases with RESCRIPt. The most up-to-date information related to feature requests, usage,
and troubleshooting can be found on the project’s GitHub page (https://github.com/bokulich-
lab/RESCRIPY).

Methods
Implementation

RESCRIPt is implemented as a free, open-source QIIME 2 [72] plugin, in order to leverage
QIIME 2’s data provenance tracking system to ensure that users can trace the steps used to
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make their custom reference databases. QIIME 2 “Artifacts” (results files) consist of zip
archives containing the result file (in typical, interoperable formats, e.g., FASTA for nucleotide
sequence data) as well as data provenance information and other file metadata. Users unfamil-
iar or unwilling to work with QIIME 2 Artifacts can extract the data using either QIIME 2 or
standard methods (e.g., the UnZip utility (http://infozip.sourceforge.net/) that is included in
most Linux and Unix distributions), making QIIME 2 Artifacts a fully interoperable, portable
solution for storing reference databases with integrated provenance information.

RESCRIPt is written primarily in Python 3 and depends on pandas [109,110] for dataframe
operations; VSEARCH [111] and scikit-bio (scikit-bio.org) for parsing nucleotide sequences;
numpy [112], scipy [113], and scikit-learn [114] for numerical and statistical operations;
xmltodict (https://github.com/martinblech/xmltodict) for parsing XML; urllib and requests
(https://github.com/psf/requests) for HTTP requests; q2-feature-classifier [115] for taxonomic
classification; and matplotlib [116], seaborn [117], VEGA [118], and q2-longitudinal [119] for
plotting and data visualization, including interactive visualizations.

The current release of RESCRIPt (2021.8) contains a variety of functions for retrieving,
managing, and evaluating sequence and taxonomy reference databases (Fig 1). Details on spe-
cific functions, usage, and tutorials can be found at the project website (https://github.com/
bokulich-lab/RESCRIPt), and are described in the sections below.

SILVA data retrieval and taxonomy formatting. RESCIPt supports retrieval of SSU and
LSU marker-gene data from SILVA via an automated method, “get-silva-data”, or manual
import of the necessary sequence and taxonomy files (Fig 1). The “get-silva-data” pipeline
allows selection of (a) which version of the database to download, (b) whether to download
LSU, SSU sequences, or the SSU NR99 sequences, and (c) which taxonomic ranks to use and
other options for taxonomy parsing (see software documentation for more details). These
options are all stored in the data provenance of the output files, for later retrieval and repro-
ducibility. RESCRIPt parses the SILVA taxonomy, using three files as input:

« taxonomy rank (taxrank) file, containing both the taxonomic rank and taxonomy for each
numeric taxonomy identifier (taxid);

« taxonomy mapping (taxmap) file, which maps each sequence accession to a taxid and the
“organism name” provided by NCBI;

o taxonomy tree (taxtree) file, which contains the hierarchical taxonomy in Newick format,
with the taxids used as node labels, in which the daughter nodes contain the taxids of lower-
level taxonomies.

The “parse-silva-taxonomy” method utilizes the taxrank, taxmap, and taxtree files to
generate a consistent user-defined rank-associated taxonomy. Although the set of ranks
can be configured by the user, the following ranks are extracted by default: domain (d_),
phylum (p_), class (c_), order (o_), family (f_), and genus (g_). Any ranks not associated
with taxonomy have their upper-level taxonomic lineage propagated downward (i.e. the
values are forward filled with the last observed taxonomic value) towards lower-level ranks.
This ensures general compatibility with downstream taxonomy classification tools, many
of which may require non-empty fields at each rank. Rank propagation can be optionally
disabled.

Finally, the user can choose to append the organism name (from the taxmap file) for use as
the species (s_) rank taxonomy. We generally warn against this due to the myriad of inconsis-
tent information found within the organism name field (based on our benchmarking results
described herein), but it can occasionally be useful. If the user does decide to leverage the
organism name, we currently only return the first two words, to remove subspecies-level
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information that is often included in the given organism name and which can degrade classifi-
cation accuracy (e.g., because the extra information causes that species to be interpreted as a
unique label).

Rank propagation is provided to allow users to extract more taxonomic information, rather
than explicitly pulling down only the ranks of interest. For example, if a user opted to down-
load sequence data along with only the six standard taxonomic ranks (see above), they may
obtain the following taxonomic output when rank propagation is not used:

727393.1.1722 d__Eukaryota; k__Fungi; p__Ascomycota;c_ ;0_;f ;g

AB671439.1.2071 d__Eukaryota; k__Fungi; p__Ascomycota;c_ ;0_ ;f ;g

The user might assume that query sequences that “hit” either of these reference sequences
would be unable to classify beyond the phylum level. However, applying rank propagation will
yield the following for these same accessions:

727393.1.1722 d__Eukaryota; k__Fungi; p__Ascomycota; c__Taphrinomycotina;
o__Taphrinomycotina; f Taphrinomycotina; g Taphrinomycotina

AB671439.1.2071 d__Eukaryota; k__Fungi; p__Ascomycota; c__Pezizomycotina; o__Pezi-
zomycotina; f Pezizomycotina; g_ Pezizomycotina

This is because intermediate ranks not selected by the user (e.g., sub-phyla Taphrinomyco-
tina and Pezizomycotina) were propagated downward and used to fill in the unannotated
ranks. Hence, forward filling allows users to disambiguate incompletely annotated reference
sequences. The drawback is the conflation of taxonomy by mixing ranks from other levels.

The RESCRIPt project page (https://github.com/bokulich-lab/RESCRIPt) lists several tuto-
rials describing how to use various RESCRIPt functions, including methods to import and
parse SILVA data.

NCBI GenBank data retrieval and taxonomy formatting. RESCRIPt supports auto-
mated retrieval of sequence taxonomy databases from the NCBI Nucleotide and Taxonomy
databases [85] using the “get-ncbi-data” method. Sequences can be selected using a standard
NCBI query, by specifying a list of sequence accession ids, or as a combination of the two.
Downloads of large sequence databases can be made faster using parallel connections and
batch downloads.

The NCBI download method retrieves the requested sequences from the NCBI Nucleotide
database, cross-references their taxids with the NCBI Taxonomy database to obtain their taxo-
nomic classifications, then standardizes the taxonomies to adhere to a fixed set of ranks. The
set of ranks can be configured by the user but are kingdom (k__), phylum (p_), class (c_),
order (o_), family (f_), genus (g_), and species (s__) by default. If a given rank is not present in
the NCBI Taxonomy it is propagated down from the nearest higher rank, as described above.
Rank propagation can be optionally disabled.

The RESCRIPt project page (https://github.com/bokulich-lab/RESCRIPt) lists several tuto-
rials describing how to use various RESCRIPt functions, including methods to download and
save NCBI data.

Reference database benchmarks

To demonstrate some examples of how users can use RESCRIPt to process and evaluate cus-
tom reference databases from popular source data, we used RESCRIPt to conduct several
benchmarks. Tutorials demonstrating this functionality, based on some of the following
benchmarks, can be found on the project website (https://github.com/bokulich-lab/
RESCRIPt). Workflows and data from our benchmarks can be found at https://github.com/
bokulich-lab/db-benchmarks-2020 and https://github.com/devonorourke/COIdatabases.
Benchmarks were designed and executed with the following aims:
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1. Demonstrate various aspects of RESCRIPt’s current functionality for retrieving and curat-
ing reference sequences.

2. Compare the information content and classification performance of four commonly used
sequence databases for 16S rRNA gene classification of Bacteria and Archaea, retrieved and
formatted using RESCRIPt: SILVA [22], Greengenes [21, 23], NCBI-RefSeq [26,120,121],
and GTDB [25].

3. Evaluate the effects of sequence filtering on classification accuracy and information content
of the SILVA [22] rRNA gene sequence database.

4. Evaluate the effects of sequence clustering on sequence and taxonomic information con-
tent, using the Greengenes [23] 165 rRNA gene sequence database.

5. Evaluate the effects of sequence filtering on classification accuracy and information content
of the UNITE [31] ITS sequence database.

6. Evaluate the effects of sequence filtering on classification accuracy and information content
of the BOLD [34] and NCBI GenBank [64,121] COI gene sequence databases.

7. Evaluate the effects of sequence clustering and primer-coordinate trimming on classifica-
tion accuracy and information content of the BOLD gene sequence database.

Data were retrieved either using RESCRIPt (for SILVA and NCBI data) or by direct down-
load of release data (for UNITE, Greengenes, and GTDB) or by direct download (for BOLD
data; accessed July 1, 2020 and updated August 8, 2020).

SILVA data were filtered to remove sequences containing homopolymer lengths > 8 and/
or > 5 ambiguous characters, using the RESCRIPt action cull-seqs with default settings.
SILVA, GTDB, and NCBI data were all found to contain unusually long and short 16S rRNA
gene sequences (using the RESCRIPt action evaluate-seqs), thus Archaea sequences < 900 nt
[50] and Bacteria < 1200 nt [25], as performed for the SILVA releases (e.g. https://www.arb-
silva.de/documentation/release-138/) were filtered out using the RESCRIPt action filter-seqs-
length-by-taxon.

The raw NCBI COI data were obtained with the ‘get-ncbi-data‘action in RESCRIPt (see
tutorials at https://github.com/bokulich-lab/RESCRIPt). Sequences containing the “BAR-
CODE” keyword were considered cross-referenced NCBI data from BOLD, and labeled as
“NCBIob”, while those sequences without this keyword were labeled as “NCIBnb”. These data
were processed only in one fashion: initially dereplicated and primer trimmed to the ANML
primer coordinates, then dereplicated once again. This produced a pair of NCBI COI data-
bases with (“ncbiOB”) or without (“ncbiNB”) the BOLD cross-referenced label. These data
were also combined, and again dereplicated, to represent the full NCBI set of COI sequences
(“ncbiAll”). In all cases, every database was filtered prior to running benchmark tests to retain
only those taxonomy labels and sequences associated with the phylum “Chordata” or
“Arthropoda”.

The raw BOLD COI data were obtained using a custom R script (https://ost.io/m5cgs/). All
data sets were filtered with similar RESCRIPt actions to remove sequences containing homo-
polymer lengths > 12 and/or > 5 ambiguous characters (via ‘cull-seqs’), and to retain
sequences between 250 to 1600 bp (‘filter-seqs-length’). Sequences were then either derepli-
cated (‘dereplicate’) or clustered using one of three percent identities (97, 98, 99). These “bold-
Full” datasets contained sequences of variable lengths of COI sequence, and were further
trimmed to the boundaries that map to ANML [122] sequences—a primer pair commonly
used in animal diet metabarcoding experiments. Trimming was performed using MAFFT
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[123] in three stages: first, a subset of reference sequences created a high quality alignment
with ‘mafft—auto’; second, primers were aligned to this small alignment file with ‘mafft—mul-
tipair—addfragments’; third, the remaining reference sequences were aligned with ‘mafft—
auto—addfull’. These trimmed data were dereplicated once more to produce the “bold ANML”
datasets.

In several benchmarks, reference sequences and taxonomy were dereplicated and/or clus-
tered using the RESCRIPt action ‘dereplicate’. This action uses VSEARCH to dereplicate
sequences and optionally cluster them at a specified % similarity to form operational taxo-
nomic units (OTUs), then RESCRIPt finds the most appropriate taxonomic label for each
sequence cluster using one of several available modes of operation to find the last common
ancestor (LCA) for the cluster, or to preserve identical sequences with unique taxonomic
labels.

Taxonomic information in each database was evaluated using the RESCRIPt action evalu-
ate-taxonomy. This action measures the number of unique labels, label entropy, and the num-
ber of unknown/unclassified labels at each taxonomic rank. Shannon’s entropy (H) [79] is
defined as:

HO) =~ 3 P(x) log, P(x)

Thus, entropy relates to both the evenness and richness of information content: e.g., the
number and evenness of taxonomic label frequencies or sequence/kmer frequencies.

Sequence information in each database was evaluated using the RESCRIPt action ‘evaluate-
seqs’. This action measures the number of unique sequences, sequence entropy, sequence
length distribution, and kmer entropy.

Taxonomic classification accuracy was simulated for each database using the RESCRIPt
actions ‘evaluate-cross-validate” and ‘evaluate-fit-classifier’, followed by accuracy evaluation
with evaluate-classifications (which measures precision, recall, and F-measure in taxonomic
classification results [115] and visualizes these metrics at each taxonomic rank). RESCRIPt
implements two different classification evaluation methods to simulate different classification
conditions, including both “unrealistic” (easy) and “realistic” classification tasks, i.e., that
many of the sequences detected in a true environmental survey, e.g., of microbial or eDNA
sequences in most sample types, will not have exact matches in any reference database, either
because they represent novel strains, species, or higher-order taxonomic clades. The ‘evaluate-
cross-validate’ action uses k-fold cross-validation (implemented in scikit-learn [114]) to per-
form a pseudo-realistic classification task whereby a set of query sequences may not have an
exact match in the reference database, but other similar taxonomic groups may be present, as
implemented and described previously [56,115]. This action splits a database into K test sets
(such that each sequence appears in a test set exactly once) and classification is performed in
each fold with the remaining sequences as the training set. Splitting is stratified by taxonomic
groups, so that taxonomic groups are evenly stratified across training and test sets. An
“expected” taxonomy is generated by this method, in which taxonomic singletons (i.e.,
sequence queries that do not have a representative from the same taxonomic group in the
training set) are truncated so that the expected taxonomic classification is the LCA between
that taxon and its nearest taxon in the training set, as this is the “correct” answer when the true
taxonomic label for that query is not “known” (i.e., absent from the training set). The ‘evalu-
ate-fit-classifier’ action trains and tests classification on the full dataset, without cross-valida-
tion, to report the best-case performance, i.e., when each query sequence has an exact match in
the reference database (and hence the correct taxonomic label is known, but other matches
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may also be present). In this case, data leakage (where information is shared between the test
and training sets) is intentional, in order to estimate the upper bound of classification accuracy
for a given database by simulating an unrealistically easy classification task (using the defini-
tion of “realistic” described above). Both of these classification evaluation methods can be
adapted in RESCRIPt to simulate the expected level of challenge in a given ecosystem—e.g.,

for well characterized sample types and clades, ‘evaluate-fit-classifier’ method may actually
represent a realistic classification scenario, and users can set different levels of K for ‘evaluate-
cross-validate’ (to adjust the number of splits performed) to adjust the degree of “challenge”
(i.e., lower levels of K result in larger splits and more uncertainty).

In addition to dereplicating and clustering sequences, the RESCRIPt ‘dereplicate’ action is
useful as a quick assessment of taxonomic resolution, versus using the classification simulation
methods described above. By dereplicating the sequences and using the ‘lca’ mode to find the
LCA for each cluster, followed by using the ‘evaluate-taxonomy’ visualizer (described above)
to examine the number of unclassified labels at each rank, this action allows a quick assessment
of how well the different taxonomic groups contained in the database can be resolved based on
sequence information alone, as we demonstrate in some of our benchmarks. The classification
simulation/evaluation methods are better suited for simulating realistic classification tasks,
and for estimating actual taxonomy classifier performance, but are computationally intensive
and time-consuming.

Reproducible genomics workflows

To demonstrate the ability of RESCRIPt to process and compare genome data, we used the
scalable MinHash (MASH) approach [108] through q2-sourmash (https://github.com/dib-lab/
q2-sourmash) [88]. In brief, MASH generates compressed sketch representations of large
genome sequence sets, making large genome comparisons possible through dimensionality
reduction. We queried the NCBI Virus portal [124], for the Hepatitis E Virus (HEV) on Sep-
tember 23rd, 2020 and downloaded accessions within the viral lineage "Hepatitis E virus
taxid:12461", that were annotated as having a nucleotide completeness status of "complete”.
Only HEV data with sufficient regional representation, and associated with humans, were
retained. These accessions were downloaded using RESCRIPt’s “get-ncbi-data” function, and
processed using a modified version of q2-sourmash (https://github.com/mikerobeson/
q2-sourmash/tree/use-fasta). The q2-sourmash functions “compute-fasta” and “compare”
were used to generate MASH signatures for each genome and perform pairwise genome com-
parisons respectively. PCoA was performed through the QIIME 2 q2-diversity plugin and visu-
alized with EMPeror [90]. Finally, q2-sample-classifier [89], was used to determine if MASH
signatures are predictive of geographic source, based on k-nearest-neighbors classification
with leave-one-out cross-validation.

Supporting information

S1 Text. Earth Microbiome Project reference database comparison summary. Methods and
results summary on how database preparation affects taxonomic classification of real-world
biological data from the Earth Microbiome Project.

(DOCX)

S1 Fig. Comparison of reference database classification of Earth Microbiome Project
sequences. Comparison of taxonomic classification of Earth Microbiome Project sequences
with SILVA, Greengenes, GTDB, and NCBI-RefSeq 16S rRNA gene databases. A, Number of
unique taxonomic labels; B, Taxonomic entropy; and C, proportion of unclassified taxa at each
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taxonomic rank. Rank labels on x-axis: D = Domain, P = phylum, C = class, O = order,
F = family, G = genus, S = species.
(EPS)

$2 Fig. Comparison of SILVA database quality filtering on taxonomic classification of
Earth Microbiome Project sequences. A, Number of unique taxonomic labels; B, Taxonomic
entropy; and C, proportion of unclassified taxa at each taxonomic rank. Rank labels on x-axis:
D = Domain, P = phylum, C = class, O = order, F = family, G = genus, S = species. Raw V4: the
complete NR99 SILVA database, with V4 sequences extracted, followed by dereplication,
Default V4: same as Raw, but filtered to remove sequences with either 8 or more homopoly-
mers and/or 5 ambiguous bases removed, and to remove Archaeal and Bacterial sequences less
than 900 and 1200 bp in length, respectively. Strict V4: same as Default, but removing
sequences with any ambiguous nucleotides, NoAmbigLabels V4: same as Default, but remov-
ing any sequence associated with ambiguous labels (typically empty annotations at genus or
species ranks).

(EPS)

S1 File. Example procedure for constructing a 12S rRNA marker gene reference database.
A jupyter notebook version is available at https://github.com/bokulich-lab/db-benchmarks-
2020.

(PDF)
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